SURJECTIVE LINEAR MAPS BETWEEN ROOT SYSTEMS WITH ZERO

D. Ž. ĐOKOVIĆ AND NGUYÊÑ Q. THĂŃG

> ABSTRACT. If R_{1} and R_{2} are root systems and there is a linear map which maps $R_{1} \cup\{0\}$ onto $R_{2} \cup\{0\}$ we write $R_{1} \rightarrow R_{2}$. We determine all pairs $\left(R_{1}, R_{2}\right)$ of irreducible root systems such that $R_{1} \rightarrow R_{2}$.

1. Introduction. Let $R_{i}(i=1,2)$ be a root system in the sense of Bourbaki [Bo, Chapter 6], which is not necessarily reduced, and V_{i} the vector space spanned by R_{i}. (Without any loss of generality, we may assume that the field of characteristic 0 used in the definition of root systems in [Bo] is the field \mathbf{Q} of rational numbers.) We say that R_{1} dominates R_{2} if there exists a linear map $u: V_{1} \rightarrow V_{2}$ such that $u\left(R_{1} \cup\{0\}\right)=R_{2} \cup\{0\}$, and then we write $R_{1} \xrightarrow{u} R_{2}$ or just $R_{1} \rightarrow R_{2}$. If R_{1} does not dominate R_{2} we write $R_{1} \nrightarrow R_{2}$.

This relation between root systems occurs naturally in the study of semisimple subalgebras of complex semisimple Lie algebras. In fact, let g_{2} be a semisimple subalgebra of a semisimple complex Lie algebra \mathfrak{g}_{1} and choose Cartan subalgebras $\mathfrak{h}_{i} \subset \mathfrak{g}_{i}$ such that $\mathfrak{h}_{2} \subset \mathfrak{h}_{1}$. Assume that the weights of \mathfrak{g}_{1} (considered as a g_{2}-module via the adjoint representation of \mathfrak{g}_{1}) are 0 and the roots of \mathfrak{g}_{2}. Then the restriction map $\mathfrak{h}_{1}^{*} \rightarrow \mathfrak{h}_{2}^{*}$ maps $R_{1} \cup\{0\}$ onto $R_{2} \cup\{0\}$, i.e. we have $R_{1} \rightarrow R_{2}$ where R_{i} is the root system of g_{i} with respect to $\mathfrak{h}_{\mathfrak{i}}$. Thus the classification of such pairs $\left(\mathfrak{g}_{1}, \mathfrak{g}_{2}\right)$ leads to the study of the dominance relation between root systems.

The above relation between root systems is the Lie algebra analog of the following well-known relation between the root system and relative root system of reductive groups. (For all standard notions and notation used below we refer to [B], [Ti].) Namely, let G be a connected reductive group defined over a field k, S a maximal k-split torus contained in a maximal k-torus T of G. Let $\Phi=\Phi(T, G)\left(\right.$ resp. ${ }_{k} \Phi=\Phi(S, G)$) be the root system of G relative to T (resp. S). Let $\rho: X(T) \rightarrow X(S)$ be the restriction map of the character groups. Then $\rho(\Phi \cup\{0\})={ }_{k} \Phi \cup\{0\}$ and so $\Phi \rightarrow_{k} \Phi$.

It is natural to ask
(a) whether or not we obtain all possible relations $R_{1} \rightarrow R_{2}$ in this way, and if not,
(b) how to find all of them.

It turns out that not all relations $R_{1} \rightarrow R_{2}$ arise in this way. Our main result (see the Main Theorem) is the determination of all pairs of irreducible root systems (R_{1}, R_{2}) such that $R_{1} \rightarrow R_{2}$.

The first author was supported in part by the NSERC Grant A-5285.
Received by the editors April 8, 1994; revised January 23, 1995.
AMS subject classification: 17B20, 17B25.
(c) Canadian Mathematical Society 1996.

The notation concerning root systems, such as their simple roots and Dynkin diagrams are the same as in [Bo, pp. 250-275]. We recall that there are up to isomorphism only five infinite series of irreducible root systems, namely $A_{n}, n \geq 1 ; B_{n}, n \geq 2 ; C_{n}, n \geq 2$; $D_{n}, n \geq 4$; and $B C_{n}, n \geq 1$ (not reduced); and five exceptional root systems E_{6}, E_{7}, E_{8}, F_{4} and G_{2}. All these root systems are pairwise non-isomorphic, except for B_{2} and C_{2}. We denote by Σ the set of isomorphism classes of root systems and by $\Sigma^{\text {irr }}$ its subset corresponding to irreducible root systems.
2. A partial order on Σ. In this section we relate the dominance relation to orderings of root systems and show that $R_{1} \rightarrow R_{2}$ and $R_{2} \rightarrow R_{1}$ imply that R_{1} and R_{2} are isomorphic. Consequently we obtain a partial order on Σ.

If R is a root system then $\mathbf{Z} R$ will denote the root lattice. We denote by $\Pi=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a base of R and by R^{+}the set of positive roots of R with respect to Π. By $\mathbf{Z}_{+} \Pi$ we denote the set of all linear combinations $\alpha=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}$ with nonnegative integral coefficients a_{i}. This element will be denoted also by the symbol $a_{1} \cdots a_{n}$. The sum of all coefficients a_{1}, \ldots, a_{n} is the height, $h(\alpha)$, of α. For $\alpha, \beta \in \mathbf{Z} R$ we write $\alpha \geq \beta$ if $\alpha-\beta \in \mathbf{Z}_{+} \Pi$.

PROPOSITION 1. Let $\left(R_{1}, V_{1}\right)$ and $\left(R_{2}, V_{2}\right)$ be rootsystems and $u: V_{1} \rightarrow V_{2}$ a dominant map. If Π_{2} is any base of R_{2}, there exists a base Π_{1} of R_{1} such that $u\left(R_{1}^{+} \cup\{0\}\right)=R_{2}^{+} \cup\{0\}$. In that case $u\left(\Pi_{1}\right) \supset \Pi_{2}$.

