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Introduction. The relation £%* is defined on a semigroup S by the rule that a*3l*b
if and only if the elements a,b of S are related by the Green's relation 31 in some
oversemigroup of 5. A semigroup 5 is an ^-semigroup if its set E(S) of idempotents is a
subsemilattice of 5. A left adequate semigroup is an £-semigroup in which every £%*-class
contains an idempotent. It is easy to see that, in fact, each £%*-class of a left adequate
semigroup contains a unique idempotent [2]. We denote the idempotent in the 52*-class
of a by a+.

In this paper we are concerned with left type-y4 semigroups. These are semigroups 5
which are left adequate and in which ae = (ae)+a for each a e S and e e E(S). Any inverse
semigroup 5 is left type-A; for an element a of 5 we have a+ = aa~* and certainly, for any
e e E(S), {ae){ae)~xa = ae. The class of left type-A semigroups, however, is much larger
than the class of inverse semigroups. For example, every right cancellative monoid is a
left type-A semigroup.

On any left type-A semigroup there is a minimum right cancellative congruence
which we denote by o. We say that a left type-A semigroup S is proper if o n 91* = i. For
an inverse semigroup, being proper is the same as being £-unitary. In the general case,
however, a proper left type-,4 semigroup is E-unitary but the converse is not true [1]. A
famous result of inverse semigroup theory due to McAlister is that every inverse
semigroup has an £-unitary cover [6,7]. The corresponding result for left type-A
monoids is that every left type-A monoid has a proper left type-,4 cover. This is the dual
of a theorem in [1]. McAlister also gave a structure theorem for £-unitary inverse
semigroups in terms of P-semigroups. There is an analogue of this result for left type-A
monoids—the dual of Theorem 4.3 of [1].

In [4] and [5] Margolis and Pin develop the theory of a class of £-semigroups called
£-dense semigroups. In particular, they describe ^-unitary £-dense monoids in terms of
groups acting on categories. The class of £-dense semigroups contains the class of inverse
semigroups and the techniques introduced by Margolis and Pin can be specialised to
obtain the P-theorem of McAlister. These methods also yield another proof of an
alternative characterisation of £-unitary inverse semigroups originally due to O'Carroll
[8], as the inverse subsemigroups of semidirect products of semilattices by groups.

In an earlier paper [3], the present authors used the Margolis, Pin techniques to
investigate left proper £-dense monoids. In the present paper our objective is to extend
their methods so that they can be applied to proper left iype-A monoids. To do this we
have to make use of actions on certain small categories by right cancellative monoids
rather than groups. We introduce the appropriate ideas in Section 1 including the notion
of left derived category. We use these ideas in Section 2 to obtain a new characterisation
of proper left type-/! monoids and to give for the first time a characterisation of
E-unitary left type-A monoids.

We introduce two further new descriptions of proper left type-^1 monoids in
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Sections 3 and 4. First we introduce the class of £%-monoids and use the results of Section
2 to show that this class is precisely the class of proper left type-/! monoids. In the final
section we obtain an analogue of O'Carroll's theorem by showing that a left type-A
monoid is proper if and only if it can be embedded by an 0t*-preserving embedding in a
special submonoid of a semidirect product of a semilattice by a right cancellative monoid.

1. Preliminaries. We start by recalling some definitions and results from [3]. We
caution the reader that the definition of left type-A category used in this paper differs
from that in [3].

In what follows *# is always a small category with set of objects Obj <S and set of
morphisms Mor (€. For all v e Obj <€, the set of all morphisms with domain [codomain] v
is denoted by Mor(u, —) [Mor(-,u)]. We use additive notation for the composition of
morphisms and represent the identity at an object u by Ou.

DEFINITION 1.1 [3]. On Mor<#, we define the relation 01* as follows, for all
p,q e Mor <#,

(p, q) e &l* <5[{Vs, t eMor <€)s + p = t + p &s + q = t + q],

whenever any of these identities exist.

It is easy to check that

LEMMA 1.2. Let <€ be a category, u e Obj <# and p , q e Mor (€. Then
(a) if p e Mor(«, - ) and (p, q) e 01*, then q e Mor(u, - ) ;
(b) if p is an idempotent, that is, p=p + p, and p e Mor(w, v) then u = v;
(c) if p is an idempotent then

= p + q, and
1s, feMor %)s + q = t + q^>s + p = t +p;

(d) 01* is a left congruence on the partial semigroup Mor c€.

