A NORMAL FORM FOR RIEMANN MATRICES

A. A. ALBERT

A matrix ω having p rows and $2 p$ columns of complex number elements is called a Riemann matrix of genus p if there exists a rational $2 p$-rowed skew matrix C such that

$$
\begin{equation*}
\omega C \omega^{\prime}=0, \quad \gamma=i \omega C \bar{\omega}^{\prime} \tag{1}
\end{equation*}
$$

is positive definite Hermitian. The matrix C is then called a principal matrix of ω. If ω and ω_{0} are two Riemann matrices of the same genus, we say that ω and ω_{0} are isomorphic if there exists a non-singular p-rowed complex matrix α, and a non-singular $2 p$-rowed rational matrix A, such that

$$
\begin{equation*}
\omega_{0}=\alpha \omega A \tag{2}
\end{equation*}
$$

Then the matrix

$$
\begin{equation*}
C_{0}=A^{-1} C\left(A^{-1}\right)^{\prime} \tag{3}
\end{equation*}
$$

has the property

$$
\omega_{0} C_{0} \omega_{0}^{\prime}=(\alpha \omega A)\left[A^{-1} C\left(A^{-1}\right)^{\prime}\right] A^{\prime} \omega^{\prime} \alpha^{\prime}=\alpha\left(\omega C \omega^{\prime}\right) \alpha^{\prime}=0,
$$

and

$$
\gamma_{0}=i \omega_{0} C_{0} \bar{\omega}^{\prime}=i(\alpha \omega A)\left[A^{-1} C\left(A^{-1}\right)^{\prime}\right] A^{\prime} \bar{\omega}^{\prime} \bar{\alpha}^{\prime}=i \alpha\left(\omega C \bar{\omega}^{\prime}\right) \bar{\alpha}^{\prime}=\alpha \gamma \bar{\alpha}^{\prime}
$$

is positive definite Hermitian when γ is positive definite Hermitian. It follows that, if (2) holds, then ω is a Riemann matrix with C as principal matrix if and only if ω_{0} is a Riemann matrix with C_{0} as principal matrix. The relation of isomorphism for Riemann matrices is readily seen to be an equivalence relation.

Two Riemann matrices ω and ω_{0} are said to be equivalent if (2) holds with A a unimodular integral matrix. The relation of equivalence is also easily seen to be an equivalence relation. It is also clear that, if C is a principal matrix of ω, and t is any positive rational number, the matrix $t C$ is a principal matrix of ω. Then every Riemann matrix ω has a principal matrix C whose elements are all integers. Indeed C may be selected so that the greatest common divisor of its (integral) elements is 1.

The following result is stated by Lefschetz (Trans. Amer. Math. Soc., 22 (1921), p. 366).

[^0]Theorem. Let ω be a Riemann matrix of genus p and C be a principal matrix of ω, so that the elements of C can be taken to be all integers. Then ω is equivalent to a Riemann matrix

$$
\begin{equation*}
\omega_{0}=\left(E^{-1}, \tau\right) \tag{4}
\end{equation*}
$$

for a symmetric p-rowed complex matrix τ, where $E=\operatorname{diag}\left\{e_{1}, \ldots, e_{p}\right\}$, the e_{i} are non-zero integers such that e_{i+1} divides e_{i} for $i=1, \ldots, p-1$, and $\tau=\gamma+\delta i$ for real matrices γ and δ where δ is positive definite. Indeed the matrix

$$
C_{0}=\left(\begin{array}{cc}
0 & E \tag{5}\\
-E & 0
\end{array}\right)
$$

is the usual canonical form for the skew matrix C under unimodular congruence, and C_{0} is a principal matrix of ω_{0}.
While the result above is well known, the literature does not seem to contain a direct matrix-theoretic proof. We shall now provide such a proof.

We use the fact that there exists a unimodular matrix A such that

$$
A^{-1} C\left(A^{\prime}\right)^{-1}=C_{0}
$$

has the form (5). The matrix A^{-1} is a unimodular integral matrix when A is, and the integers e_{i} are the so-called elementary divisors of C. Then $\omega_{1}=\omega A$ has C_{0} as principal matrix. We may then write

$$
\begin{equation*}
\omega_{1}=\omega A=\left(\tau_{1}, \sigma_{1}\right) \tag{6}
\end{equation*}
$$

for p-rowed square matrices τ_{1} and σ_{1} with complex elements. It is clear that the complex $2 p$-rowed square matrix

$$
\begin{equation*}
\Omega_{1}=\binom{\omega_{1}}{\bar{\omega}_{1}} \tag{7}
\end{equation*}
$$

has the property that

where $\gamma_{1}=i \omega_{1} C_{0} \bar{\omega}_{1}^{\prime}$ is positive definite Hermitian. Hence γ_{1} and γ^{\prime} are non-singular and so Ω_{1} and C_{0} are non-singular. Evidently the fact that γ is non-singular implies that each of its matrix factors must have rank at least p. Since ω_{1} is a p by $2 p$ matrix it must have rank p.