Proof. Let $f: V_{2} \rightarrow \mathbf{Q}$ be a linear function such that $f(\beta)>0$ for all $\beta \in \Pi_{2}$. Then $g:=f u$ is a non-zero linear function on V_{1}. Hence we can choose a base Π_{1} of R_{1} such that $g(\alpha) \geq 0$ for all $\alpha \in \Pi_{1}$. Thus if $\alpha \in \Pi_{1}$ and $\beta=u(\alpha) \in R_{2} \cup\{0\}$ then $f(\beta)=g(\alpha) \geq 0$. Consequently $\beta \in R_{2}^{+} \cup\{0\}$ since $f(\gamma) \neq 0$ for all $\gamma \in R_{2}$. This proves the first assertion.

Take any $\beta \in \Pi_{2}$. There is a root $\alpha \in R_{1}^{+}$such that $u(\alpha)=\beta$. Let $\Pi_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\alpha=k_{1} \alpha_{1}+\cdots+k_{n} \alpha_{n}$ with k_{i} nonnegative integers. Since $u\left(\Pi_{1}\right) \subseteq R_{2}^{+} \cup\{0\}$ and $k_{1} h\left(u\left(\alpha_{1}\right)\right)+\cdots+k_{n} h\left(u\left(\alpha_{n}\right)\right)=h(\beta)=1$ it follows that $k_{i} h\left(u\left(\alpha_{i}\right)\right)=1$ for some i and $k_{j} h\left(u\left(\alpha_{j}\right)\right)=0$ for $j \neq i$. Hence $\beta=u\left(\alpha_{i}\right)$ and the second assertion is proved.

PROPOSITION 2. Let $R_{1} \xrightarrow{u} R_{2}$ with R_{1} irreducible. Then R_{2} is irreducible. If bases $\Pi_{i} \subset R_{i}$ are chosen as in Proposition 1 then $u(\tilde{\alpha})=\tilde{\beta}$, where $\tilde{\alpha}($ resp. $\tilde{\beta})$ is the highest root of R_{1} (resp. R_{2}).

Proof. Let $\beta \in R_{2}$ be arbitrary and choose $\alpha \in R_{1}$ such that $u(\alpha)=\beta$. Then $\tilde{\alpha}-\alpha \in \mathbf{Z}_{+} \Pi_{1}$. Since $u\left(R_{1}^{+} \cup\{0\}\right)=R_{2}^{+} \cup\{0\}$, it follows that

$$
u(\tilde{\alpha})-\beta=u(\tilde{\alpha}-\alpha) \in \mathbf{Z}_{+} \Pi_{2} .
$$

Therefore R_{2} is irreducible and $u(\tilde{\alpha})=\tilde{\beta}$.

PROPOSITION 3. If $R_{1} \xrightarrow{u} R_{2}$ and $R_{2} \rightarrow R_{1}$, then R_{1} and R_{2} are isomorphic.
Proof (dUE TO R. Steinberg). Clearly u must be an isomorphism of vector spaces. Consequently R_{1} and R_{2} have the same rank and cardinality. Without any loss of generality we may assume that R_{1} and R_{2} are irreducible. By Proposition 1 we may assume that bases $\Pi_{i} \subset R_{i}$ are chosen so that $u\left(R_{1}^{+} \cup\{0\}\right)=R_{2}^{+} \cup\{0\}$, and so $u\left(\Pi_{1}\right)=\Pi_{2}$. Let $\Pi_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Denote by σ_{i} the reflection with respect to the root α_{i}. Since R_{1} is invariant under σ_{i}, and $\sigma_{i}\left(\alpha_{j}\right)=\alpha_{j}-2 \alpha_{i}\left(\alpha_{j}, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)$, it follows that, for $i \neq j,-2\left(\alpha_{j}, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)$ is the largest integer m such that $\alpha_{j}+m \alpha_{i}$ is a root. If $\beta_{k}=u\left(\alpha_{k}\right)$ then

$$
\left(\alpha_{j}, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)=\left(\beta_{j}, \beta_{i}\right) /\left(\beta_{i}, \beta_{i}\right)
$$

If $\left(\alpha_{j}, \alpha_{i}\right) \neq 0$, then

$$
\left(\beta_{i}, \beta_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)=\left(\beta_{j}, \beta_{i}\right) /\left(\alpha_{j}, \alpha_{i}\right)=A,
$$

where A is independent of j. Since Π_{1} is irreducible, A is also independent of i. In other words, up to a change of scale, u is an isometry and hence an isomorphism in the sense of root systems.

The dominance relation is obviously reflexive and transitive. In view of Proposition 3, the relation that it induces on Σ is also anti-symmetric, and so we obtain a partial order on Σ, which we continue to call dominance.

In the proofs below we often refer to highest roots. For convenience of the reader they are listed in Table 1.

Root system	Highest root
A_{n}	$111 \cdots 111$
B_{n}	$122 \cdots 222$
$B C_{n}$	$222 \cdots 222$
C_{n}	$222 \cdots 221$
D_{n}	$122 \cdots 211$
E_{6}	122321
E_{7}	2234321
E_{8}	23465432
F_{4}	2342
G_{2}	32

Table 1
The Hasse diagram gives a pictorial representation of a partially ordered set, see [BS, p. 5] for a precise definition. Our main result is a detailed description of the partially ordered set $\Sigma^{\text {irr }}$ introduced in the previous sections.

Main Theorem. The Hasse diagram of the partially ordered set Σ^{irr} is given on Figure 1, except that the arrows $D_{n} \rightarrow A_{2}$ have been omitted for the sake of simplicity.

The proof will be given in the remaining two sections.

Figure 1. Dominance relation in $\Sigma^{\mathrm{irr}}\left(D_{n} \rightarrow A_{2}\right.$ OMITted)
3. The relations $R_{1} \rightarrow R_{2}$. In the sequel we shall use the following notation. Assume that $R_{1} \rightarrow R_{2}$ with R_{1} and R_{2} irreducible. We shall denote by Π_{i} a base of R_{i}, which are chosen so that $u\left(R_{1}^{+} \cup\{0\}\right)=R_{2}^{+} \cup\{0\}$. By α_{i} (resp. β_{i}) we denote the elements of $\Pi_{1}\left(\operatorname{resp} . \Pi_{2}\right)$ and by $\tilde{\alpha}(\operatorname{resp} . \tilde{\beta})$ the highest root of $R_{1}\left(\operatorname{resp} . R_{2}\right)$. Consequently we have $u(\tilde{\alpha})=\tilde{\beta}$.

