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Abstract

We study a convolution semigroup satisfying Gaussian estimates on a group G of polynomial volume
growth. If Q is a subgroup satisfying a certain geometric condition, we obtain high order regularity
estimates for the semigroup in the direction of Q. Applications to heat kernels and convolution powers
are given.
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1. Introduction

The heat kernel and its regularity properties play an important role in harmonic
analysis on a Lie group G, and have been intensively studied (see [21, 17] and
references therein). Let us mention some relevant results in the case that G is a Lie
group of polynomial growth. Varopoulos showed (see [20,21,17]) that the heat kernel
K, corresponding to a right-invariant sublaplacian on G satisfies a global Gaussian
estimate for all times t > 0. Then Saloff-Coste [18] proved that derivatives of order
one of K, satisfy a similar estimate with an extra factor t~l/1. In case G is nilpotent
then m-th order derivatives of K, satisfy similar estimates with an extra factor t~m/2

(see for example [21, 19]), but an example of Alexopoulos [1] showed that this is not
true for solvable groups when m > 2. A precise characterization of the groups G for
which the m > 2 estimates are valid was given in [13]. It is worth noting that the
failure of the m > 2 estimates can only occur for large times t > 1.

Recently the author [7] proved precise estimates for multiple derivatives of K, for
large times t > 1 when the derivatives are taken in the direction of the nilradical, that is,
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the largest nilpotent, analytic normal subgroup of G. This result is of interest because
it reveals a further connection between the algebraic structure of G and regularity
properties of Kt. Another proof of this result was given in a subsequent paper of ter
Elst [10]. Note also that some closely related estimates (for derivatives of order at
most 2) were used in the proof of Alexopoulos of the boundedness of first order Riesz
transforms on G (see [1, Theorem 7.7]).

The proofs of [7, 10] need the rather intricate structure theory for Lie groups of
polynomial growth, and also use in an essential way the structure of the subelliptic
differential operator corresponding to K,. This paper is partly motivated by the
question of extending results of [7, 10] to other classes of groups G and convolution
kernels K,, for example, convolution powers of probability densities on a discrete
group studied in [15,2]. Our main conclusion is that higher order regularity estimates
for a suitable convolution semigroup, in the direction of a subgroup Q of G, follow
from a simple geometric condition on Q in G (see (4) below).

Thus we can extend estimates of [7] to a much wider context. We will describe
specific examples in which our results yield new regularity estimates.

The regularity estimates we obtain are closely related to the question of boundedness
of Riesz transform operators. For Lie groups, we refer the reader to [8, 7] for
recent results for certain Riesz transforms connected with this paper, while first order
transforms were considered in [1, 3]. For discrete groups of polynomial growth,
the boundedness of first order Riesz transforms was obtained in [2]; we will show
elsewhere that our estimates lead to a simpler proof, which also extends to certain
higher order transforms.

Part of our argument is no doubt related to a convolution trick which has been used
in estimating heat kernel derivatives on Lie groups: see for example [10, Lemma 3.5].
Our argument, however, requires much less initial regularity for the convolution
semigroup in question, and (because we use difference operators instead of derivatives)
applies to a wide class of locally compact groups. Even in the well-studied case
where G is a nilpotent Lie group, our method is of interest, since it shows that one
can derive regularity without using scaling techniques.

Our general setting is the following. Let G be a unimodular, second countable,
locally compact group, and fix a Haar measure dg. Suppose G is compactly gen-
erated, so that there is a compact neighbourhood U of the identity e of G such that
G = U^Li U"i where Un = [ux • • • un : M, e U}. We can always assume that U is
symmetric, that is, U = U~x. Let G have polynomial growth of order D > 1:

(1) c~xnD < dg(Un) < cnD

for some c > 0 and all n e N (the condition D > 1 excludes compact groups). It is
well known that condition (1) does not depend on the choice of U; for if V is another
compact generating neighbourhood, there exists k e N with If c Vkn and V c Ukn
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for all n.
The modulus p : G -> N defined (as in [15] or [3]) by

pig) = inf{n e N : g e Un)

satisfies

Pig) > 1, Pigh) < Pig) + pih), pig) = pig'1)

for all g,h e G. Observe that U" = {g e G : pig) < n}, and that p is bounded over
any compact subset of G.

Let L = LG denote the left regular representation of G, so that iLih)(p)ig) =
<pih~lg) for a function <p : G -> C and g,h e G. Then LG acts in the function spaces
Lp = LpiG;dg), 1 < p < oo. The convolution of two functions <p, \jr is defined by
if * f)ig) = fGdh<pih) \ltih~lg), g e G. In general, c, c\ 6, V and so on, denote
positive constants whose value we allow to change from line to line when convenient.

Throughout, let & denote one of the sets [1, oo) or N = {1, 2, 3 , . . . } (the set &
will be fixed in any particular discussion). Suppose we are given a family [K,},€&
of functions K, : G -> C, with K, e L\ D Loo, which is a convolution semigroup
in the sense that K,l+h = Kti * Kt2 for all tut2 e &. In particular, if & = N then
Kn = K\ * Kx * • • • * Kx is just the n-th convolution power of ̂ i .