DEFINITION 1.3 [3]. A category <€ is said to be left abundant if each 0t*-c\ass contains
an idempotent.

DEFINITION 1.4. A left abundant category ^ in which for all objects u, the
idempotents of Mor(u, u) form a subsemilattice of Mor(«, u) is said to be left adequate.

In a left adequate category each £%*-class, 01*, contains exactly one idempotent
denoted by p+.

DEFINITION 1.5. A left adequate category is left type-A if for all morphisms p and q,

whenever either of these elements exists.

L E M M A 1.6 [3] . Let % be a left type-A category and p , q e M o r ^ be such that p + q
exists. Then

(a) (p+q)+ = (p + q+)+;
(b) (p+qy+p+ = (p+qy.

The above definitions and results can all be applied to monoids by regarding a
monoid as a category with a single object.
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LEMMA 1.7 [1]. Let M be a left type-A monoid and define the relation a on S thus:
for all a,b eS,

aob O (3e e E(S))ea = eb.

Then a is the least right cancellative monid congruence on S and E{S) is contained in a
a-class.

DEFINITION 1.8. A left type-/4 monoid is proper if 9?* n a= i.

DEFINITION 1.9. A monoid M is £-unitary if E(M) is a unitary subset of M.

Every proper left type A monoid is £-unitary but the converse is false as shown by
the dual of Example 3 in [1].

LEMMA 1.10. For a left type A monoid M, the following conditions are equivalent:
(1) M is E-unitary,
(2) For e,a eM, e, ea e E(M) implies a eE{M),
(3) For e,a e M, e,ae e E(M) implies a e E(M),
(4) E(M) is a o-class.

Proof. Suppose that (2) holds and that e,a e M are such that e, ae e E(M). Since M
is left type-/!, ae = (ae)+a so that (ae)+, (ae)+a are both in E(M) and by (2), a e E(M).
Thus (2) implies (3).

Suppose that (3) holds and that e,a e M with e, ea e E(M). Then ea = (ea)+ = ea+ so
that

(aea)(aea) = aea+aea+ = aeaea+ = ae(ea)a +

= a(ea)a+ — aa+ea = aea+a = aea.

Thus aea, ea e E{M) so that a e E(M) by (3) and hence (2) holds.
It now follows that (1), (2) and (3) are equivalent and it is easy to see that (4) is

equivalent to (2).
For the restricted setting of idempotent categories we can also define proper

categories. A category % is idempotent if for each u e Obj C6, the monoid Mor(u, u) is a
band. We remark that in an idempotent left type-i4 category, each monoid Mor(u, u) is a
semilattice.

DEFINITION 1.11. An idempotent, left type A category <g is proper if, for all
u, v e Obj ^ and p,q e Mor(M, v) we have p = q whenever (/?, q) e 01*.

LEMMA 1.12 [3]. Let <€ be an idempotent left type-A category. The following
conditions are equivalent:

(a) % is proper;
(b) for all u, v e Obj % and p,q e Mor(«, v),

Let ^ be a category. A left ideal I of ^ is a subset of Mor ^ such that for all objects
u, v, w of *S and for all x e Mor(u, v) and p e Mor(u, w), pel implies x + p e I.

A right ideal of % is defined similarly and a subset of Mor X is an ideal of % if it is
both a left and a right ideal.
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Let F: <<? —* <€ be an endofunctor. Recall that F is a full embedding if F is injective on
Obj ^ and for each pair u,v of objects of %,F carries Mor(«,u) bijectively onto
Mor(w/\ vF).

We say that a full embedding F: <<?—> <# is a /e/r ideal full embedding if (Mor 'S)/7 is a
left ideal of <g.

We denote by £(<<?) the set of all left ideal full embeddings of % into itself. It is easy to
verify that £(*#) is a right cancellative submonoid of the monoid of all endofunctors of <S.

DEFINITION 1.13. A right cancellative monoid T acts on a category <€ if there is a
monoid morphism T—»£(<€). In this case we write ut (resp. pt) for the result of the
action of / on the object u (resp. on the morphism p). We then have the following
identities and implications where u, v, w, z e Obj ($, p,q e Mor(u, v), r e Mor(u, w) and
t,tut2eT:

(1) (p + r)t = pt + rt;
(2) (pt])t2 = p(tlt2);
(3) pl=p;
(4) Oj = Ow;
(5) pt = qt^>p=q\
(6) v = zt^>u=yt for some y e Obj *# and p = st for some 5 e Mor(_y, z).

