THE COMMUTATIVITY OF A SPECIAL CLASS OF RINGS

WALLACE S. MARTINDALE, III

A well-known theorem of Jacobson (1) states that if every element x of a ring R satisfies $x^{n(x)}=x$ where $n(x)>1$ is an integer, then R is commutative. A series of generalizations of this theorem have been proved by Herstein ($\mathbf{2} ; \mathbf{3} ; \mathbf{4} ; \mathbf{5} ; \mathbf{6}$), his last result in this direction (6) being that a ring R is commutative provided every commutator u of R satisfies $u^{(n) u}=u$. We now define a γ-ring to be a ring R in which $u^{n(u)}-u$ is central for every commutator u of R (where $n(u)>1$ is an integer). In the present paper we verify the following conjecture of Herstein: every commutator of a γ-ring is central.

1. Semi-simple $\boldsymbol{\gamma}$-rings. The main step in our paper consists in proving

Theorem 1. Every division γ-ring D is a field.
Proof. We will show that every commutator $u \in D$ satisfies $u^{m(u)}=u$ where $m(u)>1$ is an integer. It will then follow immediately from Herstein's theorem in (6) that D is a field.

Suppose there exists a commutator $u=x y-y x$ which does not lie in the centre Z. Let C be the prime field of D, where either $C=R$ if the characteristic is zero or $C=P$ in the case of characteristic $p>0$. We denote by $K=C(u)$ the subfield of D generated by C and u and let $k=K \cap Z$. We remark that k is a proper subfield of K containing C, since $u \notin k$. For all $\lambda \in k \lambda u=\lambda(x y-y x)$ $=(\lambda x) y-y(\lambda x)$ is a commutator of D lying in K. We make the important observation that $(\lambda u)^{n(\lambda)}-(\lambda u) \in k$ for all $\lambda \in k$, where $n(\lambda)>1$ is an integer. Indeed, $(\lambda u)^{n(\lambda)}-(\lambda u) \in Z$ because D is a γ-ring, and $(\lambda u)^{n(\lambda)}-(\lambda u)$ $\in K$ since both λ and $u \in K$.

Only three possibilities may now arise, namely,
(1) u is transcendental over C
(2) u is algebraic over R
(3) u is algebraic over P.

In (1) we know by Luroth's Theorem that k is a simple transcendental extension $C(t)$ of C. Our immediate objective is to rule out possibilities (1) and (2). In order to do so we shall require the assistance of two lemmas.

[^0]Lemma 1. If $\left\{\lambda_{i}\right\}$ is an infinite sequence of distinct non-zero elements of k, then $n\left(\lambda_{i}\right) \rightarrow \infty$, where $\left(\lambda_{i} u\right)^{n\left(\lambda_{i}\right)}-\left(\lambda_{i} u\right) \in k, i=0,1,2 \ldots$.

Proof. If the statement were not true, there would exist an infinite subsequence $\left\{\lambda_{j}{ }^{\prime}\right\}$ with the property that $n\left(\lambda_{j}{ }^{\prime}\right)=n$, a constant. Setting $\lambda_{j}{ }^{\prime \prime}=\lambda_{j}{ }^{\prime}$ ($\left.\lambda_{0}{ }^{\prime}\right)^{-1}$, we can write our basic equations in the form
(a) $\left(\lambda_{j}{ }^{\prime \prime} \lambda_{0}{ }^{\prime} u\right)^{n}-\left(\lambda_{j}{ }^{\prime \prime} \lambda_{0}{ }^{\prime} u\right)=\left(\lambda_{j}{ }^{\prime} u\right)^{n}-\left(\lambda_{j}{ }^{\prime} u\right) \in k, j=0,1,2 \ldots$ Multiplication of the equation $\left(\lambda_{0}{ }^{\prime} u\right)^{n}-\left(\lambda_{0}{ }^{\prime} u\right) \in k$ by $\left(\lambda_{j}{ }^{\prime \prime}\right)^{n}$ gives us
(b) $\left(\lambda_{j}{ }^{\prime \prime}\right)^{n}\left(\lambda_{0}{ }^{\prime} u\right)^{n}-\left(\lambda_{j}{ }^{\prime \prime}\right)^{n}\left(\lambda_{0}{ }^{\prime} u\right) \in k, j=0,1,2 \ldots$ Subtraction of (a) from (b) yields
(c) $\left[\left(\lambda_{j}{ }^{\prime \prime}\right)^{n}-\lambda_{j}{ }^{\prime \prime}\right]\left(\lambda_{0}{ }^{\prime} u\right) \in k, j=0,1,2 \ldots$
$\lambda_{0}{ }^{\prime} u \notin k$ because $u \notin k$ and $\lambda_{0}{ }^{\prime} \neq 0$; it then follows from (c) that $\left(\lambda_{j}{ }^{\prime \prime}\right)^{n}-\left(\lambda_{j}{ }^{\prime \prime}\right)$ $=0, j=0,1,2 \ldots$ A contradiction results since we now have an infinite number of distinct elements of the field k satisfying the same equation $\mu^{n}-\mu=0$.