For b,t >0, define the Gaussian GbJ : G - • R by Gfc,,(^) = f-D/2e-fcp(«)2/r. W e

assume that K, satisfies an estimate

(2) \K,\<cGb,,

for all t e & (for real-valued functions Ft, F2 over G we write Fx < F2 to abbreviate
F\ig) < F2ig) for all g e G). We also require a 'Holder' estimate, namely, for some
v e (0, 1] one has

(3) |(/ - Lih))K,\ < cipih)r1/2)vGb,t

for all t e & and h e G such that pih) < t1/2, where / denotes the identity operator
on functions.

Finally, let there be given a subgroup Q of G and a e (0, 1] such that

(4) Piglg-*) < cpil) + cpUTpig)x-a

for all g e G and / e Q. Under these assumptions our basic theorem is the following.
The formulation of the theorem is partly inspired by [10, Lemma 3.5].

THEOREM 1.1. Let R be a densely defined operator in L2 which is right-invariant
ithat is, R commutes with right translations). Suppose there are a > 0, b > 0, S > 0,
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such that \RK,\ < at~sGb,,for all t € &. Then there are c > 0, b > 0, which
depend on b, S and on the constants in (l)-<4), such that

|(/ - L(l))RK,\ < caipiDr^r'Gv,,

for all t € £? and I € Q with p(l) < ti/2. (In particular, c and b are independent
ofa.)

Note that the Holder exponent v from (3) does not occur in the conclusion of
Theorem 1.1; roughly speaking, the Holder estimate self-improves into a Lipschitz
estimate in the direction of Q.

The operators L{h), h e G, are obviously right-invariant. Thus by beginning with
the estimates (2), (3), and applying Theorem 1.1 repeatedly, we arrive at the following
result for higher order oscillations of K,.

THEOREM 1.2. For any k € No = {0, 1, 2 , . . . } , one has estimates

• ( / - L{lk))K,\

<c(p(h)t-'/2)---(p(lk)r
1/2)Gb,,,

|(7 - L(/,))(7 - L(l2)) • • • (7 - 7.(/*))(7 - L{h))K,\

< c(P(h)ri/2) • • • (p(h)rl/2)(p(h)rl/2yGb,,

for all t 6 &, lu ... , lk e Q and h e G such that p(lj) < ti/2 for all j and
pih) < tl/2.

The next theorem shows that the estimate of Theorem 1.1 can sometimes be im-
proved in specific directions within the subgroup Q.

THEOREM 1.3. Letw > 1, IQ e Q and suppose that p(l%) < con
1/u> for some c0 > 0

and all n e N. Assume the hypotheses of Theorem 1.1. Then there exist c, b' > 0
such that |(7 - L(lo))RK,\ < cat^^t^GyJor all t e ST.

Since any h e G satisfies p(h") < np(h), n e N, we can always take w = 1 in
Theorem 1.3. When w > 1, the theorem gives a stronger conclusion. (For a trivial
example, if/o falls within some compact subgroup of G, then SUP(P(/Q) : n e N} < oo
and we could choose w arbitrarily large).

We will apply the above results to two main classes of groups G: Lie groups of
polynomial growth, and discrete, finitely generated groups of polynomial growth. Let
us briefly discuss these cases: further details and generalizations will be given in
Section 4.
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1.1. Lie groups of polynomial growth Let G be a connected Lie group of poly-
nomial growth of order D, with Lie algebra g and exponential map exp : g —> G. To
each element x e g we associate a right-invariant vector field

X = dLG(x) = -lirar1 (I - L(expta)).

In the Lie setting, it is natural to try to rewrite our results in terms of right-invariant
derivatives of K,. Let 3f,\G) denote the algebra of all right-invariant differential
operators on G (it is the complex linear span of the identity / and all monomials
Xi... Xk, where k > 1 and X, = dLG(xt) for some x, € g). We introduce an
assumption of smoothness for small times in Sf: suppose that for any P e 3${G)
there exist c, b > 0 (depending on P) with

(5) \PK,\< cGbJ

for all t e & with 1 < t < 2. Then we have

THEOREM 1.4. Suppose Q is a Lie subgroup of G, with Lie algebra q c g, such
that (4) holds. Suppose y e q and IU > 1, q> > 0 with p(expsv) < co\s\l/w for all
s e IR with \s\ > 1, and set Y = dLG(y). Let R e 3Z(G), adopt the hypotheses of
Theorem 1.1, and assume (5).

Then there are c,b' > 0 such that \YRKt\ < carw/2rsGiy_tfort e 8?. Therefore,
ifyu . . . , v* e q and w\,..., wk > 1 satisfy p(expsyj) < CO\S\1/WJ, \S\ > 1, then with
Yi = dLG(yi), |y, • • • YkK,\ < ct-{w^-+Wt)l2GbJorall t e &.

Note that any x e g satisfies p(exp.s;c) = 0 ( | s | ) f o r | s | > l . Thus one can always
choose w = 1 in Theorem 1.4. If w > 1 then the theorem gives a sharper estimate.

The main example of a Lie subgroup satisfying (4) is the nilradical Q, that is, the
largest nilpotent normal analytic subgroup of G. We will verify (4) for this case in
Section 3 below. In particular, note that if G is nilpotent then G = Q.

The most important examples of convolution semigroups satisfying our assumptions
are (i) (£,},>o is the heat kernel of a right-invariant sublaplacian H on G (or of a more
general second-order, subelliptic operator), and (ii) {^n}neN are the n-th convolution
powers of a smooth probability density £i on G satisfying certain conditions. We
will explain these examples fully in Section 4.