Let r be the rank of τ_{1}, where then $r \leqslant p$. There exists a permutation matrix P such that the first r columns of $\tau_{1} P$ are linearly independent. Then P is a p-rowed unimodular matrix and the matrix

$$
\omega_{2}=\alpha \omega_{1}\left(\begin{array}{ll}
P & 0 \tag{9}\\
0 & P
\end{array}\right)=\left(\alpha \tau_{1} P, \alpha \sigma_{1} P\right)=\left(\tau_{2}, \sigma_{2}\right)
$$

is equivalent to ω_{1} and hence to ω for every non-singular p-rowed complex matrix α. Moreover, α can be selected so that

$$
\tau_{2}=\left(\begin{array}{cc}
I_{r} & \lambda \tag{10}\\
0 & 0
\end{array}\right)
$$

for an identity matrix I_{r} of r rows and an r by $p-r$ complex matrix λ. What we actually have done is to use the fact that the rows of $\tau_{1} P$ are all linear combinations of certain r of its rows, we can first select an $\alpha^{(\prime)}$ which is a permutation matrix making the r basal rows the first r rows, and we can then multiply by an $\alpha^{(\prime \prime)}$ which has the effect of replacing the remaining $p-r$ rows by zero rows. Since the first r columns of $\alpha^{(\prime \prime)} \alpha^{(1)} \tau_{1} P$ remain linearly independent, we can multiply by a non-singular matrix $\alpha^{(\prime \prime \prime)}$ such that $\alpha^{(\prime \prime \prime)} \alpha^{(\prime \prime)} \alpha^{(\prime)} \tau_{1} P$ is the matrix τ_{2} of (10).

The matrix

$$
\begin{align*}
C_{2} & =\left(\begin{array}{ll}
P^{\prime} & 0 \\
0 & P^{\prime}
\end{array}\right)\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)\left(\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right) \tag{11}\\
& =\left(\begin{array}{cc}
0 & P^{\prime} E \\
-P^{\prime} E & 0
\end{array}\right)\left(\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right)=\left(\begin{array}{cc}
0 & E_{2} \\
-E_{2} & 0
\end{array}\right),
\end{align*}
$$

where $E_{2}=P^{\prime} E P$, is obtained from E by merely permuting its diagonal elements and so is a diagonal matrix.

Let us now write

$$
\sigma_{2}=\left(\begin{array}{cc}
\sigma_{21} & \sigma_{22} \tag{12}\\
\sigma_{23} & \sigma_{24}
\end{array}\right), \quad E_{2}=\left(\begin{array}{cc}
F_{2} & 0 \\
0 & G_{2}
\end{array}\right)
$$

where σ_{21} is an r-rowed square complex matrix (the sizes of the complex matrices $\sigma_{22}, \sigma_{23}, \sigma_{24}$ being determined by this), F_{2} has r rows, and so G_{2} has $p-r$ rows of integer elements. We form

$$
\begin{align*}
\omega_{2} C_{2} \omega_{2}^{\prime} & =\left(\tau_{2}, \sigma_{2}\right)\left(\begin{array}{cc}
0 & E_{2} \\
-E_{2} & 0
\end{array}\right)\binom{\tau_{2}^{\prime}}{\sigma_{2}^{\prime}}=\left(-\sigma_{2} E_{2}, \tau_{2} E_{2}\right)\binom{\tau_{2}^{\prime}}{\sigma_{2}^{\prime}} \tag{13}\\
& =\tau_{2} E_{2} \sigma_{2}^{\prime}-\sigma_{2} E_{2} \tau_{2}^{\prime}=0 .
\end{align*}
$$

Thus

$$
\begin{align*}
\tau_{2} E_{2} \sigma_{2}^{\prime} & =\left(\begin{array}{cc}
F_{2} & \lambda G_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{21}^{\prime} & \sigma_{23}^{\prime} \\
\sigma_{22}^{\prime} & \sigma_{24}^{\prime}
\end{array}\right) \tag{14}\\
& =\left(\begin{array}{cc}
F_{2} \sigma_{21}{ }^{\prime}+\lambda G_{2} \sigma_{22^{\prime}} & F_{2} \sigma_{23}{ }^{\prime}+\lambda G_{2} \sigma_{24}{ }^{\prime} \\
0 & 0
\end{array}\right),
\end{align*}
$$

and (13) states that this matrix is symmetric. Hence

$$
\begin{equation*}
\sigma_{23} F_{2}=-\sigma_{24} G_{2} \lambda^{\prime} \tag{15}
\end{equation*}
$$