Lemma 2. In (1) and (2) suppose that V is non-trivial discrete non-Archimedean valuation of k and W an extension of V to K. Then $\bar{k}=\bar{K}$, where \bar{k} and \bar{K} are the completions of k and K relative to V and W, respectively.

Proof. We begin by choosing a Cauchy sequence $\left\{\lambda_{i}\right\}$ of non-zero distinct elements of k converging to a non-zero element $\bar{\lambda} \in \bar{k}$, where for all i $V\left(\lambda_{i}\right) \geqslant 1+|\mathrm{W}(u)| i$. For each λ_{i} of the sequence we pick an $n\left(\lambda_{i}\right)>1$ such that

$$
\left(\lambda_{i} u\right)^{n\left(\lambda_{i}\right)}-\left(\lambda_{i} u\right)=\gamma_{i} \in k, \quad i=0,1,2 \ldots
$$

$n\left(\lambda_{i}\right) \rightarrow \infty$ by Lemma 1 . The relationship

$$
W\left[\left(\lambda_{i} u\right)^{n\left(\lambda_{i}\right)}\right]=n\left(\lambda_{i}\right)\left[V\left(\lambda_{i}\right)+W(u)\right] \geqslant n\left(\lambda_{i}\right)
$$

then shows that the element $\left(\lambda_{i} u\right)^{n\left(\lambda_{i}\right)}$ converges to 0 in $\bar{K} . \lambda_{i} u$ converges to $\bar{\lambda} u, \bar{\lambda} \neq 0$. It follows that $\left\{\gamma_{i}\right\}$ is a Cauchy sequence in k and thus must converge to an element $\bar{\gamma} \in \bar{k}$. We have now analysed all the terms of the equations

$$
\left(\lambda_{i} u\right)^{n\left(\lambda_{i}\right)}-\lambda_{i} u=\gamma_{i}, \quad i=0,1,2 \ldots
$$

and, letting $i \rightarrow \infty$, we can conclude that $\bar{\lambda} u=\bar{\gamma}, \bar{\lambda} \neq 0$. Hence $u \in \bar{k}$ and $\bar{k}=\bar{K}$.

We are now in a position to rule out the possibilities (1) and (2). K is a finite separable extension of k since its generator u satisfies the separable polynomial $\mu^{n(1)}-\mu \in k$. In (1) we take as our set of valuations of k all those which act trivially on the prime field C, and in (2) we consider all those which reduce to p-adic valuations of R. We shall denote the ring of integers of k by o and the discriminant ideal of o by d. We let $G(V)$ stand for the value group of a valuation V of k. If B is a subgroup of a group A then the index of B in A will be symbolized by $(A: B)$.