By regarding a partially ordered set %£ as a category in the usual way we obtain the
definition of an action of a right cancellative monoid T on $f. We observe that each
element / of T induces an order-isomorphism from #? onto the order-ideal c£t of #?. It
follows from this that if a, b e % have a greatest lower bound a A b in 26, then

(a A b)t = at A 6/.

In particular, this holds for all a, b when #? is a semilattice.
Let A/ be an £-unitary left type-A monoid and T — M/o. Let q>:M^*T be the

canonical epimorphism associated with a.
We define the left-derived category <€ of cp as follows:

Obj <g = 7\

and, for M, V e Obj 9?,

Mor(«, v) = {(u, m,v):m e M,u = m(p. w};

composition is given by

(u, m, v) + (u, n, w) = (u, mn, w).

It is easy to prove that ^ is indeed a category where for u e Obj C6, Ou = (u, 1, u).
Since Af is E-unitary,

Mor(u, u) = {(u,e, u):e e E(M)}.

Thus ^ is idempotent. Further, ^ is left type-/4 with (u, /n, v)+ = (u, m+, M).
Next, we define an action (on the right) of T on (i. First, T acts on Obj % by

multiplication and for {u,m,v)e Mor(«, v) and t eT we define (u,m,v)t = (uf, m, u/).
It is straightforward to verify that this is an action in the sense of the above definition.
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2. £-unitary and proper left type-A monoids. We give structure theorems for the
monoids of the title using actions of right cancellative monoids on categories. We start by
associating a monoid C,, to each object of a category <# on which a right cancellative
monoid T acts.

DEFINITION 2.1. For an object u of a category <g,

C,, = {{t,p):t e T,p eMor(«/, u)

and for (t,p),(h,q)eCu,

{t,p)(h,q) = (th,ph+q).

It is routine to verify that C,, actually is a monoid.

THEOREM 2.2. A monoid M is an E-unitary (resp. a proper) left type-A monoid if and
only if M is isomorphic to Cu for some object u of an (resp. a proper) idempotent left
type-A category <# acted upon by a right cancellative monoid T.

Proof. First let T be a right cancellative monoid acting on an idempotent left type-A
category (€. Then it is easy to see that

E(Cu) = {(l,p):peMov{u,u)}

which is clearly isomorphic to the semilattice Mor(«, u).
If (t,p) 6 C,,, then p € Mor(ut, u) and as ^ is left type-A, there is a morphism p+ in

Mor(«/, ut) such that p+$k*p. Now p+ = pot for some p{)e Mor(«, u) and it is not difficult
to verify that (l,po)2fr*(t,p) so that C,, is left adequate.

Now let (1, q) e E(CU) and let (p + q)+ = rt where r e Mor(w, u). Then

))+(t,p) = (t,p + q)+(t,p) = (1, r)(t,p) = (t, rt + p)

= (/, (p + q)++p) = (t,p + q) = (t,p)(l, q),

since q e Mor(w, u) is idempotent and ^ is left type->l. Thus C,, is left type-A. Further, it
is clear that Cu is £-unitary.

Now, suppose that ^ is proper. Let (t,p),(h,q)e Cu be related by i ' f l f f . Then
(t,p)+ = (h,q)+ so that (l,p«) = (l,q()), where p(hq0eMor(u, u) are such that pot = p+,
qnt = q+. As (t,p)o(h, q) we have

for some r e M o r ( « , u ) from which it follows that t = h. Thus p,q eMor(ut,u) and
p+ = q+ so that by Lemma 1.12, p=q. Therefore (t,p) = (h,q) and Cu is proper.

For the converse we take T to be M/o and "# to be the left derived category of the
canonical epimorphism M-»T as defined in Section 1. We observed there that % is
idempotent and left type-A

If M is proper, let u,veT and suppose that (u,m,v), (u,n,v) are £%*-related
morphisms in Mor(u, v). Then u = mcp. v = ncp. v and m+ = n+. Hence mq> = n<p since T
is right cancellative. Thus (m,n) e of) 9?* and so m = n since M is proper. Thus % is
proper in this case.
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We now show that M is isomorphic to C,, where 1 is the identity of T, by defining
xp-.M—^C, by putting

mxp = {mo, {mo, m, 1)).