The tables of all relations $R_{1} \rightarrow R_{2}$ in $\Sigma^{\text {irr }}$, which can be obtained by using the method described in the Introduction, can be found in many references, e.g. [OV, Table 9,
pp. 314-317], [Se, pp. 129-135], [St, Theorem 32], [W, pp. 30-32]. From these tables we obtain the following lemma.

Lemma 4. The following relations hold:
a) $A_{2 n} \rightarrow B C_{n}, n \geq 1 ; A_{2 n-1} \rightarrow C_{n}, n \geq 2$;
b) $B_{n} \rightarrow B_{n-1}, n \geq 2$;
c) $D_{n} \rightarrow B_{n-1}, n \geq 4 ; D_{2 n} \rightarrow C_{n}, n \geq 3$;
d) $E_{6} \rightarrow A_{2}, E_{6} \rightarrow F_{4}$;
e) $E_{7} \rightarrow C_{3}, E_{7} \rightarrow F_{4}$;
f) $E_{8} \rightarrow F_{4}$.

This lemma justifies some of the arrows in Figure 1. The remaining arrows in that figure are justified by the next lemma, where $R \rightarrow(S, \ldots, T)$ means that $R \rightarrow S, \ldots, R \rightarrow$ T. Similarly $R \nrightarrow(S, \ldots, T)$ will mean that $R \nrightarrow S, \ldots, R \nrightarrow T$.

Lemma 5. The following relations hold:
a) $A_{n} \rightarrow A_{n-1}, n \geq 2 ; A_{3} \rightarrow G_{2}$;
b) $B_{2 n} \rightarrow B C_{n}, n \geq 2 ; B_{3} \rightarrow G_{2}$;
c) $B C_{n} \rightarrow B C_{n-1}, n \geq 2$;
d) $C_{2} \rightarrow A_{1} ; C_{n} \rightarrow B C_{n-1}, n \geq 2 ; C_{n} \rightarrow C_{n-1}, n \geq 3$;
e) $D_{n} \rightarrow A_{2}, n \geq 4 ; D_{2 n+1} \rightarrow C_{n}, n \geq 3$;
f) $E_{6} \rightarrow C_{2}$;
g) $F_{4} \rightarrow\left(B C_{2}, G_{2}\right)$;
h) $G_{2} \rightarrow B C_{1}$.

Proof. a) To obtain $A_{n} \rightarrow A_{n-1}$ we just map α_{1} to zero and $\alpha_{i+1} \rightarrow \beta_{i}$ for all i. More generally for any $j, 1 \leq j \leq n$, we have a dominant map $A_{n} \rightarrow A_{n-1}$ such that $\alpha_{i} \rightarrow \beta_{i}$ if $i<j ; \alpha_{j} \rightarrow 0$; and $\alpha_{i} \rightarrow \beta_{i-1}$ if $i>j$.

For $A_{3} \rightarrow G_{2}$, we map $\alpha_{1} \rightarrow \beta_{2}, \alpha_{2} \rightarrow \beta_{1}, \alpha_{3} \rightarrow \beta_{2}+2 \beta_{1}$.
b) For $B_{2 n} \rightarrow B C_{n}$, we map $\alpha_{2 i-1} \rightarrow 0$ and $\alpha_{2 i} \rightarrow \beta_{i}$ for $1 \leq i \leq n$.

For $B_{3} \rightarrow G_{2}$, we map α_{1} and $\alpha_{3} \rightarrow \beta_{1}$ and $\alpha_{2} \rightarrow \beta_{2}$.
c) For $B C_{n} \rightarrow B C_{n-1}$, we map $\alpha_{n} \rightarrow 0$ and $\alpha_{i} \rightarrow \beta_{i}$ for $i<n$.
d) For $C_{n} \rightarrow B C_{n-1}$, we map $\alpha_{n} \rightarrow 0$ and $\alpha_{i} \rightarrow \beta_{i}$ for $i<n$.

For $C_{n} \rightarrow C_{n-1}$, we map $\alpha_{1} \rightarrow 0$ and $\alpha_{i+1} \rightarrow \beta_{i}$ for all i.
For $C_{2} \rightarrow A_{1}$, we map $\alpha_{1} \rightarrow 0$ and $\alpha_{2} \rightarrow \beta_{1}$.
e) For $D_{n} \rightarrow A_{2}$, we map $\alpha_{n-1} \rightarrow \beta_{1}, \alpha_{n} \rightarrow \beta_{2}$ and $\alpha_{i} \rightarrow 0$ for $i<n-1$.

For $D_{2 n+1} \rightarrow C_{n}$, we map $\alpha_{1} \rightarrow 0, \alpha_{2 i} \rightarrow 0$ and $\alpha_{2 i+1} \rightarrow \beta_{i}$ for $1 \leq i \leq n$.
For the remaining cases we map the simple roots as follows:

$$
\begin{aligned}
& E_{6} \rightarrow C_{2}: \alpha_{5} \rightarrow \beta_{1}, \alpha_{6} \rightarrow \beta_{2} \\
& F_{4} \rightarrow B C_{2}: \alpha_{1} \rightarrow \beta_{1}, \alpha_{4} \rightarrow \beta_{2} ; \\
& F_{4} \rightarrow G_{2}: \alpha_{1} \rightarrow \beta_{2}, \alpha_{2} \rightarrow \beta_{1} ; \\
& G_{2} \rightarrow B C_{1}: \alpha_{2} \rightarrow \beta_{1} ;
\end{aligned}
$$

and map all other simple roots to zero.
4. The relations $R_{1} \nrightarrow R_{2}$. We prove here the non-existence of dominant relations between various irreducible root systems. The proofs are more difficult than the existence proofs given in the previous section.

