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Trivial Units in Group Rings
Daniel R. Farkas and Peter A. Linnell

Abstract. Let G be an arbitrary group and let U be a subgroup of the normalized units in ZG. We show that if
U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of
a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.

In the last section of their paper [1], Marciniak and Sehgal discuss units in the integral
group ring of a crystallographic group. Their new insight is that the given action of such a
group Γ as isometries of Rn extends to an action of the group of normalized units U1(ZΓ)
as affine transformations of Rn. (Normalized units are units whose value under the aug-
mentation map is 1.) They prove that if Γ is torsion free and the group of normalized units
acts freely on the ambient affine space, then all such units are trivial, i.e., U1(ZΓ) = Γ. The
first step is to observe that if P is an integral point in a compact fundamental domain for
Γ and u ∈ U1(ZΓ), then there is some g ∈ Γ such that gu(P) is one of the finitely many
integral points in the domain. Since the action is fixed point free, the index [U1(ZΓ) : Γ]
is finite. Then the authors use a nontrivial geometric argument to deduce that U1(ZΓ)
coincides with Γ.

In this short note, we give an algebraic proof of a stronger general result about unit
groups in integral group rings which have finite index over the base group.

Theorem Let G be an arbitrary group and let U be a subgroup of U1(ZG). If U contains G
and [U : G] is finite, then U = G.

Let ∆(G) denote the finite conjugate subgroup of the group G. We first reduce to the
case that G = ∆(G).

Lemma Let G be a group and let H be a subgroup of G with [G : H] finite. If α ∈ U1(ZG)
has 1 in its support and normalizes H, then α lies in Z∆(G).

Proof Let h ∈ H. Then αhα−1 = k for some k ∈ H. Since 1 is in the support of h−1αh
and h−1αh = h−1kα it is also in the support of h−1kα. Therefore there are only finitely
many possibilities for h−1k and, hence, only finitely many possibilities for h−1αh. It follows
that α is centralized by a subgroup of finite index in G. We conclude that each element of
the support of α lies in∆(G).

Now suppose U and G are groups as described in the theorem. Certainly G contains a
subgroup H which is normal and of finite index in U . According to the lemma,

U = G ·
(
U ∩ Z∆(G)

)
.
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Notice that U ∩ Z∆(G) = U ∩ U1

(
Z∆(G)

)
and

[
U ∩ U1

(
Z∆(G)

)
: G ∩ U1

(
Z∆(G)

)]
≤ [U : G].

But G ∩ U1

(
Z∆(G)

)
= ∆(G). Hence

[
U ∩ U1

(
Z∆(G)

)
: ∆(G)

]
<∞.

In this manner, we see that it suffices to prove the theorem with∆(G) replacing G.
Our main argument will require a basic result about units, due to Higman and Berman,

and a basic tool, the trace associated with Hattori, Stallings, and Bass.

Theorem [2, Corollary II.1.2], [3, Proposition 1.4] If α ∈ ZG has 1 in its support and
αn = 1 for some positive integer n, then α = ±1.

We review some facts about the trace in a form suitable for our purposes. Let G be a
group and let F be a field of characteristic p > 0. If C denotes a conjugacy class of G we
define the trace trC : FG→ F by

trC

(∑
g∈G

αgg
)
=
∑
g∈C

αg .

If D is another conjugacy class and it contains an element whose pth power is in C, we
will write Dp = C. The simple but powerful equation which leads to so many group ring
consequences is

trC(αp) =
∑

Dp=C

(
trD(α)

)p

for all α ∈ FG. (A proof and applications can be found in [3, Section 1.7].)
Assume that G has a normal subgroup N such that G/N is torsion free. Then any G-

conjugacy class which meets N is entirely contained in N ; moreover, C ⊆ N and Dp = C

implies D ⊆ N . We conclude that

∑
C⊆N

trC(αp) =
∑
D⊆N

(
trD(α)

)p
.

The sum has a simpler interpretation of use to us. Let εN : ZG → Z denote the truncated
augmentation map,

εN

(∑
g∈G

αgg
)
=
∑
g∈N

αg .

Then, under the hypotheses on N , we have the p-power formula

εN (αp) ≡
(
εN (α)

)p
mod p
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for all α ∈ ZG.
Now let us prove the main theorem. We are assuming that G = ∆(G). There is no loss of

generality in taking G finitely generated. Then the elements of finite order in G constitute
a finite characteristic subgroup ∆+(G) and G/∆+(G) is torsion free abelian. Let T be a
transversal for∆+(G) in G which contains 1.

Recall that U � U1(ZG), that U contains G, and that [U : G] <∞. Since each member
in the support of an element of ZG is centralized by a subgroup of finite index in G, we see
that U is a finitely generated finite conjugate group, as well. Certainly ∆+(U ) ⊇ ∆+(G).
There are two cases to consider.

First suppose that ∆+(U ) = ∆+(G). Since ∆+(G) is normal in U and U/∆+(G) is
abelian, G is normal in U . If U = G we are done. Suppose, to the contrary, that there is a
prime p and α ∈ U \ G such that αp ∈ G. By assumption, εG(α) = 1. Thus we can find
some t ∈ T so that ε∆+(G)(αt−1) �≡ 0 mod p. Notice that (αt−1)p ∈ G by the normality
of G in U . An application of the p-power formula yields ε∆+(G)

(
(αt−1)p

)
�≡ 0 mod p. We

conclude that (αt−1)p ∈ ∆+(G). But this means αt−1 has finite order, whence we reach
the contradiction α ∈ ∆+(G)T ⊆ G.

Finally, suppose that ∆+(U ) > ∆+(G). By choosing an element in ∆+(U ) which has a
minimal power larger than 1 in∆+(G) we see that there exists a prime p and α ∈ ∆+(U ) \
∆+(G) such that αp ∈ ∆+(G). This time we know that

ε∆+(G)(α
p) = 1 �≡ 0 mod p,

so a second application of the p-power formula tells us that ε∆+(G)(α) is nonzero. Thus
there is some h ∈ ∆+(G) which lies in the support of α; equivalently, 1 is in the support of
h−1α. But h−1α has finite order as it is a member of ∆+(U ). By the theorem on units of
Higman and Berman, h−1α = εG(h−1α) · 1. Since h−1α is a normalized unit, we obtain
the contradiction α = h ∈ ∆+(G).
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