Note that kernel estimates on Lie groups are often expressed in terms of a subelliptic
modulus pA associated with a generating basis Au ... , Ad, of (say) right-invariant
vector fields (see [17, 21]). It is well known (see, for example, [21, Section III.4])
that p and pA are equivalent at infinity: there is c > 0 with c~'p < 1 + pA < cp. The
local behaviour of pA is irrelevant to our results (which deal only with large times),
and we prefer always to work with p.

It is interesting to observe that, because 1 + pA < cp, condition (3) is weaker than
the analogous condition with pA replacing p.
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1.2. Discrete groups of polynomial growth Let G be a finitely generated, discrete
group of polynomial growth of order D. By a theorem of Gromov [14], G has a
finitely generated, nilpotent, normal subgroup Q such that G/ Q is finite. We will
verify in Section 3 that Q satisfies assumption (4). Observe that if G is nilpotent then
we can take G = Q-

Let {Kn}neN be the w-th convolution powers of a probability density Ki on G
satisfying certain conditions (namely, K\ is symmetric, and the support of K\ is finite
and generates G). Then results of Hebisch and Saloff-Coste [15] yield (2) and (3)
with v = 1, so that our Theorems 1.1-1.3 apply. We explain this example further in
Section 4.

It is worth noting that though we only consider second-order Gaussian bounds, our
results readily extend to a setting of m-th order Gaussian estimates for general m > 0.
Here the m-th order Gaussian is given by Gb

m?(g) = rD/m exp(-i(p(^)m/f)1/(m-1)).
To prove this generalization, the main observation is that analogues of (6) and (7)
below are valid for m-th order Gaussians. We omit further details.

2. Proof of the main theorems

In this section we prove Theorems 1.1, 1.3 and 1.4. First, we use (4) to prove a
weak version of Theorem 1.1 (Proposition 2.2 below). Then we obtain Theorem 1.1
by iterating the weak result, applying at each step an interpolation lemma for Holder
estimates. Theorems 1.3 and 1.4 are proved by a similar iteration and interpolation
process.

Without loss of generality, in the proofs we always assume that the constant a in
the hypotheses of these theorems equals 1 (otherwise, simply replace R by a~'#).

To avoid excessive bracketing, let us abbreviate (L(h)<p)(g) to L(h)<p(g) when
there is no risk of confusion.

We need some well-known estimates for Gaussians (see for example [9, Section 2]).
For any b > 0, there is c > 0 such that

(6) f dg GbAg) < c, f dg Gb,,{g) < ce-bx1'2

for all f > 1 and A. > 0, and moreover there is b' > 0 such that

(7) GbiS * Gbit < cGf,s+i

for all s > 1 and t > 1. The following elementary remark will also be useful.

LEMMA 2.1. Suppose a > 0, b > 0, t > 1, and <p : G -» C is a function with
\<fi\ 5 aGb.r Then for any K > 0 and any 8 e [0, 1), there are d, b' > 0 which
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depend only on b, K, 8, such that \L(h)<p(g)\ < daGVt(g)for all g,h e G such that
p(h) < Ktx'2 + 8p(g).

PROOF. It follows from \<p(h~xg)\ < ar
D/ie-

bfiih~>g)2'' by noting that p(h~xg) >
Pig) - P(h) > (1 - 8)p(g) - Kt"\ D

PROPOSITION 2.2. Suppose R a densely defined, right-invariant operator in L2, and
that for some b > 0, 8 > 0, \RK,\ < r* G6,( for all t € &. Then there are c > 0,
V > 0, with

(8) |(7 - L(l))RKt\ < c(p(l)rl/2)av rsG,y,t

for allt e 5" and I e Q with p(l) < tl/2.

PROOF. Let g e G, I e Q and t e f? with p(l) < tl/2 (constants below will be
independent of g, I, t). Since R is right-invariant then RK2t = RK, * K, so that

(9) (7 - L(l))RK2t(g) = j dh RKt(h)[Kt(h-*g) - Kt{h~H-xg)]

= I dhRK,(h)(I -Uh-Hh))K,(h-xg).

Split the integral in (9) into two regions p{h) < 2~xp(g), p(h) > 2~lp(g). In case
p(h) < 2~xp(g) then p{h~xg) > p(g) — p(h) > p{h), and using (4) we obtain

p(h~xlh) < c(p(l) + p{l)ap(h)l-a) < c'p(l) + 2~xp{h) < c'tx'2 + 2-ip(h-xg).

Therefore, from (2), (3), and Lemma 2.1, when p(h) < 2~1p(g) we get an estimate

|(7 - L(h-xlh))K,(h-lg)\

< c(p(h-xlh)rx'2Y r^e-"^'^2"

< c' {(p(l)rx'2)v + (P(l)rx'2)av (p(ft)r"f-"

Therefore,

dh \RK,(h)\ |(7 - L{h-xlh))Kt{h-xg)\
<ip(g)

< c (p(i)rx/2)v rs J dh Gb,t{h)Gb,t{h-x
g)

+ c (p(l)rx'2)av r> J dh Gb
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where in the last step we absorbed (p(h)t~1/2)il~a)v into the Gaussian and applied (7).
Next, it follows from (3) and (2) that ||(7 - Lix^K,^ < c(p(x)rl/2yrD/2 for

all x € G. Therefore (4) gives an estimate, when p(h) > 2~lp(g),

- L{h-Hh))K,{h-xg)\

where in the last step we applied (6). From the above estimates and (9), the desired
estimate (8) follows for all t e 2S.