LEMMA 6. The following relations hold:
a) $A_{n} \nrightarrow\left(B_{3}, F_{4}\right)$;
b) $B_{n} \nrightarrow\left(A_{2}, C_{3}, D_{k}\right)$;
c) $B C_{n} \nrightarrow\left(A_{1}, G_{2}\right)$;
d) $C_{n} \nrightarrow\left(A_{2}, B_{3}, G_{2}\right)$;
e) $D_{n} \nrightarrow\left(A_{3}, D_{k}\right), n>k$.

Proof. Each of the assertions above has the form $R_{1} \not \nrightarrow R_{2}$. We shall assume that $R_{1} \xrightarrow{u} R_{2}$ and obtain a contradiction. We choose bases $\Pi_{i} \subset R_{i}$ such that $u\left(R_{1}^{+} \cup\{0\}\right)=$ $R_{2}^{+} \cup\{0\}$.
a) Assume that $A_{n} \rightarrow B_{3}$ for some n and let n be minimal. The minimality of n implies that $u\left(\Pi_{1}\right) \subset B_{3}^{+}$(see the proof of Lemma 5, part a)). Let $\alpha_{i} \rightarrow \beta_{2}$. Since $\tilde{\beta}=122$ and $\tilde{\alpha} \rightarrow \tilde{\beta}$, there exists a unique $j \neq i$ such that $u\left(\alpha_{j}\right) \geq \beta_{2}$. Let, say, $i<j$ and let $\alpha=\alpha_{i}+\cdots+\alpha_{j}$. As $\alpha \in A_{n}^{+}$, we have $u(\alpha) \in B_{3}^{+}$. Since $u(\alpha) \geq 2 \beta_{2}$ and $\tilde{\beta}$ is the only root of B_{3} which is $\geq 2 \beta_{2}$, we conclude that $u(\alpha)=\tilde{\beta}$. Hence $u(\tilde{\alpha}-\alpha)=0$ and so $i=1$ and $j=n$. Since $u\left(\Pi_{1}\right) \supset \Pi_{2}$ and $\alpha^{\prime}:=\tilde{\alpha}-\alpha_{1}-\alpha_{n} \in A_{n}^{+}$, we have $u\left(\alpha^{\prime}\right)=p \beta_{1}+q \beta_{3}$ with $p, q>0$. As $p \beta_{1}+q \beta_{3} \notin B_{3}$, we have a contradiction.

Assume that $A_{n} \rightarrow F_{4}$ with n minimal. Note that $\tilde{\beta}=2342 \in F_{4}$ is the only root of F_{4} which is $\geq 2 \beta_{1}$. As above we may assume that $\alpha_{1} \rightarrow \beta_{1}$, and $u\left(\alpha_{n}\right) \geq \beta_{1}$. Then $u\left(\alpha_{i}\right) \nsupseteq \beta_{1}$ for $1<i<n$ and consequently $u\left(A_{n-2}\right)=C_{3}$ where A_{n-2} respectively C_{3} are root systems with bases $\left\{\alpha_{2}, \ldots, \alpha_{n-1}\right\}$ respectively $\left\{\beta_{2}, \beta_{3}, \beta_{4}\right\}$. This implies that u maps the highest root $\alpha=\alpha_{2}+\cdots+\alpha_{n-1}$ of A_{n-2} to the one of C_{3}, i.e., $\alpha \rightarrow \beta=0122$, and consequently $\alpha_{n} \rightarrow 1220$. Since $h(\beta)=5$, we have $n-2 \leq 5$, i.e., $n \leq 7$. As A_{6} has 42 roots and F_{4} has 48 , we must have $n=7$. It follows that $u\left(\alpha_{i}\right) \in \Pi_{2}$ for $i<7$. As $\alpha_{1}+\alpha_{2} \in A_{n}$ is mapped to $\beta_{1}+u\left(\alpha_{2}\right) \in F_{4}$, we have $u\left(\alpha_{2}\right)=\beta_{2}$. As $\alpha^{\prime}=\alpha-\alpha_{2} \in A_{n}$ and $\alpha^{\prime} \rightarrow 0022 \notin F_{4}$, we have a contradiction.
b) Assume that $B_{n} \rightarrow A_{2}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}$, it follows that $\alpha_{i} \rightarrow 0$ for $i>1$. As u is surjective, we have a contradiction.

Assume that $B_{n} \rightarrow C_{3}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=221$, we have $\alpha_{1} \rightarrow \beta_{3}$. Let $\alpha_{i} \rightarrow \beta_{1}$ and $\alpha_{j} \rightarrow \beta_{2}$. All other simple roots of B_{n} are mapped to 0 . Since $\alpha_{1}+\cdots+\alpha_{i} \in B_{n}$ and $101 \notin C_{3}$, we must have $i>j$. As $021 \in C_{3}$ but $021 \notin u\left(B_{n}\right)$, we have a contradiction.

Assume that $B_{n} \rightarrow D_{k}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}$ we conclude that $u\left(\alpha_{i}\right) \nsupseteq \beta_{1}, \beta_{k-1}, \beta_{k}$ for $i \neq 1$. As $u\left(\Pi_{1}\right) \supset\left\{\beta_{1}, \beta_{k-1}, \beta_{k}\right\}$ we have a contradiction.
c) Assume that $B C_{n} \rightarrow A_{1}$ or G_{2}. If α and 2α are in $B C_{n}$ then $\alpha \rightarrow 0$. Since such α span the ambient space, we have a contradiction.
d) Assume that $C_{n} \rightarrow A_{2}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=11$ we have $\alpha_{i} \rightarrow 0$ for $i \neq n$. As u is surjective, we have a contradiction.

Assume that $C_{n} \rightarrow B_{3}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=122$, we have $\alpha_{n} \rightarrow \beta_{1}$. Let $\alpha_{i} \rightarrow \beta_{2}$ and $\alpha_{j} \rightarrow \beta_{3}$. All other $n-3$ simple roots of C_{n} are mapped to 0 . Since $\alpha_{j}+\cdots+\alpha_{n}$ is a root
of C_{n} and $101 \notin B_{3}$, we have $i>j$. As $\alpha_{j}+2\left(\alpha_{j+1}+\cdots+\alpha_{n-1}\right)+\alpha_{n}$ is a root of C_{n}, we have $121 \in u\left(C_{n}\right)$ but $121 \notin B_{3}$, a contradiction.