We also know that the matrix

$$
\begin{align*}
\omega_{2} C_{2} \bar{\omega}_{2}^{\prime} & =\tau_{2} E_{2} \bar{\sigma}_{2}^{\prime}-\sigma_{2} E_{2} \bar{\tau}_{2}^{\prime} \tag{16}\\
& =\left(\begin{array}{cc}
F_{2} \bar{\sigma}_{21}^{\prime}+\lambda G_{2} \bar{\sigma}_{22}{ }^{\prime} & F_{2} \bar{\sigma}_{23}{ }^{\prime}+\lambda G_{2} \bar{\sigma}_{24}{ }^{\prime} \\
0 & 0
\end{array}\right) \\
& -\left(\begin{array}{cc}
\sigma_{21} F_{2}+\sigma_{22} G_{2} \bar{\lambda}^{\prime} & 0 \\
\sigma_{23} F_{2}+\sigma_{24} G_{2} \bar{\lambda}^{\prime} & 0
\end{array}\right)=\left(\begin{array}{cc}
\mu & \nu \\
-\bar{\nu}^{\prime} & 0
\end{array}\right),
\end{align*}
$$

where $\nu=F_{2} \bar{\sigma}_{23}{ }^{\prime}+\lambda G_{2} \bar{\sigma}_{24}{ }^{\prime}$. But then ν is non-singular. By (15)

$$
\begin{equation*}
F_{2} \bar{\sigma}_{23^{\prime}}=-\bar{\lambda}^{\prime} G_{2} \bar{\sigma}_{24}{ }^{\prime} \tag{17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\lambda-\bar{\lambda}^{\prime}\right) G_{2} \bar{\sigma}_{24}^{\prime} \tag{18}
\end{equation*}
$$

is non-singular. We have derived the critical result that σ_{24} is non-singular.
We now define a matrix

$$
B=\left(\begin{array}{ll}
I & 0 \tag{19}\\
D & I
\end{array}\right)
$$

and know that, if D has integral elements and is a p-rowed square matrix, then B is a $2 p$-rowed unimodular matrix and

$$
B^{-1}=\left(\begin{array}{rr}
I & 0 \tag{20}\\
-D & I
\end{array}\right) .
$$

Then

$$
\begin{align*}
B C_{2} B^{\prime} & =\left(\begin{array}{cc}
I & 0 \\
D & I
\end{array}\right)\left(\begin{array}{cc}
0 & E_{2} \\
-E_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
I & D^{\prime} \\
0 & I
\end{array}\right) \tag{21}\\
& =\left(\begin{array}{cc}
0 & E_{2} \\
-E_{2} & D E_{2}
\end{array}\right)\left(\begin{array}{cc}
I & D^{\prime} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
0 & E_{2} \\
-E_{2} & D E_{2}-E_{2} D^{\prime}
\end{array}\right) .
\end{align*}
$$

But then if

$$
\begin{equation*}
S=D E_{2} \tag{22}
\end{equation*}
$$

is a symmetric matrix, we shall have

$$
\begin{equation*}
B C_{2} B^{\prime}=C_{2} \tag{23}
\end{equation*}
$$

Also

$$
\begin{align*}
\omega_{3}=\omega_{2} B^{-1} & =\left(\tau_{2}, \sigma_{2}\right)\left(\begin{array}{rr}
I & 0 \\
-D & I
\end{array}\right) \tag{24}\\
& =\left(\tau_{2}-\sigma_{2} D, \sigma_{2}\right)=\left(\tau_{3}, \sigma_{2}\right)
\end{align*}
$$

has C_{2} as a principal matrix. Take

$$
D=\left(\begin{array}{cc}
0 & 0 \tag{25}\\
0 & I_{p-r}
\end{array}\right)
$$

where I_{p-r} is the identity matrix of $p-r$ rows. Then

$$
\tau_{3}=\tau_{2}-\sigma_{2} D=\left(\begin{array}{cc}
I_{\tau} & \lambda \tag{26}\\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
\sigma_{21} & \sigma_{22} \\
\sigma_{23} & \sigma_{24}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{p-r}
\end{array}\right)=\left(\begin{array}{cc}
I_{r} & \lambda-\sigma_{22} \\
0 & \sigma_{24}
\end{array}\right)
$$

is a non-singular matrix. But then ω is equivalent to

$$
\begin{equation*}
\omega_{4}=\tau_{3}^{-1} \omega_{2} B^{-1}=\left(I, \tau_{4}\right), \tag{27}
\end{equation*}
$$

where $\tau_{4}=\tau_{3}^{-1} \sigma_{2}$. Also ω_{4} has been selected so that $B C_{2} B^{\prime}=C_{2}$ is a principal matrix of ω_{4}. Define

$$
\omega_{5}=\omega_{4}\left(\begin{array}{cc}
P & 0 \tag{28}\\
0 & P
\end{array}\right)=\left(P, \tau_{4} P\right) .
$$

Then ω_{5} is equivalent to ω and has C_{0} as principal matrix. So does

$$
\begin{equation*}
\omega_{0}=E^{-1} P^{-1} \omega_{5}=\left(E^{-1}, \tau\right) \tag{29}
\end{equation*}
$$

where $\tau=E^{-1} P^{-1} \tau_{4} P$. The computation $\omega_{0} C_{0} \omega_{0}{ }^{\prime}=0$ yields $\tau=\tau^{\prime}$ and $i \omega_{0} C_{0} \bar{\omega}_{0}{ }^{\prime}=2 \delta$ yields δ positive definite. This completes our proof of the theorem.

The University of Chicago

[^0]: Received September 1, 1964. The research of this paper is supported in part by the National Science Foundation under NSF Grant GP 2424.