Clearly, ip is injective. Let {t, {t, n, 1)) e C,. Then {t, n, 1) e Mor(7,1) and so t = ncp. 1 =
nq>. Thus ntp = (f, (/, n, 1)) and i/; is onto. To see that %p is a morphism, let m,n e M.
Then

{mn)tp = {{mn)o, {{mn)o, mn, 1))
= {mono, {mono, mn, 1))
= (ma, (ma, /n, 1))(AZCT, (na, n, 1))

= mxpnxp

and so i/> is an isomorphism.

3. ^-monoids. Here we present a new characterisation of a proper left type-A
monoid M as an ^-monoid 01{T, 26, <3/), obtained by means of the left-derived category
of the canonical epimorphism of M onto T = M/o.

DEFINITION 3.1. Let #f be a partially ordered set and let % be a subsemilattice of %.
Let Tbe a right cancellative monoid with identity 1, which acts on d£. Then

9'{T,%,<>y) = {{t,at):ae(y and (V6 »)ar A b e <Sft},

and for {t,at),{h,bh)e $f(T, %, "3/) we define

{t,at){h,bh) = {th,athAbh).

If °y has a greatest element/, we put

m{T, X, <Sf) = {{t, at) e Sf(T, %, <S/):at s / } ,

LEMMA 3.2. Sf{T, 3d, %) is a left type-A semigroup with semilattice of idempotents
isomorphic to 'Sf.

Proof. Let {t,at),{h,bh)e Sf{T, %,<&). Then atAbeWt so that atAb=ct for
some c e% and hence ath A bh = {at A b)h = cth giving

{t,at){h,bh) = {th,cth).

Let de%. We now prove that cth Ad exists and belongs to %th. As {h,bh)e
Sf{T,3£, <&), bhAdeWh and so bhAd = b()h for some 60e3/ . Also, as {t,at)e
y(T, d£, %), at A b() and at A b exist. Hence ath A b()h and ath A bh exist and

ath A bah = ath A {bh A d) = {ath A bh) A d = cth A d.

Thus cth Ad exists. Further ath A bQh = {at A bl})h and since {t,at) e Sf(T, 3£, <3/), we
have a/ A bo = xt for some x e * . Therefore cth Ad e <&th. We conclude that (//i, ctfi) e
Sf(T, X, <3/) and 5^(7, X, <Sf) is closed.

It is now a routine matter to verify that ^f{T,3£, <&) is a semigroup with set of
idempotents

{{l,a):ae®},

which is clearly isomorphic to the semilattice %.
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Next, let (/, at) e Sf{T, %, <&). Then (1, a) e £(5f(7\ %, <3/)) and

(l,a)(t,at) = (t,at).

Let (h,bh), (h,, M i ) e Sf(T, %, <3/) be such that

Then ht = htt and (bh /\a)t = {b\h\ A a)t. As T is right cancellative h=hs and, by the
definition of action, bh A a = />,/!, A a. Thus

It follows that

Finally, we prove that &>(T, 3£, <3/) satisfies the type-,4 condition. Let (f, at) e &>{J, %, <3/)
and (1, b) e E{Sf(T, X, » ) ) . Then

((r, aO(L b))+(t, at) = (f, at A b)+(t, at)

where a{)t = at A b. Thus

(1, ao)(t, at) = (/, at A b A at) = (r, ar A ft)

= (f,«f)(l,&).

The semigroup Sf(T, %, <&) is therefore left type-A
We now assume that *3/ has a greatest e lement /so that Sl(T, %, ty) is defined.

LEMMA 3.3. S?t(T, 9£, <%)) is a proper left type-A monoid with semilattice of
idempotents isomorphic to CH.

Proof. We first prove that 0t{T,%, <&) is a subsemigroup of $f(T, X, <3/). Let
0, at), (h,bh)e9t(T, %,<&). Then bh^f and so ath Abh<f. Thus (t, at)(h, bh) e
91{T, %,<&). Clearly, E(Sf(T, %,<&)) = E(9l(T, %,<&)) and so, for all (/,«/) e
0t(T, %, <¥), we have (I, a) e S?(T, 3f, <2/) and so S?(7, Sf, <3/) is a left type-/l
subsemigroup of Sf(T, X, <&). Both <f(T, %, <&) and 9l(T, %, <&) have identity (1 , / ) .