Assume that $C_{n} \rightarrow G_{2}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=32$, we have $\alpha_{n} \rightarrow \beta_{1}$. There exist two indices $i, j<n$ such that $\alpha_{i} \rightarrow \beta_{1}$ and $\alpha_{j} \rightarrow \beta_{2}$, while the other $n-3$ simple roots of C_{n} are mapped to 0 . Since $\alpha_{i}+\cdots+\alpha_{n}$ is a root of C_{n} and $20 \notin G_{2}$, we have $i<j$. Since $2\left(\alpha_{j}+\cdots+\alpha_{n-1}\right)+\alpha_{n}$ is a root of C_{n}, we have $12 \in u\left(C_{n}\right)$. On the other hand $12 \notin G_{2}$, and so we have a contradiction.
e) Assume that $D_{n} \rightarrow A_{3}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=111$ we conclude that $\alpha_{i} \rightarrow 0$ for $1<i<$ $n-1$ and that u maps $\left\{\alpha_{1}, \alpha_{n-1}, \alpha_{n}\right\}$ onto Π_{2}. Since $\alpha_{1}+\cdots+\alpha_{n-1}, \alpha_{1}+\cdots+\alpha_{n-2}+\alpha_{n}$, and $\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$ are roots of D_{n}, it follows that $101 \in u\left(D_{n}\right)$. Since $101 \notin A_{3}$, we have a contradiction.

Assume that $D_{n} \rightarrow D_{k}, n>k$. As $\tilde{\alpha} \rightarrow \tilde{\beta}$, it follows that u maps $\left\{\alpha_{1}, \alpha_{n-1}, \alpha_{n}\right\}$ onto $\left\{\beta_{1}, \beta_{k-1}, \beta_{k}\right\}$. Also u maps $k-3$ of the roots $\alpha_{2}, \ldots, \alpha_{n-2}$ onto $\beta_{2}, \ldots, \beta_{k-2}$ and the others to 0 . Let i be the largest index such that $\alpha_{i} \rightarrow 0$, which exists because $n>k$. Then $\alpha=\alpha_{i}+2\left(\alpha_{i+1}+\cdots+\alpha_{n-2}\right)+\alpha_{n-1}+\alpha_{n}$ is a root of D_{n} while $u(\alpha) \notin D_{k}$. Hence we have a contradiction.

Lemma 7. $\quad D_{n} \nrightarrow F_{4}$.
Proof. Assume that $D_{n} \xrightarrow{u} F_{4}$. Suppose that $u\left(\alpha_{1}\right) \geq \beta_{1}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=2342$ and $\beta_{1} \in u\left(\Pi_{1}\right)$, we infer that $u\left(\alpha_{n-1}\right) \geq \beta_{1}$ or $u\left(\alpha_{n}\right) \geq \beta_{1}$. By symmetry of the Dynkin diagram of D_{n}, we may assume that $u\left(\alpha_{n-1}\right) \geq \beta_{1}$. If $\alpha=\alpha_{1}+\cdots+\alpha_{n-1}$ then $u(\alpha) \geq 2 \beta_{1}$. Since $\tilde{\beta}$ is the only root of F_{4} which is $\geq 2 \beta_{1}$, we infer that $u(\alpha)=\tilde{\beta}=u(\tilde{\alpha})$. Thus $u(\tilde{\alpha}-\alpha)=0$, i.e., $\alpha_{i} \rightarrow 0$ for $i \neq 1, n-1$. As u is surjective, we have a contradiction.

Now suppose that $u\left(\alpha_{n}\right) \geq \beta_{1}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}$ and $\beta_{1} \in u\left(\Pi_{1}\right)$ we must have $u\left(\alpha_{n-1}\right) \geq$ β_{1}. If $\alpha=\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$ then $u(\alpha) \geq 2 \beta_{1}$ and so $u(\tilde{\alpha}-\alpha)=0$, i.e., $\alpha_{i} \rightarrow 0$ for $i<n-1$. As u is surjective, we have a contradiction.

It follows that $\alpha_{i} \rightarrow \beta_{1}$ for some i with $1<i<n-1$, and consequently $u\left(\alpha_{j}\right) \nsupseteq \beta_{1}$ for $j \neq i$. The elements $\alpha=\alpha_{i+1}+\cdots+\alpha_{n}$ and $\alpha^{\prime}=\alpha_{i-1}+2\left(\alpha_{i}+\cdots+\alpha_{n-2}\right)+\alpha_{n-1}+\alpha_{n}$ are roots of D_{n}. Since $u(\alpha) \nsupseteq \beta_{1}$, by inspecting the list of positive roots of F_{4}, we conclude that $u(\alpha) \nsupseteq 2 \beta_{2}$. If $u\left(\alpha_{k}\right) \nsupseteq \beta_{2}$ for all $k<i$ then $\tilde{\beta} \geq 3 \beta_{2}$ implies that $u\left(\alpha_{k}\right) \geq \beta_{2}$ for at least two indices $k>i$. But this is impossible since $u(\alpha) \nsucceq 2 \beta_{2}$. Hence we can fix a $k<i$ such that $u\left(\alpha_{k}\right) \geq \beta_{2}$. Since $u\left(\alpha^{\prime}\right) \in F_{4}$ and $u\left(\alpha^{\prime}\right) \geq 2 \beta_{1}$, it follows that $u\left(\alpha^{\prime}\right)=\tilde{\beta}=u(\tilde{\alpha})$. Since $u\left(\alpha_{k}\right) \geq \beta_{2}$ and $u\left(\tilde{\alpha}-\alpha^{\prime}\right)=0$, we infer that $\tilde{\alpha}=\alpha^{\prime}, i=2$, $k=1$, and so $u\left(\alpha_{1}\right) \geq \beta_{2}$. Now let j be the smallest index such that $j>2$ and $u\left(\alpha_{j}\right) \neq 0$. Since u is surjective, $u\left(\Pi_{1}\right) \supset \Pi_{2}$, and $\tilde{\alpha} \rightarrow \tilde{\beta}$, we have $j<n-1$. As $\alpha_{2}+\cdots+\alpha_{j} \in D_{n}$, we have $\beta_{1}+u\left(\alpha_{j}\right) \in F_{4}$ and so $u\left(\alpha_{j}\right) \geq \beta_{2}$. It follows that $u\left(\alpha_{1}\right) \not \geq 2 \beta_{2}$ and $u\left(\alpha_{s}\right) \nsupseteq \beta_{2}$ for $s \neq 1, j$.