Finally, consider t e !7 such that t <£ 2&. When £f — [1, oo) then Lemma 2.1
yields (8) when t e [1, 2). When Sf = N then Lemma 2.1 yields (8) for t = 1,
while for t of form t = 2n + 1, n e N, then (8) follows by writing (/ - L(l))RK, =
((/ — L{l))RKin) * K\ and applying (7). Thus (after adjusting constants) we obtain
(8) for all f e ^ , and the proposition is proved. •

The following interpolation lemma for Holder estimates will allow us to improve
the estimate of Proposition 2.2. To prove the lemma we rely on a general identity for
an operator A,

do) i - A = J22~j~lv - All¥ + 2~k~'v - ^2t+1)
j=0

which is valid for all k e No (for the use of this identity in interpolation theory see [6,
Section 3.4.2]).

LEMMA 2.3. Let G\ be a group, ty : G\ —> G a homomorphism and px : G\ ->
[0, oo) a submultiplicative function: p\{s\s2) < P\(sy) + p\(s2) for su s2 e G\.
Suppose w>\ and that p(\jr(.s)) < co(l +P\(s)1/w)forall s e G\. Let t > 1, a > 0,
0 < y < fi, y < 1, and suppose <p : G —*• C is a function with

\<P\ < aGb,,, | ( / - LfcK*)))V| < « {Pds)rw/2Y Gb,,

for all s e G\ with pi(s) < tw/2. Then there exist d, b' > 0, which depend on w, c0,
y, P, b but not on t or a, such that

|(7 - L(f(s)))<p\ < c'a (Pl(s)t-w/2)y Gv,

for alls € G, with p{(s) < tw/2.
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PROOF. Without loss of generality we may suppose that a = 1. Let s e G\ with
0 < px{s) < tw/2 (the case Pi(s) = 0 is similar but easier and is left to the reader).
Choose k 6 No with 2* < (piCs)*-"1"'2)"1 < 2*+1; constants in this proof will be
independent of t, s and k. Applying (10) with A = L(ip-(s)) we have

))]2<P + 2-k-l[l - L(f(s2k+l))]<p.

To estimate the last term, first observe that

p(H*2tl) ± <*(! + (2t+1P.W)I/W) < co(l

Therefore, the hypothesis and Lemma 2.1 yield an estimate

2-*-'|[/ - L(i,(s2M))]<p\ < cl-kGb,t < c{2-kYGb,t <

where we used y < 1. Fory e {0, 1 , . . . , k], one has

so applying the hypothesis we find that

j=0 j=O

J=0

Since y < 1 and ft — y > 0 we have
k k

j=0 ; =0

where c depends only on ft and y. Lemma 2.3 follows by collecting these estimates.

•
COROLLARY 2.4. Suppose Gx is a subgroup of G, t > 1, a > 0, 0 < y < £, y < 1,

and if : G-+ C satisfies \<p\ < aGb,t and | ( / - L(l))2<p\ < a(p(l)rx/2yGb,,for all
I € Gi with p{l) < t1/2. Then there exist d, V > 0, which only depend on y, fi, b,
such that |(7 - L(l))tp\ < da{p{l)rll2)Y Gv,tfor all I 6 G, with p(l) < t1'2.

PROOF. Apply Lemma 2.3 with \jf : G\ -*• G the inclusion map, p\(s) = p(s) for

s e G\, and w = 1. •
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PROOF OF THEOREM 1.1. Let R be as in the statement of the theorem, and suppose
av < 1 (if a v = 1 then by Proposition 2.2 there is nothing to prove). Choose N eH
and / t i , . . . , ixN satisfying a v = (i\ < /u.2 < • • • < I^N = 1 and fii+i — /z, < av for
i € { 1 , 2 , . . . , N — 1}. We show that for each i there is an estimate

(11) |(/ - L(l))RK,\ < c (p(l)rl'2Y' t-'Gb,t

for all r e & and / e Q with p(l) < ti/2. The case i = 1 is just Proposition 2.2.
Suppose,/ 6 { 1 , . . . , N—1} and (11) holds when / =j. Then applying Proposition 2.2
for the right-invariant operators (/ — L(l))R yields an estimate

|(7 - L(J,))(7 - L(l))RK,\ < c(p(/,)r1/2)°v (piDr^Y' rsGb,t

for all lul e Q with p(lx) < tl/2, p(l) < tx/1. Taking /, = I'm this estimate, we
apply Corollary 2.4 with <p = RK, and with y3 = /z; + a v , y = ^ + 1 < )3. Thus we
obtain (11) with i = j + 1, and induction yields (11) for all 1. With i = N we get
Theorem 1.1. •

PROOF OF THEOREM 1.3. The proof is a variation of the iteration-reduction argu-
ment just given. Let R, w and /o e Q be as in the statement of the theorem.

