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Abstract. Let n (≥ 3) be an odd integer. Let k := �(
√

4 − 3n) be the imaginary
quadratic field and k′ := �(

√−3(4 − 3n)) the real quadratic field. In this paper, we
prove that the class number of k is divisible by 3 unconditionally, and the class number
of k′ is divisible by 3 if n (≥ 9) is divisible by 3. Moreover, we prove that the 3-rank of
the ideal class group of k is at least 2 if n (≥ 9) is divisible by 3.

2010 Mathematics Subject Classification. 11R11, 11R29.

1. Introduction. The ideal class group is one of the most basic and mysterious
objects in algebraic number theory. According to the result of Y. Yamamoto [9], there
exist infinitely many quadratic fields whose p-ranks of the ideal class groups at least
two for arbitrary given prime p. However, it is difficult to characterize quadratic fields
whose Sylow p-subgroups of the ideal class groups are not cyclic. In [1], C. Erickson
et al. gave a simple parametric family of quadratic fields, whose 3-ranks of the ideal
class groups at least two. In this paper, we give another family of such quadratic fields.

For an odd integer n (≥ 3), we consider two quadratic fields

k := �(
√

4 − 3n) and k′ := �(
√

−3(4 − 3n)).

In the case, where 4 − 3n is square-free, we can easily see that the class number of k is
divisible by 3. Indeed, the splitting field of

f (X) = X3 − X + 3(n−3)/2

over � is an unramified cyclic cubic extension of k because the discriminant of f is
equal to 4 − 3n. The first aim of this paper is to remove the condition ‘square-free’ in
the above statement; that is, we will prove

THEOREM 1. For an odd integer n ≥ 3, the class number of k is divisible by 3.

Next we will prove the following result concerning the divisibility of the class
number of k′.

THEOREM 2. For an integer n ≥ 9 such that n ≡ 3 (mod 6), the class number of k′ is
divisible by 3.

For a square-free negative integer d in general, denote the 3-rank of the ideal class
group of the imaginary quadratic field �(

√
d) and the real quadratic field �(

√−3d)
by r and s, respectively. It is well known that the inequalities s ≤ r ≤ s + 1 hold (see
e.g. [8]). As in our previous paper [4, Theorem 7.1], it follows immediately that
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PROPOSITION 1.1. Let d be a square-free negative integer with 3 � d. Then r = s if
and only if there are no cubic fields K with DK = −33d, where DK is the discriminant
of K.

By using this proposition and Theorem 2, we will prove

THEOREM 3. For an integer n ≥ 9 such that n ≡ 3 (mod 6), the 3-rank of the ideal
class group of k is at least 2.

Recently, the author proved in his paper [5] that for any integer n (≥ 2), the ideal
class group of k has a subgroup isomorphic to Cn, where Cn is the cyclic group of order
n. From this, together with Theorem 1 and Theorem 3, we immediately have

COROLLARY 1. For an odd integer n ≥ 5, the ideal class group of k has a subgroup
isomorphic to Cn × C3. In particular, therefore, the class number of k is divisible
by 3n.

2. Proofs of theorems. For a number field K , denote the discriminant, the norm
map and the trace map of K/� by DK , NK and by TrK , respectively.

For an integer m and a prime p, vp(m) denotes the greatest exponent μ of p such
that pμ | m.

For an element α of a quadratic field k such that Nk(α) = m3 for some m ∈ �,
define the cubic polynomial fα by

fα(X) = X3 − 3mX − Trk(α).

The following proposition, which combined [3, Lemma 1] and [4, Proposition 6.5],
is one of the main ingredients in the proofs of our theorems.

PROPOSITION 2.1. Let d be an integer with d 	∈ �2 ∪ (−3�2) and put k := �(
√

d) and
k′ := �(

√−3d). Let α be an integer in k′ whose norm is a cube in �; Nk′ (α) = m3 (m ∈ �).
Then the polynomial fα is reducible over � if and only if α is a cube in k′. Moreover, if fα
is irreducible over �, then the splitting field of fα over � is a cyclic cubic extension of k
unramified outside 3 and v3(DK ) 	= 5 for some cubic subfield K.

REMARK 2.2. It is well known that we have v3(DK ) = 0, 1, 3, 4 or 5 for a cubic field
K (see e.g. [2, Satz 6].) The prime 3 is totally ramified in K if and only if v3(DK ) = 3, 4
or 5.

Next, we extract some results from P. Llorente and E. Nart [7, Theorem 1].

