
Notation

We follow the notation and conventions of Hartshorne (1977); Kollár and Mori
(1998) and Kollár (2013b). Our schemes are Noetherian and separated. At the
beginning of each chapter we state further assumptions. Many of the results
should work over excellent base schemes, but most of the current proofs apply
only in characteristic 0.

A variety is usually an integral scheme of finite type over a field. However,
following standard usage, a stable variety or a locally stable variety is reduced,
pure dimensional, but possibly reducible.

Affine n-space over a field k is denoted by An
k , or by An(x1, . . . , xn) or An

x
if we emphasize that the coordinates are x1, . . . , xn. Same conventions for
projective n-space Pn.

The canonical class of X is denoted by KX , and the canonical sheaf or
dualizing sheaf by ωX; see (1.23) for varieties and (11.2) for schemes. Since
OX(KX) ' ωX , we switch between the divisor and sheaf versions whenever it
is convenient. Here KX is more frequently used on normal varieties, and ωX in
more general settings. Functorial properties work better for ωX .

A smooth proper variety X is of general type if |mKX | defines a birational
map for m � 1, see (1.30). The Kodaira dimension of X, denoted by κ(X), is
the dimension of the image of |mKX | for m sufficiently large and divisible.

Notation Commonly Used in Birational Geometry

A map or rational map is defined on a dense set; it is denoted by d. A mor-
phism is everywhere defined; it is denoted by →. A contraction is a proper
morphism g : X → Y such that g∗OX = OY .

A map g : X d Y between (possibly reducible) schemes is birational if there
are nowhere dense closed subsets ZX ⊂ X and ZY ⊂ Y such that g restricts to
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Notation xv

an isomorphism (X \ ZX) ' (Y \ ZY ). The smallest such ZX is the exceptional
set of g, denoted by Ex(g). A birational map g : X d Y is small if Ex(g) has
codimension ≥ 2 in X.

A resolution of X is a proper, birational morphism p : X′ → X, where X′ is
nonsingular. X has rational singularities if p∗OX′ = OX and Ri p∗OX′ = 0 for
i > 0; see Kollár and Mori (1998, Sec.5.1). Rational implies Cohen–Macaulay,
abbreviated as CM; see (10.4).

Let g : X d Y be a birational map defined on the open set X◦ ⊂ X. For a
subscheme W ⊂ X, the closure of g(W ∩ X◦) ⊂ Y is the birational transform,
provided W ∩ X◦ is dense in W. It is denoted by g∗(W)

Following the confusion established in the literature, a divisor on X is either
a prime divisor or a Weil divisor; the context usually makes it clear which one.

We use divisor over X to mean a prime divisor on some π : X′ → X that is
birational to X. The center of E on X, denoted by centerX E, is (the closure of)
π(E) ⊂ X.

A Z-, Q- or R-divisor (more precisely, Weil Z-, Q- or R-divisor) is a finite
linear combinations of prime divisors

∑
aiDi, where ai ∈ Z, Q or R. A divisor

is reduced if ai = 1 for every i. See Section 4.3 for various versions of divisors
(Weil, Cartier, etc.).

A Z- or Q-divisor D on a normal variety is Q-Cartier if mD is Cartier for
some m > 0. (See (11.43) for the R version.) The smallest m ∈ N such that
mD is Cartier is called the Cartier index or simply index of D. On a nonnormal
variety Y these notions make sense if Y is nonsingular at the generic points of
Supp D; we call these Mumford divisors, see (4.16.4) and Section 4.8.

The index of a variety Y , denoted by index(Y), is the Cartier index of KY .
Linear equivalence of Z-divisors is denoted by D1 ∼ D2. Two Q-divisors

are Q-linearly equivalent if mD1 ∼ mD2 for some m > 0. It is denoted by
D1 ∼Q D2. (See (11.43) for the R version.)

Numerical equivalence of divisors Di or curves Ci is denoted by D1 ≡ D2

and C1 ≡ C2.
The intersection number of R-Cartier divisors D1, . . . ,Dr on X with a proper

subscheme Z ⊂ X of dimension r is denoted by (D1 · · ·Dr · Z) or (D1 · · ·Dr)Z .
We omit Z if Z = X, and for self-intersections we use (Dr).

An R-Cartier divisor D (resp. line bundle L) on a proper scheme X is nef, if
(D ·C) ≥ 0 (resp. deg(L|C) ≥ 0) for every integral curve C ⊂ X.

Let g : X → S be a proper morphism. For aQ-Cartier divisor we use g-ample
and relatively ample interchangeably; see (11.51) for R-Cartier divisors.

The rounding down (resp. up) of a real number d is denoted by bdc (resp.
dde). For a divisor D =

∑
diDi we use bDc :=

∑
bdicDi, where the Di are

distinct, irreducible divisors. The fractional part is {D} := D − bDc.
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xvi Notation

An R-divisor D on a proper, irreducible variety is big if bmDc defines a
birational map for m � 1.