Choose N € H, N > w and fi\,... , /XAT so that l/w = fi\ < • • • < fiN = 1 and

fii+i — fj-i < l/w for 1 € { 1 , . . . , N — 1}. We show that for each 1 e { 1 , . . . , N] one
has an estimate

(12) |(7 - L(lZ))RKt\ < c(\n\rw/2Y' rsG( b,t

for all t 6 S? and n e 1 with |«| < tw/2. For i = 1, the estimate is valid by
Theorem 1.1 and because p(l%) < c\n\1/w for \n\ > 1.

Then argue inductively as in the proof of Theorem 1.1: if (12) is valid for 1,
apply Theorem 1.1 to get a bound for (7 — L(IQ))2RK,. Then use Lemma 2.3 with
P = fj,t: + l/w, y = /j,i+l, to obtain (12) with /i,,+i replacing iit. Here, to apply
Lemma 2.3 we take G\ = 1 and the homomorphism rjr : I -> G,i/(n) = /£, and set
P\(ri) = |n| forn 6 1.

With i = Â  and n - 1 in (12), we get Theorem 1.3. •

PROOF OF THEOREM 1.4. This is slightly more delicate than the previous proofs,
because we now also interpolate with the local assumption (5).

First we extend (5) to large times. Let P € &f.(G) be any right-invariant differential
operator. If t e & and t > 2, then / - 1 e !? and we can write PKt = PKX* K,_x.
Then from (5) and (2), by applying (7) we obtain an estimate of form

(13) \PK,\< cGb,,
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for all t e &.
Let R, S, y, w be as in the hypothesis of Theorem 1.4. Let us fix 0 < e < 1

sufficiently small so that

x := 2~1(1 - e) - e(w/2 + 8) > 0,

and fix p > 0 with p < e and (w/2)p < x. Choose N € N and //,0. • • • . MJV such
that 0 = fj-o < /Lti < • • • < /J,N = 1 and /x,+1 — /LA, < p. We show that for each
i e (0 ,1 , . . . , N] there is an estimate

(14) |(/ - L(cxpsy))RK,\ < c(\s\rw/2r'rsGb,t

for all t e & and s eR with \s\ < tw/1. Note that Theorem 1.4 follows from the case
j = N, because YRK,(g) = - l im^o s~l(I - L(expsy))RK,(g).

Notice that an estimate

(15) Pifixpsy) <c(l + \s\l/w) <c'tl/2

is vah'd whenever \s\ < tw/2 and t > 1. In case i = 0, /x, = 0, then (14) follows from
\RK,\ < rsGbJ by applying Lemma 2.1 and (15).

Assume inductively (14) for some i e [0, 1 , . . . , N — 1}. Then it follows from
Theorem 1.1 and (15) that

(16) |(7 - L(cxpsy))2RK,\ < e(l + \s\i/w) r1'2 (|s|r«"2)Mi rsGb,,

when \s\ < tw/2. We need to improve this estimate for small \s\. By writing
/ — L(expsy) = — f* du L(exp uy) Y, and applying (13) with P = Y2R, one gets a
bound

||(7 -L(exp^y))2/?/i:,||oo < \s\2\\Y2RK,\\0O < c\s\2rD'2

whenever / € 2? and \s\ < 1. Interpolating this with (16), we obtain for \s\ < 1 and
t e & that

(17) \(I-L(cxpsy))2RK,\

< |(7 - L(cxpsy))2RKl
i-£

where the last steps follow from the choice of e and p. Observe that (17) also holds
for 1 < |s| < tw/2, by (16) and because p < 2r/w < l/w.

Apply Lemma 2.3 with )3 = /x, + p, y = (ii+i, for the homomorphism ijr : K -> G
such that ^r(j) = expsy, s € K, and with PI(J) = \s\. Then from (17) we get (14)
with fii+\ replacing nt. This ends the proof of (14) and of the theorem. •
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3. The geometric condition

Given a 6 (0, 1] and a subgroup Q of G, let us say that condition (G, Q, a) holds
if an estimate (4) holds. In this section we study this condition and, in particular, we
identify important examples of G and Q for which it holds.

We begin with a few general remarks.

(a) An elementary estimate shows that condition (G, Q, a) implies condition
(G, Q, a') whenever 0 < a' < a < 1.
(b) Let A" be a compact normal subgroup of G, let G' = G/K, and suppose that

condition (G\ G', or) holds. We claim that condition (G, G, a) holds.
Note that we may choose the compact generating set {/so that K c U.lin : G -> G'
is the canonical homomorphism, then U' — n(U) is a compact generating set for G',
such that 7t(U") = (£/')" and n-l((U')n) c AT[/" c (/"+1 for n € N. If p, p'
denote the moduli on G, G' respectively associated with U and £/', we have (see [21,
Lemma IV.5.5]) c"1 p'{ng) < p(g) < cp'(ng) for all g e G. Then the claim follows
easily.
(c) If condition (G, (2> °0 holds, and /f is a compact normal subgroup of G,

then KQ = £)£ is a subgroup of G, and (G, KQ, a) holds. Indeed, setting
Co = sup{p(&) : £ 6 £•} < oo, it suffices to observe that p(q) < pikq) + c0

and p(gkqg-1) < pigkg'1) + p(gqg~x) <<*> + p{gqg~x) for all g e G, k e AT and

In particular, note that condition (G, K, I) holds for any compact normal subgroup
of G. This is not true for an arbitrary compact subgroup of G (see Example 3.4
below).