Lemma 2 tells us that no valuation V of k can ramify in K. Indeed, $\bar{K}=\bar{k}$
implies that $G(\bar{W})=G(\bar{V})$, where \bar{V} and \bar{W} are the valuations of the completions \bar{k} and \bar{K} relative to V and any extension W. It follows then that the ramification number $e=(G(W): G(V))=(G(\bar{W}): G(\bar{V}))=1$. To say that no valuation V ramifies means that no prime ideal of o divides the discriminant ideal d. Since any proper non-zero ideal of o is a product of prime ideals we must assume that $d=o$. But this forces $K=k$, a contradiction. We must therefore conclude that the possibility (3) does occur, in which case $u^{m(u)}=u$ for suitable $m(u)>1$, since $P(u)$ is a finite field. (What we have actually done in ruling out the possibilities (1) and (2) has been to prove a slight generalization of a theorem of Krasner (7). The proof appearing in his paper could also have been used here, but the argument we have given is of a less complicated nature.)
So far in the proof of Theorem 1 we have shown that if u is any commutator of D then either $u \in Z$ or $u^{m(u)}=u$. Suppose that $u=x y-y x \neq 0 \in Z$. The commutator

$$
x=(x u) u^{-1}=[x(x y)-(x y) x] u^{-1}=\left(x u^{-1}\right)(x y)-(x y)\left(x u^{-1}\right)
$$

does not lie in Z. Also the commutator $u x \notin Z$, since

$$
(u x) y-y(u x)=u(x y-y x)=u^{2} \neq 0 .
$$

It follows that $x^{n+1}=x$, that is, $x^{n}=1$, and $(u x)^{m+1}=u^{m+1} x^{m+1}=u x$, that is, $u^{m} x^{m}=1$, for suitable $m, n>0$. Therefore

$$
1=\left(u^{m} x^{m}\right)^{n}=u^{m n} x^{n m}=u^{m n} \text {, that is, } u^{m n+1}=u \text {. }
$$

We thus conclude that for all commutators u of $D u^{m(u)}=u$ where $m(u)>1$ is an integer. This completes the proof of Theorem 1.

At this point we remark that subrings and homomorphic images of γ-rings are themselves γ-rings. Using the Jacobson structure theory, we know that every primitive γ-ring is either a division ring or else contains a subring which has as a homomorphic image the set D_{2} of all two by two matrices over some division ring D. Since D_{2} is clearly not a γ-ring, we have by Theorem 1:

Lemma 3. Every primitive γ-ring is a field.
The following easy lemma is useful in simplifying our problem:
Lemma 4. Suppose a ring R is a subdirect sum of rings R_{α}, each satisfying the polynomial identity $f\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)=0$ with integer coefficients. Then R also satisfies this identity.

Theorem 2. Every semi-simple γ-ring R is commutative.
Proof. R is isomorphic to a subdirect sum of primitive rings R_{α}, each of which is a γ-ring and hence commutative by Lemma 3 . Then R is commutative, from Lemma 4, if we choose as our polynomial $f\left(\mu_{1}, \mu_{2}\right)=\mu_{1} \mu_{2}-\mu_{2} \mu_{1}$.

Corollary. If R is any γ-ring, then every commutator of R lies in the radical N.
2. The general solution. Theorem 2 enables us to assume without loss of generality that the (Jacobson) radical N of our γ-ring is non-trivial. Furthermore, R may be taken to be subdirectly irreducible. Indeed, assuming for the moment that all commutators of subdirectly irreducible γ-rings are central, any γ-ring R is a subdirect sum of subdirectly irreducible γ-rings R_{α}, each of which satisfies the polynomial identity

$$
\left(\mu_{1} \mu_{2}-\mu_{2} \mu_{1}\right) \mu_{3}-\mu_{3}\left(\mu_{1} \mu_{2}-\mu_{2} \mu_{1}\right)=0
$$

Then by Lemma $4 R$ satisfies this same identity, which is precisely the property we wish R to have.

Therefore from now on R will be a γ-ring with radical $N \neq 0$, centre Z, and unique minimal two-sided ideal $S \neq 0$.