A pair (X,∆ =
∑

aiDi) consist of a scheme X and a Weil divisor ∆ on it, the
coefficients can be in Z,Q or R. The divisor part of a pair is frequently called
the boundary of the pair. (Some authors call ∆ a boundary only if 0 ≤ ai ≤ 1
for every i.) When we start with a scheme X and a compactification X∗ ⊃ X,
frequently X∗ \ X is also called a boundary; this usage is well entrenched for
moduli spaces. (Neither agrees with the notion of “boundary” in topology.)

A simple normal crossing pair – usually abbreviated as snc pair – is a pair
(X,D), where X is regular, and at each p ∈ X there are local coordinates
x1, . . . , xn and an open neighborhood x ∈ U ⊂ X such that U ∩ Supp D ⊂
(x1 · · · xn = 0). We also say that D is an snc divisor. A scheme Y has simple
normal crossing singularities if every point y ∈ Y has an open neighborhood
y ∈ V ⊂ Y that is isomorphic to an snc divisor.

A log resolution of (X,∆) is a proper, birational morphism p : X′ → X,
where X′ is nonsingular and Supp π−1(∆) ∪ Ex(π) is an snc divisor.

We are mostly interested in proper pairs (X,∆) with log canonical singu-
larities (11.5). Such a pair is of general type if KX + ∆ is big. In examples,
we encounter pairs with KX + ∆ ≡ 0 (called (log)-Calabi–Yau pairs) or with
−(KX + ∆) ample (called (log)-Fano pairs).

In the literature, “canonical model” can refer to three different notions.
We distinguish them as follows. (See Section 11.2 for pairs and for relative
versions.)

Given a smooth, proper variety X, its canonical model is a proper variety Xc

that is birational to X, has canonical singularities and ample canonical class.
Given a variety X, its canonical modification is a proper, birational mor-

phism π : Xcm → X such that Xcm has canonical singularities and its canonical
class is π-ample.

Given a variety X with resolution Y → X, the canonical model of Y is the
canonical model of resolutions of X, denoted by Xcr. This is independent of Y .

Additional Conventions Used in This Book

These we follow most of the time, but define them at each occurrence.
The normalization of a scheme X is usually denoted by X̄ or Xn. However, if

D is a divisor on X, then usually D̄ denotes its preimage in X̄. Then D̄n denotes
the normalization of D̄. Unfortunately, a bar is also frequently used to denote
the compactification of a scheme or moduli space.
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Notation xvii

Usually, we use S ◦ ⊂ S to denote an open, dense subset. Then sheaves or
divisors on S ◦ are usually indicated by F◦ or D◦. If G is an algebraic group,
then G◦ denotes the identity component.

We write moduli functors in caligraphic and moduli spaces in roman. Thus
for stable varieties we have SV (functor) and SV (moduli space).

Let F,G be quasi-coherent sheaves on a scheme X. Then HomX(F,G) is the
set of OX-linear sheaf homomorphisms (it is also an H0(X,OX)-module), and
HomX(F,G) is the sheaf of OX-linear sheaf homomorphisms. See (9.34) for
the hom-scheme HomS (F,G).

MorS (X,Y) denotes the set of S -morphisms from X to Y , and MorS (X,Y)
the scheme that represents the functor T 7→ MorS (X×S T,Y ×S T ) (if it exists);
see (8.63). Same conventions for IsomS (X,Y) and AutS (X). If X is a proper
C-scheme, then one can pretty much identify AutC(X) with AutC(X).

We distinguish the Picard group Pic(X) (as in Hartshorne, 1977), and the
Picard scheme Pic(X) (as in Mumford, 1966).

Base change. Given morphisms f : X → S and q : T → S , we write the base
change diagram as

XT

fT
��

qX // X

f
��

T
q // S .

Objects obtained by pull-back to XT are usually denoted either by a subscript
T or by q∗X . The fiber over a point s ∈ S is denoted by a subscript s. However,
we frequently encounter the situation that the fiber product is not the “right”
pull-back and needs to be “corrected.” Roughly speaking, this happens when
the fiber product picks up some embedded subscheme/sheaf, and the “correct”
pull-back is the quotient by it.

Thus, for divisors D on X, we let DT denote the divisorial pull-back or
restriction, which is the divisorial part of X ×T D; see (4.6). We write Ddiv

T if
we want to emphasize this (2.73). For coherent sheaves F on X, we frequently
use the hull bull-back, denoted by FH

T or q[∗]
X F; see (3.27).

Brackets are used to denote something naturally associated to an object. We
use it to denote the cycle associated to a subscheme (1.3) and the point in the
moduli space corresponding to a variety/pair.

The completion of a pointed scheme (x ∈ X) is denoted by X̂, or X̂x if we
want to emphasize the point. For Ân, the point is assumed the origin, unless
otherwise noted. See also (10.52.6).
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xviii Notation

Numbering
We number everything consecutively. Thus, for example, (2.3) refers to item 3
in Chapter 2. References to sections are given as “Section 2.3.” Tertiary num-
bering is consecutive within items, including lists and formulas. For example,
(2.3.2) is subitem 2 in item (2.3), but within (2.3) we may use only (2) as
reference.
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