The next lemma is basic for the development of this section.

LEMMA 3.1. Let G be a simply connected, nilpotent Lie group with Lie algebra Q
ofnilpotent step r. Then condition (G, G, r"1) holds.

PROOF. Let fli 2 02 2 • • • be the lower central series of g, so jji = g and
0j+i = [0. 0y ] for al l j . Then g; = {0} when j > r + 1. Choose linear subspaces Vj
of 0 with Qj = Vj © Qj+i, 1 < j < r, and let fe],... , bd be a vector space basis for g
such that bj e VwU) for some w(i) € { 1 , . . . , r}. If x = £ . £,-£,• e 0 set

Note the inequalities ||x + y|| < C||JC|| + c||v|| and \\Xx\\ < (1 + |A.|)||x|| for^;, y 6 0
and A € K.
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Since G is simply connected then exp : g -> G is a diffeomorphism, and there is
c> 0 with c-V(£) < || exp-'(«)ll + 1 < cp(g) for all j € G (see [21, Sections HI.4
and IV.5]). If g = expx, / = expy, then glg~* = exp(eadxy), and we see that to
prove the lemma it suffices to show that

(18) WeP'yW < c ( l + ||y||

for all x, y e g . Observe that

lie"1*!
k=\

r-\

Write x = J2 Hibi, y = Hrlj h • Because [QP, gq] c Qp+q for all p, q, we can expand
(adx)*y as a finite linear combination, with constant coefficients, of terms of the form
(£,-, . . . i-itr)j)bs, where io(i"i) + • • • + u>(i*) + iw(/ ) < u;(i) < r. Fix such a term and
seta = io(ij) H h w(ii) + iuO") 6 { 1 , . . . , r}. Then

l-(w<J)/°)\\y\\w(J)/a\\y\\

where the last line follows by an elementary inequality because w(j)/cr e [1/r, 1].
By collecting these estimates we obtain (18) and the lemma. D

COROLLARY 3.2. Condition (G, G, r~l) holds whenever G is a connected nilpotent
Lie group with Lie algebra of nilpotent step r.

PROOF. There exists a compact normal subgroup K of G such that the group
G' = G/K is simply connected (see [21, Section IV. 1]). Since G' is nilpotent of
step r' with r' < r, the corollary follows from Lemma 3.1 together with Remarks (a)
and (b) above. •

In connection with the above results, let us recall that any connected nilpotent Lie
group has polynomial growth (see for example [21, Chapter IV]).

REMARK. For G a connected Lie group of polynomial growth, one has the following
precise criterion. Condition (G, G, a) holds for some a e (0, 1] if and only if G is the
local direct product of a compact Lie group and a nilpotent Lie group, in other words,
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G = K • Q where K, Q are closed, mutually commuting, analytic normal subgroups
of G with K compact, Q nilpotent and K n Q discrete.

Since G/K = Q/(KDQ)is nilpotent, the 'if direction follows from Corollary 3.2
and Remark (b). To prove the converse we could use structure theory, but one can
alternatively argue as follows. If (G, G, a) holds and {K,}t>0 is the heat kernel
for a right-invariant sublaplacian on G, then Theorem 1.4 would imply an estimate
||A"1X2A:,||0o < ct~xt~D'2, t > 1, for any given right-invariant vector fields Xu X2

on G. By results of [13] (see also [7]) this can only occur if G is a local direct product
as above.

To obtain a result for G an arbitrary connected Lie group of polynomial growth,
we need some structure theory (for detailed descriptions of the structure theory see
[1, 3, 8, 7] and references therein). Denote by g the Lie algebra of G. One has
G = MS where 5 is the radical (the largest solvable normal analytic subgroup of G)
and M is any Levi subgroup of G: M is necessarily compact. If Q denotes the
nilradical (the largest nilpotent normal analytic subgroup) of G, then g c 5 .

To the solvable Lie group S one can associate its nilshadow SN which is a nilpotent
Lie group. We can identify S = SN as manifolds, such that the corresponding Lie
algebras s and S\ are identified as vector spaces. The group structures of S and SN

are related by

(19) . slS2 = (T(s?")si) *N s2, s-1

for all sus2 e S (see [8, 7]). Here *N denotes the group product of SN, s"1" is the
S/y-inverse of s, and T is a certain homomorphism from SN to the group of smooth
automorphisms of SN, such that

(20) T(T(Sl)s2) = T(s2), T(q)sl = 5,

for all sus2 e S and q e Q. Let p, ps, PN denote moduli associated with compact
generating neighbourhoods for the respective groups G, 5, SN. Then

(21) p{ms) < ci/o(5) < c2ps(s) < c3pN(s) < cAp(ms)

for all m e M and s e S. The automorphisms T(s) are uniformly bounded, in the
sense that there is c > 0 with p(T(si)s2) < cp(s2) for all su s2 e S.