To prove that 9t{T,%, <&) is proper, let (f, a/) and (h,bh) be elements of
%, <3/) such that

Then (/,flf)+ = (h, bh)+, that is (1, a) = (1, fo). Also, for some idempotent (1, e),

(\,e)(t,at) = (l,e)(h,bh).

Hence t = h and so (t, at) = (h, bh).
Notice that the over semigroup Sf{T, S£, *$/) is also proper

DEFINITION 3.4. The monoid 9t(T, %, %) is called an %-monoid.

Our objective is to show that for any proper left type-,4 monoid M there is a choice
of T, % and % such that M is isomorphic to Sk(T, %, <&). We do this by showing that all
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monoids Cu arising from actions of right cancellative monoids on proper, idempotent left
type-A categories are isomorphic to 3£-monoids. We start by associating a partially
ordered set #? with any idempotent left type-A category <€.

DEFINITION 3.5 [3]. Let <<? be an idempotent, left type-,4 category. On Mor c€, we define a
relation < as follows: for all p, q e Mor (€,

e Mor %)p + = a+,a + q+ = a.

Also, we define on Mor <# a relation ~ by the rule: for all p, q e Mor

p ~q<£>{p<q and q <p) .

The relation ~ is an equivalence on Mor (€.
Let X be the set of all —classes on Mor (€. On f we define a relation < as follows,

for all Ap,Aqe%,

The relation s is well-defined and is a partial order on 3£.
From [3] we have the following lemma.

LEMMA 3.6. Let <€ be an idempotent left type-A category. Then
jn\ 61}* ,

(b) if ^ is proper, and p , q e M o r ( « , v) for some u,v e O b j %, then

Let T be a right cancellative monoid acting on a proper idempotent, left type-/4
category ^ . For an object u of ^ we shall describe the monoid Cu as an 3?-monoid

?, <3/) where d£ is the partially ordered set defined above and

<& = {Ap e Se:Ar fl Mor(u, « ) # 0 } .

In order to obtain the properties required to show that Cu is isomorphic to
)£, <%) we need several lemmas.

LEMMA 3.7. If p e Mor <# and t e T, then (pt)+ = p+t.

Proof. Let p eMor(u,v) so that p+ eMor(u,u), pt eMor(ut, uv) and p+te
Mor(u/, ut). We note first that p+t + pt = (p+ + p)t =pt.

Now suppose that r,s e Mor <€ are such that r, + pt = s] + pt. Then r,,s, e Mor(u, ut)
for some object v and by the definition of action we have v = wt for some w and u, = rt,
st = st for some r, s e Mor(w, u). Thus

(r + p )t = rt + pt = st + pt = (s + p)t

and hence r + p = s + p from which we obtain r + p+ =s + p+ and consequently,

rt + p+t = (r + p+)t = (s + p+)t = st + p+t.

Thus p+t$k*pt and as p+t is idempotent we have (pt)+ = p+t.

LEMMA 3.8. Letp,qe Mor ^ and t e T. Then

p =^ ^
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Proof. If p<q, then p+ = a+ and a + q+ = a for some morphism a. Using the
previous lemma we obtain (pt)+ = (at)+ and at + (qt)+ = at so that pt < qt.

Conversely, if ft e Mor ^ is such that (pt)+ = b and b + (qt)+ = b, then since
(qt)+ e Mor(u/, vt) for some object v we have b e Mor(—, vt).

From the definition of action, it follows that b = ct for some c e Mor(—, v). Using the
previous lemma we now obtain p+ = c+ and c + q+ = c so that /? < g as required.

LEMMA 3.9. Let p, q e Mor <# and t eT. If p is an idempotent, then

p<qt^> (3a 6 Mor %)p = at.

Proof. Suppose that p^qt. There exists 6 e Mor ^ such that p = p+ = b+ and
b + (qt)+ = b. For some u e Obj <#, we have (qt)+ e Mor(ut, ut). So, b e Mor(-, ut) and
there exists a e Mor(—, u) such that b = at. Now, by Lemma 3.7,

p = b+ = {at)+=a+t,

as required.

LEMMA 3.10. If t, h e T and p e Mor(ut, u), q e Mor(«/i, u), then

Api, A Aq = Aph+q.