Suppose that $\alpha_{1} \rightarrow \beta_{2}$. Then $u\left(\alpha_{j}\right)+\beta_{1}$ and $u\left(\alpha_{j}\right)+\beta_{1}+\beta_{2}$ are in F_{4} and $u\left(\alpha_{j}\right)+\beta_{1}+$ $\beta_{2} \geq 2 \beta_{2}+\beta_{1}$. This implies that $u\left(\alpha_{j}\right)$ is 0120,0121 or 0122 . Since $u\left(\Pi_{1}\right) \supset \Pi_{2}$ and $u\left(2 \alpha_{j}\right) \geq 4 \beta_{3}$ we have a contradiction.

Since $u\left(\alpha_{1}\right) \neq \beta_{2}$, we must have $\alpha_{j} \rightarrow \beta_{2}$. Since $u\left(\alpha_{1}\right)+\beta_{1}$ and $u\left(\alpha_{1}\right)+\beta_{1}+\beta_{2}$ are in F_{4} and $u\left(\alpha_{1}\right)+\beta_{1}+\beta_{2} \geq \beta_{1}+2 \beta_{2}$, we must have $u\left(\alpha_{1}\right)=0120,0121$ or 0122 . As $\tilde{\alpha} \rightarrow \tilde{\beta}$ we infer that $\alpha_{1} \rightarrow 0120$.

Let $l>j$ be the smallest index such that $u\left(\alpha_{l}\right) \neq 0$. Since $u\left(\Pi_{1}\right) \supset \Pi_{2}$ and $\tilde{\alpha} \rightarrow \tilde{\beta}$, we have $l<n-1$. Since $1230 \notin F_{4}$ and $\alpha_{1}+\cdots+\alpha_{l} \in D_{n}$, we have $u\left(\alpha_{l}\right) \neq \beta_{3}$. As $\alpha_{j}+\cdots+\alpha_{l} \in D_{n}$, we have $\beta_{2}+u\left(\alpha_{l}\right) \in F_{4}$ and so $\alpha_{l} \rightarrow \beta_{3}+\beta_{4}$. Since $u\left(\Pi_{1}\right) \supset \Pi_{2}$ and $\tilde{\alpha} \rightarrow \tilde{\beta}$, we have a contradiction.

LEMMA 8. The following relations hold:
a) $E_{6} \nrightarrow\left(A_{3}, B_{3}, C_{3}, B C_{3}\right)$,
b) $E_{7} \nrightarrow\left(A_{2}, B_{3}, B C_{3}\right)$,
c) $E_{8} \nsim\left(A_{1}, B C_{3}\right)$.

Proof. a) Assume that $E_{6} \rightarrow A_{3}$. Since $\tilde{\alpha}=122321$ and $\tilde{\beta}=111$ all the roots $\alpha_{2}, \ldots, \alpha_{5} \rightarrow 0$. This is impossible since u is surjective.

Assume that $E_{6} \rightarrow B_{3}$. Since $\tilde{\alpha}=122321$ and $\tilde{\beta}=122$, we must have $\alpha_{4} \rightarrow 0$ and α_{1} or α_{6} is mapped to β_{1}. By using symmetry of the Dynkin diagram of E_{6} we may assume that $\alpha_{1} \rightarrow \beta_{1}$. Since $h(\tilde{\beta})=5$ is odd, $h\left(u\left(\alpha_{6}\right)\right)$ must be even, and so $u\left(\alpha_{6}\right) \neq \beta_{2}, \beta_{3}$. Consequently two of the roots $\alpha_{2}, \alpha_{3}, \alpha_{5}$ must be mapped to β_{2} and β_{3}, while the third and α_{6} must be mapped to 0 . Since $101 \notin B_{3}$ we conclude first that $u\left(\alpha_{3}\right) \neq 0$ and then that $\alpha_{3} \rightarrow \beta_{2}$. This leads to a contradiction because $121 \in u\left(E_{6}\right) \backslash B_{3}$.

Assume that $E_{6} \rightarrow C_{3}$. As $\tilde{\beta}=221$, we must have $\alpha_{4} \rightarrow 0$ and α_{1} or $\alpha_{6} \rightarrow \beta_{3}$. By symmetry of E_{6}, we may assume that $\alpha_{1} \rightarrow \beta_{3}$. Since $h(\tilde{\beta})=5, h\left(u\left(\alpha_{6}\right)\right)$ must be even, and so $u\left(\alpha_{6}\right) \neq \beta_{1}, \beta_{2}$. Consequently two of the roots $\alpha_{2}, \alpha_{3}, \alpha_{5}$ must be mapped to β_{1} and β_{2}, while the third and α_{6} must be mapped to 0 . Since $101 \notin C_{3}$, we conclude first that $u\left(\alpha_{3}\right) \neq 0$ and then that $\alpha_{3} \rightarrow \beta_{2}$. This leads to a contradiction because $122 \in u\left(E_{6}\right) \backslash C_{3}$.