PROPOSITION 3.3. Let G be a connected Lie group of polynomial growth, with
radical S and nilradical Q. Then condition (G, Q, r~') is satisfied, where r is the
nilpotent step of the Lie algebra SN of the nilshadow SN-

PROOF. A straightforward calculation using (19) and (20) shows that

' = T(s)(s *N q *N s~u)
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for all s € S and q e Q. Let a = r"1. Applying the uniform boundedness of the
T(s), Corollary 3.2, and the equivalences (21), we obtain

pisqs'1) < cp(s *N q *N s~x») < c' (p(q) + p(q)ap(s)l-a)

for all s e S and q e Q. Therefore condition (5, Q, a) holds.
Finally, for any g e G we write g = ms, m e M, s e S, and using compactness

of M get p(gqg~l) < 2p(m) + p(sqs~*) < c + p(sqs~*). Then condition (G, Q, a)
follows from (5, Q, a) and the bound p(s) < cp(ms). •

REMARK. The above proposition can be slightly improved as follows. It is shown
in [7] that G has a (possibly trivial) compact normal subgroup K, whose Lie algebra
is the largest semisimple ideal of the Lie algebra of G. By Remark (c) above, we
conclude that condition (G, Q', a) holds where Q = K Q.

EXAMPLE 3.4. Let us verify directly that (G, G, a) does not hold for the group G
of Euclidean motions of the plane (this fact is a special case of the Remark after
Corollary 3.2).

We identify G = T x R2 as a manifold, where T = {z e C : \z\ = 1}, and the
group multiplication is given by

(ei\xuyi)(e
i'\x2,y2)

= (««'>+«, (cos h)xx + (sin r2)y, +x2, -(sin h)xx + (cos f2)>>i + y2)

for tj,Xj,yj € R. Then G is a three-dimensional solvable Lie group of polynomial
growth of order D = 2. It is a semidirect product of the compact subgroup T] =
{(z, 0, 0) : z e 1} with the normal subgroup R] = {(1, x, y) : x, y € K}. If p is a
modulus (associated with a compact generating neighbourhood of G), then

c-'U + |x| + |y|) < p{{z,x, y)) < c(l + |x| + |y|)

for all g = (z,x,y) e G. A calculation yields ( l ,x ,0 ) ( - l ,0 ,0 ) ( l ,x , 0)"1 =
( - l , - 2x ,0 ) , sothatp(( l ,x ,0)(- l ,0 ,0)( l ,x ,0)- 1 ) > c(l + |x|) for all x e Dl.
Thus (G, Ti, a) fails, and hence (G, G, a) fails, for any a € (0, 1]. On the other
hand, (G, R], a) holds (with a = 1) because R] is the nilradical of G.

We have the following version of Theorem 1.4. LetSjv = SN.I 5 sN-2 2 • • • denote
the lower central series of sN.

COROLLARY 3.5. Let Gbea Lie group of polynomial growth, Q the nilradical of G,
andq the Lie algebra of Q. Let R e 3?\G), adopt the hypotheses of Theorem 1.1, and
assume (5). Ify e q, y € SN-,W, end Y = dLciy), then there are c,b'>0 such that
| YRK,\ < carwl2rsG»jfor all t e &. Therefore ifyu... ,yk eq with y, e 5N-Wi

fori = l it, then \Yx • • • YkK,\ < cr{u"+-+Wt)/2Gb,tforall t e &.
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PROOF. Let y € q n sN;w. Since SN is nilpotent and y e sN-w one has an estimate
pN(expNsy) < c(l + Isl17"") for all s e K (see [21, Section IV.5]), where expw is
the exponential map of SN. But exp(x) = expN(x) for all x e q by, for example, [7,
Section 10]. Then from (21), p(expsy) < d{\ + \s\1/w) for all s e R. The corollary
now follows from Theorem 1.4 and Proposition 3.3. •

Next we consider discrete groups. Note that a theorem of Bass [4] states that any
finitely generated, discrete nilpotent group has polynomial growth of some order D.

LEMMA 3.6. If G is a finitely generated, discrete nilpotent group then condition
(G, G, a) holds for some a 6 (0, 1].

PROOF. Let T ( G ) be the torsion subgroup of G, consisting of all elements of G of
finite order. Then r (G) is a finite normal subgroup of G and the quotient G' = G/T(G)

is finitely generated, discrete, nilpotent and torsion-free (see [5, Chapter 0]).
Since G' is torsion-free then G' is isomorphic to, hence can be identified with, a

discrete, cocompact lattice subgroup of a simply connected nilpotent Lie group TV
(see [16]). Let p', pN be moduli associated with compact generating neighborhoods
for the respective groups G' and N. One has (as in [2, Section 1]) an inequality

c^Psig') < P'(g') < cpN(g)

for all g' 6 G'. Thus it follows from Lemma 3.1 that (G\ G', r~l) holds, with r the
nilpotent step of the Lie algebra of N. By Remark (b) at the start of this section,
condition (G, G, r'1) holds. •

Recall that a theorem of Gromov [14] implies that any finitely generated discrete
group of polynomial growth has a finitely generated, nilpotent normal subgroup of
finite index.

COROLLARY 3.7. Let G be a finitely generated, discrete group of polynomial growth
and Q a finitely generated, nilpotent subgroup such that G/ Q is finite. Then condition
(G, Q, a) holds for some a € (0, 1].