Proof. Clearly, ph + q is defined and belongs to Mor(uf/i,u). By Lemmas 3.6 and
3.7, Apl, = Ap+,, and Aq = Aq+. Let a= ph + q+. Then, by Lemma 1.6,

a+= (ph + q+)+= (ph + q)+ and a + q+ = a.

Thus Aph+q<Aq*. Also, let b = (ph + q)+ +p+h. Then, as <€ is left type-A,

b+ = ((ph + q)++p+h)+ = ((ph + q+)++ph)+ = (ph + q+)+

= (ph+q)+

and

b+p+h = b.

It follows that

Next, let r e Mor(u, w), for some i/ .weObj 'S, and suppose that /4 r</
There exist morphisms x,y such that

r+=x+=y+ and JC +p+h =x,y + q+ =y.

Thus, x + ph, y e Mor(u, uh) and

(x+ph)+ = (x +p+h)+=x+ = r+ =y+.

As % is proper

x + ph = y.

Let c = x + (ph + q)+. Then c + (ph + q)+ = c and
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and so Ar <Aph+q. Thus

Aph A Aq = Apfl+q

as required.

THEOREM 3.11. A monoid M is proper left type-A if and only if M is isomorphic to
some ^.-monoid 9t(T, 3£, %).

Proof. If M = 3/l(T, 3£, <&), then by Lemma 3.3, M is proper left type-A
To prove the converse it suffices, by Theorem 2.2, to show that if T is a right

cancellative monoid which acts on a proper idempotent left type-A category "# and if u is
an object of C6, then Cu = 9t(T, %, <2/). We use the partially ordered set % and subset <8/
already defined. It is immediate from Lemma 3.10 that if p, q e Mor(w, u), then
Ap A Aq = Ap+q, from which it follows that <& is a semilattice which by (b) of Lemma 3.6
is isomorphic to Mor(«, M). Thus fy has a greatest element namely, AOi.

By Lemma 3.8, the rule Apt = Apt gives a well-defined mapping from % to S£ for all
t e T. By (a) of Lemma 3.6, Ap = Ap+ so that if Ap < Aqt, then p+ < qt so that by Lemma
3.9, p+ = at for some a e Mor %. Hence Ap = Au, = Aat and 3£t is an order-ideal of S£. It is
now easy to verify (using Lemma 3.8) that we have defined an action of T on #?.

We can therefore define the monoids

ST(T, X, <&) = {(t, Apt) eTx %:AP e <$J a n d {VAq e <g/)Apt AAqe<^}

a n d

If (t,p)eCu, then p eMor(ut,u) and p+ = rt for some r eMor(w,M). Also,
Ap = Ap* = Art and Ar e <3/. Let Aq e <3/ with 9 eMor(«, u). Then p +q e Mor(«r, w) so
that (/7 + q)+ e Mor(«f, M?) and hence (p + q)+ = xt for some * e Mor(«, u). Hence, using
Lemma 3.10,

Art AAq=ApAAq= Ap+q = Axt e °Ut.

Further, p < Ou since p+ = p+ and p + Ou=p, so that /l r / = AP ^AOi. Thus (?,>lp) is in
£, <&) and we can define a mapping

by

Using Lemma 3.10, it is routine to verify that xp is a morphism. Now suppose that
{t,p)\p = (h,q)\\>. Then / = /i and y4p =Aq so that p ~ g . Hence p, q eMor(u/, M) and,
by (b) of Lemma 3.6, p = q. Thus ip is injective.

If (T, Apt) e ®(T, %, <&), then Ape<& and we can assume that p e Mor(u, u). Also,
Apt < /4O so that pt < Ou and hence pt = a+ and a + Ou = a for some a e Mor <€. Thus
a e Mor(«r, u) so that (f, a) e C,, and we have

(t, a)ip = (/, i4fl) = (t, i4a+) = (f, Apl) = (/, ̂ ,,0-

Hence \p is an isomorphism and the proof is complete.
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4. The semidirect product of a right cancellative monoid by a semilattice. In this
section we prove that any proper left type-A monoid can be embedded in a special
subsemigroup of a semidirect product T * Y of a right cancellative monoid T by a
semilattice Y.

Let Tbe a right cancellative monoid acting (according to the definition of Section 1)
on a semilattice Y. On the product set T X Y we define an operation in the usual way:

(t,a)(h,b) = (th,ah A b).