Assume that $E_{6} \rightarrow B C_{3}$. As $\tilde{\alpha}=122321$ and $\tilde{\beta}=222$, we must have $\alpha_{4} \rightarrow 0$. If $u\left(\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}\right)=\Pi_{2}$ then α_{1} and $\alpha_{6} \rightarrow 0$ and $101 \in u\left(E_{6}\right) \backslash B C_{3}$, a contradiction. By symmetry of E_{6}, we may assume that $u\left(\alpha_{1}\right) \in \Pi_{2}$. Then $u\left(\alpha_{6}\right) \geq u\left(\alpha_{1}\right)$ and $\tilde{\alpha} \rightarrow \tilde{\beta}$ implies $u\left(\alpha_{6}\right)=u\left(\alpha_{1}\right)$. Clearly one of $\alpha_{2}, \alpha_{3}, \alpha_{5}$ is mapped to 0 and the other two to simple roots. If $\alpha_{3} \rightarrow 0$ or $\alpha_{5} \rightarrow 0$ then $101 \in u\left(E_{6}\right) \backslash B C_{3}$, a contradiction. Hence $\alpha_{2} \rightarrow 0$. Since $\alpha_{1}+\alpha_{3}, \alpha_{3}+\alpha_{4}+\alpha_{5}, \alpha_{5}+\alpha_{6} \in E_{6}$, we obtain $101 \in u\left(E_{6}\right)$, while $101 \notin B C_{3}$, a contradiction.
b) Assume that $E_{7} \rightarrow A_{2}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=11$, we see that $\alpha_{i} \rightarrow 0$ for $i \neq 7$. As u is surjective, we have a contradiction.

Assume that $E_{7} \rightarrow B_{3}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=122$, we conclude that $\alpha_{3}, \alpha_{4}, \alpha_{5} \rightarrow 0$ and $\alpha_{7} \rightarrow \beta_{1}$. If $\alpha_{6} \rightarrow 0$ then $u\left(\left\{\alpha_{1}, \alpha_{2}\right\}\right)=\left\{\beta_{2}, \beta_{3}\right\}$. Since 1011111, 0101111 are in E_{7}, we have $101 \in u\left(E_{7}\right)$, while $101 \notin B_{3}$, a contradiction. Hence $u\left(\alpha_{6}\right)$ must be a simple root. As $\alpha_{6}+\alpha_{7} \in E_{7}$, we have $\alpha_{6} \rightarrow \beta_{2}$. There are two cases to consider: $\alpha_{1} \rightarrow \beta_{3}$, $\alpha_{2} \rightarrow 0$ and $\alpha_{1} \rightarrow 0, \alpha_{2} \rightarrow \beta_{3}$. In both cases we find that $121 \in u\left(E_{7}\right)$ while $121 \notin B_{3}$, a contradiction.

Assume that $E_{7} \rightarrow B C_{3}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}=222$, we see that $\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{7} \rightarrow 0$ and u induces a bijection $\left\{\alpha_{1}, \alpha_{2}, \alpha_{6}\right\} \rightarrow \Pi_{2}$. Since 1111000, 1011110, 0101110 are in E_{7}, we see that $101 \in u\left(E_{7}\right)$ while $101 \notin B C_{3}$, a contradiction.
c) For E_{8} each of the coefficients of $\tilde{\alpha}$ is >1 and the sum of any three of them is >6, and thus $E_{8} \nrightarrow A_{1}$ and $E_{8} \nrightarrow B C_{3}$.

The following lemma finishes the proof of the Main Theorem.

LEmMA 9. The following relations hold:
a) $A_{2 n-2} \nrightarrow C_{n}, n \geq 2$;
b) $A_{2 n-1} \nrightarrow B C_{n}, n \geq 1$;
c) $D_{n} \nrightarrow B C_{k}, n<2 k+1$;
d) $D_{n} \nrightarrow C_{k}, n<2 k$.

Proof. a) Assume that $A_{n} \xrightarrow{u} C_{k}$. We shall prove that $n \geq 2 k-1$ by induction on k. If $k=2$ this follows from the fact that A_{2} has 6 roots while C_{2} has 8 . There are exactly two indices i and $j, i<j$, such that $u\left(\alpha_{i}\right) \geq \beta_{1}$ and $u\left(\alpha_{j}\right) \geq \beta_{1}$. Furthermore $u\left(\alpha_{s}\right) \not \geq \beta_{1}$ for $s \neq i, j$. Then $u\left(\alpha_{i}+\cdots+\alpha_{j}\right)=\tilde{\beta}$, since $\tilde{\beta}$ is the only root of C_{k} which is $\geq 2 \beta_{1}$. Hence $\alpha_{s} \rightarrow 0$ for $s<i$ or $s>j$. Since $u\left(A_{n}^{+}\right)=C_{k}^{+}$, it follows that $u\left(A_{j-i-1}\right)=C_{k-1}$ where A_{j-i-1} resp. C_{k-1} has base $\left\{\alpha_{i+1}, \ldots, \alpha_{j-1}\right\}$ resp. $\Pi_{2} \backslash\left\{\beta_{1}\right\}$. By induction hypothesis $j-i-1 \geq 2 k-3$ and so $n \geq 2 k-1$.
b) If $A_{n} \rightarrow B C_{k}$ we shall prove that $n \geq 2 k$. This is obvious if $k=1$. By using the same argument as in a) we obtain $A_{j-i-1} \rightarrow B C_{k-1}$ and we can use the induction on k.
c) Assume that $D_{n} \rightarrow B C_{k}$ for some n and k with $4 \leq n<2 k+1$. We may assume that n is minimal. Let $u\left(\alpha_{i}\right) \geq \beta_{1}$ with i minimal. First assume that $i \in\{1, n-1, n\}$. There is a unique $j>i$ such that $u\left(\alpha_{j}\right) \geq \beta_{1}$ and it is clear that $j \in\{n-1, n\}$. If $i=n-1$ then $j=n$ and $u\left(\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}\right) \geq 2 \beta_{1}$. This implies that $u\left(\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}\right)=u(\tilde{\alpha})$ and so $\alpha_{s} \rightarrow 0$ for $s<n-1$. This forces $k=1$, a contradiction. Hence $i=1$ and by using the symmetry of D_{n}, we may assume that $j=n-1$. Since $\alpha=\alpha_{1}+\cdots+\alpha_{n-1}$ is a root of D_{n} and $u(\alpha) \geq 2 \beta_{1}$, we have $u(\alpha)=\tilde{\beta}=u(\tilde{\alpha})$. This implies that $\alpha_{s} \rightarrow 0$ for $s \neq 1, n-1$. Since $u\left(\alpha_{1}\right) \geq \beta_{1}, u\left(\alpha_{n-1}\right) \geq \beta_{1}$, and $u\left(\Pi_{1}\right) \supset \Pi_{2}$, we obtain $k=1, n<3$, a contradiction. Hence $1<i<n-1$ and $\alpha_{i} \rightarrow \beta_{1}$ while $u\left(\alpha_{s}\right) \not \geq \beta_{1}$ for $s \neq i$.