PROOF. Choose elements gu ... , gd e G such that G = gi Q U • • • U gd Q. If p,
PQ are moduli for G and Q respectively, it is straightforward to see that

p(giCl) < cip(q) < c2pQ(q) < CiPigtq)

f o r a l l q 6 Q a n d i e ( l d). Then since p(g*qq\q~xgl^) < c + p{qq\q~x) for
all q, q\ e Q, the corollary follows by means of condition (Q, Q, a). •
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EXAMPLE 3.8. Let G be the group of Example 3.4 and consider the discrete sub-
group Go = {(±1, nu n2) : nu n2 e 1} of G. If p, p0 are moduli for G and Go

respectively, then c"1 p(y) < Po(y) < cp{y) for all y e Go. Therefore, the calcula-
tion of Example 3.4 shows that condition (Go, Go, a) fails. But it is easy to see that
(Go, Qo, 1) holds, where Qo = {(1, nu n2) : nu n2 € 1} is an abelian subgroup of
index 2 in Go-

4. Applications

This section describes the main examples of convolution semigroups to which our
results apply.

In examples (i) to (iv), G will denote a connected Lie group of polynomial growth
with Lie algebra g, and Q denotes the nilradical of G, with Lie algebra q.
(i) On G consider a right-invariant sublaplacian H = — ^d

i=lA
2, where At =

dLc(<ii) and a\,..., ad> e g are a list of elements which generate the Lie algebra g.
The theory of these operators is well-developed: see [17, 21, 1, 3, 13] and references
therein. In particular H generates a semigroup 5, = e~'H, t > 0, in Lp (1 < p < oo),
and 5, acts via a smooth convolution kernel {K(}i>o: St<p = K, * <p for cp e Lp.

Given any right-invariant vector field X = dLG(x) one has estimates

(22) \K,\ < cGb,,, \XKt\< cr1/2Gbtt

for all t > 1. Note that for X e {Au ... , Ad>} the estimate for \XK,\ was proved in
[18], while for general X it is contained in results of [1, 3]. It is easy to obtain (3)
with v = 1 as a consequence of (22). Finally, the local estimate (5) is well-known
(see [21, Chapter V] or [11]).

Thus our results in Theorems 1.1-1.4 and Corollary 3.5 apply immediately, with
& = [1, oo). In particular, suppose given k € No and elements y\,... ,yt € q with
v, € 5/v;tUi, Wi > 1. Then Corollary 3.5 and (22) yield an estimate

(23) \Yl...YkK,\ + t1/2\Yl...YkXK,\< cr(Wl+-+Wt)/2GbJ

for t > 1. In this way we recover some results of [7, 10]. Observe that if G is
nilpotent, that is, G — Q, then the bounds (23) give high order regularity in arbitrary
directions on G.
(ii) We can generalize example (i) by considering, as in [8], a second-order operator
H = — £f /=i ckjAkAi, where cii( are complex constants satisfying the ellipticity
condition
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for some fi, > 0 and all f € C ' . Then the convolution kernel K, for 5, = e~'H

satisfies (22) (see [12, 8, 10]). The local estimate (5) is contained in results of [11].
Then as in example (i), using our results we deduce estimates (23). Thus we recover

some results of [7, 10] for complex operators,
(iii) We can also generalize example (i) by considering a sublaplacian with drift

where the drift term Ao = dLG(cio) is 'centered' in the sense of Alexopoulos [3].
This means that ao belongs to a certain ideal h of 0 with [g, g] c h. For such H, the
estimates (22) and (5) are contained in the results of [3].

Applying Corollary 3.5 we obtain the estimates (23) for H. These estimates seem
to be new. We remark that these estimates could probably also be obtained from the
asymptotic expansion theorems of [3], though our method is more direct,
(iv) Let K\ e L\ n L^ be a bounded probability density on G: thus K\ > 0 and
fG dg K\ (g) = 1. In addition, suppose Kx is symmetric (K(g~l) = K(g)), compactly
supported, and that there exists an open neighborhood Uo of the identity e such that
inf{*,(£):#€ f/0}>0.

For n e N = ST let Kn = K\ * K\ * • • • * K\ be the n-th convolution power of K\.
Then the results of [15], in particular Theorem 5.1 of that paper, yield (2) and (3) with
v = 1. Then Theorems 1.1-1.3 apply in this setting.

If we also assume K\ is C°°-smooth, then (5) obviously holds. Thus Corollary 3.5
applies, and we obtain, for example, the estimate

\Yx...YkK,\ <cr
(w'+-+w^2Gbj

wheny, e q f l s ^ .
In the remaining examples, we suppose that G is a finitely generated, discrete group

of polynomial growth. Fix a finitely generated nilpotent normal subgroup Q of G,
such that G/ Q is finite.
(v) Let K\ : G -*• IR be a symmetric probability density on G, such that the support
{g € G : Ki(g) > 0} of Kx is finite and generates G.

Let Kn be the w-th convolution power of Kx for n e N. Then (2) and (3) hold with
v = 1, again by [15, Theorem 5.1]. Then Theorems 1.1-1.3 apply in this setting. The
estimates thus obtained from Theorem 1.2 seem to be new (in the case that G = Q is
nilpotent then they are obtained in [2]).
(vi) Generalizing example (v), one can consider a possibly non-symmetric proba-
bility density K\ on G, such that the support of K\ is finite and generates G. If K\
is 'centered' in the sense of Alexopoulos [2], then (2) and (3) with v = 1 are con-
tained in results of [2]. Therefore Theorems 1.1-1.3 also apply to centered probability
densities.
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