Then we obtain a semigroup T *Y called the semidirect product of T by Y. Also,

E(T*Y) = {(l,a):aeY}

and T * Y is a monoid if and only if Y has a greatest element. In general, T * Y is neither
left nor right abundant. Inside it, however, sits a proper left type-/! subsemigroup,

W = W(T,Y) = {(t,at):aeY,tsT},

which coincides with T * Y when T is a group.

LEMMA 4.1. The subset W of T*Y is a full proper left type-A subsemigroup of T*Y.
Moreover, W is a monoid if and only if Y has a greatest element.

Proof. Let {t, at), (h, bh) e W. Then

(t,at)(h,bh) = (th,athAbh)

and as ath A bh <ath we have ath A bh = cth for some c e V by the definition of action.
Hence W is a subsemigroup. Clearly,

E(W) = E(T * Y) = {(1, a):a e Y}

so that W is full and £(W) = Y. Also, W is a monoid if and only if T * Y is a monoid.
To prove that W is left abundant, let (t, at)eW. Then (1, a) e E(W) and

(1, a)(t, at) = (t, at A at) = (t, at).

Now, for all {h, bh), (/i,, 6 , h , ) e W, if

then
(ht, bht Aat) = (h,t,b,hlt A af).

It follows that /i = h, and bh Aa = b,h, A a, so that

a n d s o ( / , f l f
N e x t , w e s h o w t h a t W s a t i s f i e s t h e t y p e - A c o n d i t i o n . L e t ( t , a t ) e W a n d ( l , e ) e

E(W). Then

((t, at)(l, e))+(t, at) = (t, at A e)+(t, at) = (1, c)(t, at),

where ct = at A e. Also,

(t, at)(l, e) = (t, at Ae) = (t, ct) = (\,c)(t, at).

Thus, W is left type-A.
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Finally, we prove that W is proper. Let (t, at), (h, bh) e W be such that

((t,at),(h,bh))e&*r\o.

Then (/, at)+ = (h, bh)+, that is (1, a) = (1, b). Furthermore, for some idempotent (1, e),

(l,e)(t,at) = (l,e)(h,bh)

and so / = h. Whence, (/, at) = (h, bh) and W is proper, as required.
We can now state the main theorem of the section.

THEOREM 4.2. For a proper left type-A monoid M, the following conditions are
equivalent:

(a) M is proper;
(b) M is isomorphic to a submonoid V of the submonoid W = W(T, Y) of a

semidirect product T*Yofa right cancellative monoid T by a semilattice Y, where Y has a
greatest element, and SJcS?^,.

We use $lv (resp. Sft*v) to denote the relation 91* on the monoid V (resp. W).

Proof. In view of Lemma 4.1, it is easy to show that (b) implies (a). That (a) implies
(b) follows from the next proposition by Theorem 2.2. First we need a definition.

DEFINITION 4.3. Let % be a category. A subset / of Mor <# is an £%*-ideal of ^ if / is
an ideal and I is a union of £%*-classes.

It is easy to check that both the intersection and the union of a family of J%*-ideals of
% are again <%*-ideals. In particular, the set S1*^) of all 3ft*-ideals of ^ is a semilattice
under intersection.

PROPOSITION 4.4. Let <€ be a proper, idempotent, left type-A category and let T be a
right cancellative monoid acting on %. For u e Obj ^ , the monoid Cu is isomorphic to a
submonoid V of the submonoid W = W(T, ^ *(<#)) of a semidirect product T*^*^) with

To establish this result we must first define an action of T on ^*((€). From Lemma
4.2, 4.3 and 4.5 of [3] we have

LEMMA 4.5. Let p, q e Mor <£. Then
(a) A*(p) = {re Mor ^.(Bxe Mor <€)x+= (x + p)+} is the least 9t*-ideal which

contains p;
(b) Ap<Aq&A*(p)^A*(q).

DEFINITION 4.6. Let / be an 9?*-ideal of ^ and let t e T. Then

I.t = UA*(pt).
pel

It is easy to see that / . t is an S?*-ideal and that it is the least £%*-ideal which
contains //.