Lemma 5. $S^{2}=0$.*
Proof. $S \subset N$ since $V \neq 0$. Let $s \in S$ and $x \in R .(s x-x s)^{n}-(s x-x s) \in$ $S \cap Z$ for some $n=n(s, x)>1$. If $(s x-x s)^{n}-(s x-x s)=0$, then $(s x-x s)=0$, since $s x-x s \in Y$ and no non-zero radical element can be a radical multiple of itself. If

$$
u=(s x-x s)^{n}-(s x-x s) \neq 0,
$$

we consider the two-sided ideal $T=u S \subset S$. T must be trivial, for otherwise $T=S$, and $u v=u$ for some $v \in S$ forces a contradiction. Thus

$$
u t=\left[(s x-x s)^{n-1}\right][(s x-x s)] t-(s x-x s) t=0
$$

for all $t \in S$, from which we get $(s x-x s) t=0$, since $(s x-x s) t$ is a radical multiple of itself. So far then in our proof we have shown that $(s x-x s) t=0$ for all $s, t \in S$ and all $x \in R$.

Again let $s \neq 0 \in S$. The right ideal $s S$ is two-sided because

$$
(x s) t=(x s-s x) t+s(x t)=s(x t) \in s S
$$

for all $t \in S$ and $x \in R . s S$ is trivial, for if $s S \neq 0$, then, since it is a two-sided ideal, $s S=S$, and we are faced with the familiar contradiction that $s t=s$ for some $t \in S \subset N$. Since the choice of s was arbitrary, $S^{2}=0$.

The next lemma is actually valid for any γ-ring.
Lemma 6. Let $x, y \in R$. Then $(x y-y x)^{n} c_{n}-(x y-y x) \in Z, n=1,2, \ldots$, where the c_{n} are suitable polynomials in $x y-y x$.

Proof. We set $w=x y-y x$ and proceed with a proof by induction on n. For $n=1$ we set $m=n(w)$ and choose $c_{1}=w^{m-1}$. We now assume the lemma true for $k=n-1$ and prove it for $k=n$. Indeed, $w^{n-1} c_{n-1}-w \in Z$ by assumption, where c_{n-1} is a polynomial in w. We may as well suppose that m is odd, since a similar argument will prevail in case m is even. Then

$$
\left(w^{n-1} c_{n-1}-w\right)^{m}=w^{n} c_{n}-w^{m} \in Z,
$$

[^1]with c_{n} clearly a polynomial in w. Combining this result with the fundamental condition $w^{m}-w \in Z$, we finally achieve
$$
w^{n} c_{n}-w=\left(w^{n} c_{n}-w^{m}\right)+\left(w^{m}-w\right) \in Z .
$$

By choosing a sufficiently large n according to Lemma 6 we are able to state a useful

Corollary. If $x y-y x$ is nilpotent for some $x, y \in R$, then $x y-y x \in Z$.
Lemma 7. Every commutator of R is nilpotent.
Proof. Suppose there exists a commutator $w=x y-y x$ which is not nilpotent. Consider the collection of all ideals of R which enjoy the property that all powers of w fall outside the ideal. The zero ideal is clearly a member of this collection. Partially ordering the collection by set inclusion, we are able to choose by Zorn's Lemma an ideal U which is maximal with respect to the property that $w w^{n} \notin U$ for $n=1,2,3 \ldots$ So if V contains U properly, where V is an ideal of R, then $w^{n(V)} \in V$. In other words, for any non-zero ideal \bar{V} of $\bar{R}=R / U$ there exists a natural number m, depending on V, such that $\bar{w}^{m} \in \bar{V}$, where \bar{w} denotes the coset $w+U$.

First of all, \bar{R} cannot be subdirectly irreducible. Indeed, suppose that its minimal ideal $\bar{T} \neq 0$. By the corollary to Theorem $2 w \in N$, which means that \bar{w} is a non-zero element in the radical \bar{M} of \bar{R}. Since $\bar{M} \neq 0$, Lemma 5 yields $\bar{T}^{2}=0$. A contradiction is quickly reached when we pick the m such that $\bar{w}^{m} \in \bar{T}$ and see that $\bar{w}^{2 m}=0$ or $w^{2 m} \in U$. Hence we must assume that $\bar{T}=0$.