PROPOSITION 2.3. Suppose that the cubic polynomial

F(X) = X3 − aX − b, a, b ∈ �

is irreducible over �, and that either v3(a) < 2 or v3(b) < 3 holds. Let θ be a root of
F(X) = 0, and put K = �(θ ). Then the prime 3 is totally ramified in K/� if and only if
one of the following conditions holds:

(LN-i) 1 ≤ v3(b) ≤ v3(a);

(LN-ii) 3 | a, a 	≡ 3 (mod 9), 3 � b and b2 	≡ a + 1 (mod 9);

(LN-iii) a ≡ 3 (mod 9), 3 � b and b2 	≡ a + 1 (mod 27).
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Proof of Theorem 1. By the assumption, we can express n = 2m + 1, m (≥ 1) ∈ �.
Define the element α ∈ k′ = �(

√
32(m+1) − 12) by

α := 32m+1 − 2 + 3m
√

32(m+1) − 12
2

.

Then we have

Nk′ (α) = 13 and Trk′ (α) = 32m+1 − 2.

The polynomial

fα(X) = X3 − 3X − (32m+1 − 2)

is irreducible over � because

fα(X) ≡ X3 − X − 1 (mod 2)

is irreducible over �2. Then by Proposition 2.1, the splitting field of fα over � is a cyclic
cubic extension of k unramified outside 3. Moreover, fα does not satisfy the conditions
(LN-i), (LN-ii) and (LN-iii) in Proposition 2.3. Therefore, the splitting field of fα over
� is an unramified cyclic cubic extension of k, and hence the class number of k is
divisible by 3. �

REMARK 2.4. We will give another proof of Theorem 1 by using [6, Theorem]. Put
u = 32(m−1) and w = 1 in [6, Theorem]; we have

g(Z) = Z3 − 32(m−1)Z − 34(m−1)

and

d = 4 · 32(m−1) − 27 · (32(m−1))2 = 32(m−1)(4 − 32m+1).

We easily see that the condition (i) in [6, Theorem] holds. Furthermore,

g(Z) = Z3 − 32(m−1)Z − 34(m−1) ≡ Z3 − Z − 1 (mod 2)

is irreducible over �2, so g(Z) is irreducible over �. Then the class number of �(
√

d) = k
is divisible by 3.

Proof of Theorem 2. By the assumption, we can express n = 6u + 3, u (≥ 1) ∈ �.
Define the element α ∈ k = �(

√
4 − 36u+3) by

α := 3u+1(32u+1 − 2) + √
4 − 36u+3

2
.

Then we have

Nk(α) = (32u+1 − 1)3 and Trk(α) = 3u+1(32u+1 − 2).

Let us show that

fα(X) = X3 − 3(32u+1 − 1)X − 3u+1(32u+1 − 2)
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is irreducible over �. In the case u = 1, we can verify that

fα(X) = X3 − 3(32+1 − 1)X − 31+1(32+1 − 2) = X3 − 78X − 225

is irreducible over �. Assume now that u ≥ 2 and that α ∈ k3. Then we can express

α =
(

s + t
√

D
2

)3

for some s, t ∈ �, where D is the square-free part of 4 − 36u+3. Since

(
s + t

√
D

2

)3

= s(s2 + 3t2D)/4 + t(3s2 + t2D)/4 · √
D

2
,

we have

4 · 3u+1(32u+1 − 2) = s(s2 + 3t2D), (2.1)

and hence s is divisible by 3. On the other hand, since the norm of (s + t
√

D)/2 is equal
to 32u+1 − 1, we have

t2D = s2 − 4(32u+1 − 1), (2.2)

and hence t2D is not divisible by 3. Therefore we get

v3(s2 + 3t2D) = 1. (2.3)

From (2.1) and (2.3), we have 3u | s, and hence we can express

s = 3ua (2.4)

for some a ∈ �. Substituting (2.2) and (2.4) into (2.1), it follows that

4 · 3u+1(32u+1 − 2) = s(s2 + 3(s2 − 4(32u+1 − 1)))

= 4s(s2 − 32u+2 + 3)

= 4 · 3u+1a(32u−1(a2 − 9) + 1),

and so

32u+1 − 2 = a(32u−1(a2 − 9) + 1). (2.5)

If a ≤ −3, then

a(32u−1(a2 − 9) + 1) ≤ 0 < 32u+1 − 2.