LEMMA 4.7. Let I, lul2e $*{%), t,t],t2eTandp e Mor ^ Then
( a ) / . l = /;

(b) (\Jli}.t = \J (/A . t), for any collection {/A: A e A} of 3l*-ideals;
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(c) A*(p) = A*(pt);
(d) / . ( f , f 2 ) = ( / . f , ) . / 2 ;
(e) /,c/2O/,.rc/2.(;
(f) / , = / 2 O / , .t = l2.t;
(g) / c = / 2 . / = > ( 3 / C e ^ * ( < g ) ) / = / C . / ;
(h) ( / , n / 2 ) . ( = / , . ( n / 2 . f.

Proo/. (a) and (b) are clear from the definition.
(c) Certainly A*(pt) <=.A*{p). t. On the other hand, if qeA*(p), then by Lemma

4.5(b), q<p so that qt<pt, giving A*{qt)c.A*{pt). It now follows from the definition
that A*(p). tcA*(pt).

(d) This is an easy consequence of the definition and (c).
(e) If /, c I2, then /, j c / 2 . r follows from (b).
If /, . / c l2 . t, let r e / , . Then rt e /, . t and so rt eA*(qt) for some q e l2. By Lemma

4.5(b), rt <qt and so by Lemma 3.8, t <q. Hence A*(r) c.A*(q) <=.I2 and r e I2.
(f) follows immediately from (e).
(g) Let K = {b g I2:bt e / } . If b e K and x,y e Mor <£ are such that x + b +y exists,

then x + b + y e I2 since I2 is an ideal and (x + b + y)t = xt + bt + yt is in / since bt el and
/ is an ideal. Hence x + b + y e K and K is an ideal.

If c e Mor *# and c^t*b, then c e / 2 since I2 is an 5?*-ideal. Also ct$k*bt and / is an
S?*-ideal, so ct e 1. Thus c e /C and K is an S?*-ideal.

It is easy to see that K. t c /. If g e /, then q e I2. t so q eA*(pt) for some p e /2.
Hence q<pt and so <7+ <pf. By Lemma 3.9, q+ = at for some a e Mor <£. Now at <pt
and so by Lemma 3.8, a<p. Thus a € l2 and at = q+ is in / so that a e K. Hence
q+ = at e K. t and as K. t is an f%*-ideal we also have q e K. t. Consequently, K .tcl
and the proof is complete.

(h) We have now shown that we have an action of Ton the semilattice S*^) and as
remarked in Section 1, it follows that

LEMMA 4.8. If t,h eT, u e Obj % and p e Mor(«f, u), q e Mor(«/j, u), then

q) = A*(p).hnA*(q).

Proof. By Lemma 4.7(c) A*(p). h =A*(ph) and as both A*(ph) and A*(q) are
ideals we have ph + q eA*(ph) C\A*(q), so that

A*(ph + q)<=A*(p). hDA*(q).

On the other hand, if r eA*(ph) C\A*(q), then by Lemma 4.5(b), Ar<Aph and Ar<Aq

and so by Lemma 3.10, Ar^Aph+ll and hence reA*(ph + q). The result follows.

We can now prove Proposition 4.4. Since we have an action of Ton J1*^) we have a
semidirect product T*3>*C%) and the proper left type-/4 submonoid W is defined.

If (t,p)eC11, then p eMor(ut,u) so that p+ eMor(ut, ut) and p+ = rt for some
reMor(«,M). Now by Lemmas 3.6(a), 4.5(b) and 4.7(c) we have A*(p) = A*(rt) =
A*(r). t so that (t,A*(p)) = (t, A*(r). t)eW. Thus we can define a mapping

ip:Cu->W
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given by

It follows from Lemma 4.8 that \p is a morphism.
If (t,p),(h,q)eCu and (t,p)ip = (h,q)xjj, then t = h and A*(p)=A*(q). Thus

p, q e Mor(«f, w) and p ~ q so that by Lemma 3.6(b), p = <? and so i/; is injective.
We now have C,, = V = Im ip. If t » i , u 2 e ^ with v^yV2, then V\ = {t,p)ty and

v2 = (h,q)ip for some (t,p),(h,q)eCu and (t,p)2fc*(h,q). Then (t, p)+ = (h, q)+ that is
r = 5 where rt = p+ and st = q +. From the proof of Lemma 4.1,

0M*(/7))+ = (lM*(r)) and

so that (f,/t*(/?))+ = (/i,.4*(<7))+ and so u,
complete.

Thus 52£c 9l*w and the proof is
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