Now let \bar{V} be any non-zero ideal of $\bar{R} . \bar{w}^{m} \in \bar{V}$ for sufficiently large m. By Lemma $6 \bar{w}^{m} \bar{c}_{m}-\bar{w}$ is in the centre \bar{Y} of \bar{R}, where \bar{c}_{m} is a polynomial in \bar{w}. Noting that $\bar{w}^{m} \bar{c}_{m} \in \bar{V}$, we see that

$$
\left(\bar{w}^{m} \bar{c}_{m}\right) \bar{r}-\bar{r}\left(\bar{w}^{m} \bar{c}_{m}\right)=\bar{w} \bar{r}-\bar{r} \bar{w} \in \bar{V}
$$

for all $\bar{r} \in \bar{R}$. It follows that for all $\bar{r} \in \bar{R} \bar{w} \bar{r}-\bar{r} \bar{w}=0$ since the intersection of all the ideals of \bar{R} is 0 . In other words, $\bar{w} \in \bar{Y}$.
$\bar{w} \bar{x}=\bar{x} \bar{y} \bar{x}-\bar{y} \bar{x} \bar{x}$ is also a commutator of \bar{R}. As we have just shown that $\bar{w} \in \bar{Y},(\bar{w} \bar{x})^{k}=\bar{w}^{k} \bar{x}^{k}$ for all natural numbers k. Thus for any non-zero ideal \bar{V} of \bar{R} a sufficiently high power of $\bar{w} \bar{x}$ lies in V. Using exactly the same argument as in the proof that $\bar{w} \in \bar{Y}$ but replacing \bar{w} by $\bar{w} \bar{x}$, we can conclude that $\bar{w} \bar{x} \in \bar{Y}$.

Because \bar{w} and $\bar{w} \bar{x}$ are both in $\bar{Y}, \bar{w}^{2}=\bar{w}(\bar{x} \bar{y}-\bar{y} \bar{x})=(\bar{w} \bar{x}) \bar{y}-\bar{y}(\bar{w} \bar{x})=0$, or $w^{2} \in U$, a contradiction.

Lemma 7 and the corollary to Lemma 6, together with the remarks made in the opening paragraph of this section yield the

Main Theorem. If R is a γ-ring, then every commutator of R lies in the centre of R.

We cannot in general hope to arrive at the sharper conclusion that any γ-ring is commutative. Indeed, the set of all three by three properly triangular matrices over any field is an example of a non-commutative γ-ring.

References

1. N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. Math., 46 (1945), 695-707.
2. I. N. Herstein, A generalization of a theorem of Jacobson, Amer. J. Math., 73 (1951), 756-762.
3. - A generalization of a theorem of Jacobson II, Abstract, Bull. Amer. Math. Soc., 58 (1952), 383.
4. - A generalization of a theorem of Jacobson III, Amer. J. Math., 75 (1953), 105-111.
5. - The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
6. - - A condition for the commutativity of rings, Can. J. Math., 9 (1957), 583-586.
7. M. Krasner, The non-existence of certain extensions, Amer. J. Math., 75 (1953), 112-116.
8. O. F. G. Schilling, The theory of valuations, Math. Surveys IV (New York, 1950).
9. H. Weyl, Algebraic theory of numbers (Princeton, 1940).

University of Pennsylvania
Yale University

[^0]: Received February 8, 1959. The material in this paper is a portion of a dissertation submitted to the University of Pennsylvania under the guidance of Dr. I. N. Herstein. The work on the paper was done at Yale University while the author was a research assistant to I_{r} Herstein under a National Science Foundation grant (NSF-2270).

[^1]: *The proofs of this lemma and the succeeding ones are patterned after those given by Herstein in his papers (2;4;5).