This is a contradiction. If a ≥ 4, then

a(32u−1(a2 − 9) + 1) ≥ 4(32u−1 · 7 + 1) = 28 · 32u−1 + 4 > 32u+1 − 2.

This is also a contradiction. Therefore a must be in the range

−2 ≤ a ≤ 3. (2.6)
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It follows from (2.5) that

−2 ≡ a (mod 32u−1).

From this together with (2.6) and u ≥ 2, we have a = −2. This contradicts that the
left-hand side of (2.5) is odd. Hence α is not a cube in k. Therefore, by Proposition 2.1,
fα is irreducible over �. Since fα does not satisfy the conditions (LN-i), (LN-ii) and
(LN-iii), the splitting field of fα over � is an unramified cyclic cubic extension of k′.
The proof is completed. �

Proof of Theorem 3. We keep the notation and situation from the proof of
Theorem 2. Then the 3-rank of the ideal class group of k′ is at least 1. By
Proposition 1.1, therefore, it is sufficient to show that there is a cubic field K with
disc(K) = −33D.

Now define the element α ∈ k by

α := 2 +
√

4 − 36u+3.

It follows from

Nk(α) = (32u+1)3 and Trk(α) = 4

that we have

fα(X) = X3 − 32u+2X − 4.

Let θ be a root of fα(X) = 0, and put K = �(θ ). Since

fα(X + 1) = X3 + 3X2 − 3(32u+1 − 1)X − 3(32u+1 + 1),

we see by Eisenstein’s criterion for the prime 3 that fα is irreducible over �. Then
by the last half of Proposition 2.1, the splitting field of fα over � is a cyclic cubic
extension of k′ unramified outside 3. We can easily check that the condition (LN-ii)
holds. Then 3 is totally ramified in K and so v3(DK ) = 3 by Proposition 2.1. Hence
we have DK = −33D. By Proposition 1.1 and Theorem 2, therefore, the 3-rank of the
ideal class group of k is at least 2. The proof is completed. �

3. Numerical examples. In Table 1, we list the square-free part of 4 − 3n, the
structure of the ideal class group of k = �(

√
4 − 3n) and the class number of k′ =

�(
√−3(4 − 3n)) for 3 ≤ n ≤ 49 with n ≡ 1 (mod 2). In Table 2, we list the structure of

the ideal class group of k = �(
√

4 − 3n) for 50 ≤ n ≤ 100 with n ≡ 3 (mod 6). Here we
denote an abelian group Cn1 × Cn2 × · · · × Cnr by [n1, n2, . . . , nr].

REMARK 3.1. We use computer manipulations with GP/PARI (Version 2.1.7).
From these tables, we can see that for an integer n in the range 9 ≤ n ≤ 100
with n ≡ 3 (mod 6), the ideal class group of k has a subgroup isomorphic to
C3n × C3 (thus, in particular, C9 × C3). However, the author has not yet proved
this.
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Table 1.

n Square-free part of 4 − 3n The structure of the ideal
class group of �(

√
4 − 3n)

The class number
of �(

√−3(4 − 3n))
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

−23
−239
−2183
−19679
−177143
−1594319
−14348903
−129140159
−1162261463
−10460353199
−94143178823
−1601679791
−7625597484983
−68630377364879
−617673396283943
−5559060566555519
−50031545098999703
−450283905890997359
−4052555153018976263
−36472996377170786399
−328256967394537077623
−2954312706550833698639
−26588814358957503287783
−239299329230617529590079

[3]
[15]
[42]
[54, 3]
[264]
[1872]
[270, 15]
[9690]
[31350]
[12663, 3, 3]
[159942]
[60300]
[310554, 6]
[4315722, 2]
[32074677]
[29688714, 3]
[52523730, 3]
[1018421115]
[123043050, 3, 3]
[5322108033]
[7736038668, 2]
[505223730, 18, 2, 2, 2]
[21629637726, 2, 2]
[153033164592, 6]

1
1
6
6

16
64

150
230

1818
1665
7154

804
74892
82596

660543
1050978
3287202

12171397
34215606
47957583

373576936
533315808

1818043912
5545046352

Table 2.

n
The structure of the ideal
class group of �(

√
4 − 3n)

51
57
63
69
75
81
87
93
99

[227163157560, 6]
[57240211680, 18, 6, 6]
[42265762274736, 18]
[920661234127056, 6, 6]
[80380027121635350, 3, 3]
[2144525716486877706, 6, 2]
[37490396487976286514, 6, 2]
[406363908197600166438, 6, 6]
[16886151827162849108592, 18]
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