Since $\alpha=\alpha_{i-1}+2\left(\alpha_{i}+\cdots+\alpha_{n-2}\right)+\alpha_{n-1}+\alpha_{n}$ is a root of D_{n} and $u(\alpha) \geq 2 \beta_{1}$, we have $u(\alpha)=\tilde{\beta}=u(\tilde{\alpha})$. If $i>2$ then we obtain $\alpha_{s} \rightarrow 0$ for $s<i$. By restricting u to the subsystem D_{n-1} with base $\Pi_{1} \backslash\left\{\alpha_{1}\right\}$ we obtain $D_{n-1} \rightarrow B C_{k}$, contradicting the minimality of n. Hence we must have $i=2$.

Assume that $u\left(\alpha_{1}\right) \neq 0$. Since $u\left(\alpha_{1}+\alpha_{2}\right)=u\left(\alpha_{1}\right)+\beta_{1}$ is a root of $B C_{k}$, we have $u\left(\alpha_{1}\right) \geq \beta_{2}$. Let j be the minimal index such that $j>2$ and $u\left(\alpha_{j}\right) \neq 0$. Such j exists because $k \geq 2$. By using the symmetry of D_{n}, we may assume that $j \neq n$. Since $u\left(\alpha_{2}+\cdots+\alpha_{j}\right)$ is a root of $B C_{k}$, we have $u\left(\alpha_{j}\right) \geq \beta_{2}$. Since $\tilde{\alpha} \rightarrow \tilde{\beta}$, we must have $j=n-1$ and $u\left(\alpha_{n}\right) \nexists \beta_{2}$. Since $u\left(\alpha_{2}+\cdots+\alpha_{n-2}+\alpha_{n}\right)$ is also a root of $B C_{k}$, we conclude that $\alpha_{n} \rightarrow 0$. Now $u\left(\alpha_{1}\right) \geq \beta_{2}, u\left(\alpha_{n-1}\right) \geq \beta_{2}, \tilde{\alpha} \rightarrow \tilde{\beta}$ and $u\left(\Pi_{1}\right) \supset \Pi_{2}$ imply that $k=2, n=4, \alpha_{1} \rightarrow \beta_{2}$ and $\alpha_{n-1} \rightarrow \beta_{2}$. As $2 \beta_{2} \notin u\left(D_{4}\right)$, we have a contradiction. This shows that $\alpha_{1} \rightarrow 0$.

If $n=4$ then by symmetry of D_{4}, we also have $\alpha_{3} \rightarrow 0$ and $\alpha_{4} \rightarrow 0$, a contradiction. If $n=5$ then we may assume that $k=3$. As $u\left(\Pi_{1}\right) \supset \Pi_{2}$ and $\tilde{\alpha} \rightarrow \tilde{\beta}, u\left(\alpha_{3}\right) \neq 0$ and in fact $u\left(\alpha_{3}\right) \in \Pi_{2}$. As $\alpha_{2} \rightarrow \beta_{1}$ and $\alpha_{2}+\alpha_{3} \in D_{5}$, we infer that $\alpha_{3} \rightarrow \beta_{2}$. Therefore $\alpha_{4}, \alpha_{5} \rightarrow \beta_{3}$ since $\tilde{\alpha} \rightarrow \tilde{\beta}$. Then $022 \in B C_{3} \backslash u\left(D_{5}\right)$, a contradiction. If $n>5$ let D_{n-2} be the subsystem of D_{n} with base $\Pi_{1} \backslash\left\{\alpha_{1}, \alpha_{2}\right\}$ and $B C_{k-1}$ the subsystem of $B C_{k}$ with base $\Pi_{2} \backslash\left\{\beta_{1}\right\}$. If $\alpha \in D_{n-2}$ then $u(\alpha) \nsupseteq \beta_{1}$ and so $u(\alpha) \in B C_{k-1}$. Conversely, if $\beta \in B C_{k-1}$
and $\alpha \in D_{n}$ such that $\alpha \rightarrow \beta$ then we must have $\alpha \in D_{n-2}$. Hence the restriction of u gives $D_{n-2} \rightarrow B C_{k-1}$ which contradicts the minimality of n.
d) Assume that $D_{n} \rightarrow C_{k}$ for some n and k with $n<2 k$ and n minimal. We can use the same argument as in c) to show that $\alpha_{1} \rightarrow 0, \alpha_{2} \rightarrow \beta_{1}$, and to reduce the proof to the case $n=5$.

Since $u\left(\alpha_{3}\right) \neq 0$ and $\tilde{\alpha} \rightarrow \tilde{\beta}$, we have $u\left(\alpha_{3}\right) \in \Pi_{2}$. Since $\alpha_{2}+\alpha_{3} \in D_{5}$, we have $\alpha_{3} \rightarrow \beta_{2}$. One of the simple roots α_{4}, α_{5} is mapped to β_{3} and the other to 0 . Now $021 \notin u\left(D_{5}\right)$ while $021 \in C_{3}$, a contradiction.

Acknowledgement. We thank Professor R. Steinberg for pointing out an error in the original version of the paper and for supplying a new proof for Proposition 3, which does not use the classification of root systems.

REFERENCES

[B] A. Borel, Linear algebraic groups, Graduate Texts in Math., Second edition, New York, 1991.
[Bo] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-VI, Hermann, Paris, 1968.
[BS] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer, New York, 1981.
[OV] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer, New York, 1990.
[Se] M. Selbach, Klassifikationstheorie der halbeinfacher algebraischer Gruppen, Bonner Math. Schriften 83(1976).
[St] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.
[Ti] J. Tits, Classification of algebraic semisimple groups, Proc. Sympos. Pure Math. IX(1966), 32-62.
[Wa] G. Warner, Harmonic analysis on semisimple Lie groups, 1, Springer, New York, 1972.

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario
N2L 3G1

