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Ground State Solutions of Nehari—Pankov
Type for a Superlinear Hamiltonian Elliptic
System on R¥

Xianhua Tang

Abstract. This paper is concerned with the following elliptic system of Hamiltonian type
—Au+V(x)u=W,(x,u,v), x¢ RN,
—Av+V(x)v=Wu(x,u,v), x¢ RN,

u,v e HY(RY),
where the potential V is periodic and 0 lies in a gap of the spectrum of —A + V, W(x,u,v) is

periodic in x and superlinear in u and v at infinity. We develop a direct approach to finding ground
state solutions of Nehari—-Pankov type for the above system. Our method is especially applicable to

the case when
k laju+piv| ! \ /u2+2bjuv+ujv2
W(x,u,v) =Y, f gi(x, )tde+ > f
i=1 70 =170

where «;, B;,aj,b; ¢ Rwith a? + f # 0,and a; > h?, gi(x,t) and hj(x, t) are nondecreasing in
t € R* for every x € RN and g;(x,0) = h;(x,0) = 0.

hj(x, t)tdt,

1 Introduction
In this paper, we study the following nonlinear elliptic system of Hamiltonian type

-2 u+V(x)u=W,(x,u,v), xeRN,
(L1) —av+V(x)v=W,(x,u,v), xeRN,
u,v e H(RN),

where N >3,V e C(RV,R) and W € C(RN xR x R, R).

For the case of a bounded domain, assuming V' = 0, there are a number of pa-
pers concerned with the systems similar to (1.1). For example, see Benci and Rabi-
nowitz [6], De Figueiredo and Ding [7], De Figueiredo and Felmer [8] and their ref-
erences for superlinear systems; see Kryszewski and Szulkin [13] and the references
therein for asymptotically linear systems.

A system similar to (1.1) in the whole space RN was considered recently; see, for
instance, [1-4,9,12,16, 21,26, 27,29-37] and the references therein. However, most of
these focused on the case V = 1, which is not only radial but also periodic. The main
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difficulty with problems of this type is the lack of compactness in the Sobolev embed-
ding. A common way to overcome the difficulty is by imposing a radial symmetry
assumption on the nonlinearities and working on the radially symmetric function
space, which possesses a compact embedding. Another common way is to avoid the
indefinite character of the original functional by using the dual variational method;
see for instance [1-3].

Since Kryszewski and Szulkin [14] proposed the generalized linking theorem for
the strongly indefinite functionals in 1998, Li and Szulkin [15], and Bartsch and Ding
[5] (see also [10]) gave several weaker versions, which provided a third way to deal
with system (1.1); see [12,17,18,26,27,29-37] and the references therein.

In this paper, we consider System (1.1) with 0 lying in a gap of the spectrum
o(— & +V) of the Schrodinger operator — A +V. More precisely, we first make the
following basic assumptions:

(V) VeC(RYN), V(x) is l-periodic in each of x;, x5, ..., xn, and
(12) sup[o(-A+ V)N (-00,0)] <0< inf[o(-A+ V)N (0,00)];

(W1) W e C(RN xR2,R"), W(x,z) is 1-periodic in each of x;, x5, ..., xn, contin-
uously differentiable on z := (u,v) € R? for every x € RV, and there exist
constants p € (2,2%) and Cy > 0 such that

VW, (x,2)| < Co(1+]2P")  V(x,z) e RN xR

(W2) VW,(x,z) = o(]z]), as |z| = 0, uniformly in x € RY;
(W3) limy) 0 W52 -

ER
Let E,E™, and E* be the Hilbert spaces with E = E~ @ E*, which are defined in
Section 2. Observe that the natural functional associated with (1.1) is given by

(1.3) D(z) = fRN[Vu Vv + V(x)uv] dx - fRN W(x,z)dx,

forall z = (u,v) € E, where W(x,z) = W(x, u,v). Furthermore, under assumptions
(V), (W1), and (W2), ® € C'(E,R) and

o0, a.e. x € RN,

14) (D'(2),{) = /RN[VM VY + VvV + V(x)(uy +ve)]dx
- /RN VW(x,z)-{dx Vz=(u,v),{=(¢,y)€E.
If zo = (1o, Vo) € E is a nontrivial solution of problem (1.1), then z, € N~, where

N ={zeENE :(D'(2),2) = (D'(2),{) =0 VIeE }.

The set N~ was first introduced by Pankov [19], which is a subset of the Nehari man-
ifold

N= {ZEE\ {0} : (D' (2), 2) :0}.

In general, N~ contains infinitely many elements of E. In fact, under assumptions (V),
(W1), (W2), and (W3), forany z € E \ E™, there exist t = #(z) > 0 and { = {(z) € E~
such that { + tz € N7; see Lemma 3.11.
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Recently, for (1.1) with

W(x,u,v) = fouf(x, t)dt+£vg(x, t)dt,

Zhao et al. [34] obtained “the least energy solution" (i.e., a minimizer of the corre-
sponding energy within the set of nontrivial solutions) by variant generalized weak
linking theorem and monotonicity trick developed by Schechter and Zou [20] under
assumptions (V), (W1)-(W3), and the following Nehari type monotone condition

(Ne') L (ﬁft) and g(ﬁ[t) are strictly increasing in t on R \ {0} for every x € RV,

We must point out that “the least energy solution" (which is sometimes also called
the ground state solution) in the aforementioned references is in fact a nontrivial so-
lution z that satisfies @(zq) = infy ©, where

M:{ZEE\{O}:(D'(Z)ZO}

is a very small subset of N~ that may contain only one element. In general, it is much
more difficult to find a solution zq for (1.1) that satisfies ®(zy) = infy- @ than one
that satisfies ®(zg) = infy D.

The purpose of this paper is to find a solution zq for (1.1) that satisfies ®(z¢) =
infy- @ under the above assumptions. Since zy is a solution at which @ has least
“energy" in the set N~ of Pankov type, we shall call it a ground state solution of Nehari-
Pankov type. As a motivation, we recall a notable work of Szulkin and Weth [22] on
the existence of ground state solutions of Nehari-Pankov type for strongly indefinite
periodic Schrodinger equation

(15) {‘A“V(x)u:f(x,u), x e RV,

ue H'(RN).

Under some standard assumptions on f and the following Nehari type monotone
condition

(Ne) L (I); ’lu) is strictly increasing in u on R \ {0} for every x € RY.

Szulkin and Weth developed a powerful approach (the generalized Nehari mani-
fold method) to find ground state solutions of Nehari-Pankov type on the set

No={ueENE :(®(u),u)=(D'(u),v)=0 VveE }.

This approach transforms, by a direct and simple reduction, the indefinite variational
problem to a definite one, resulting in a new minimax characterization of the corre-
sponding critical value. As we know, Condition (Ne) plays a very important role in
the generalized Nehari manifold method.

In the recent papers [23-25], the author developed a new approach to find ground
state solution of Nehari-Pankov type for (1.5). The main idea of this approach is to
find a minimizing Cerami sequence for ® outside N~ by using the diagonal method,
which is completely different from the one of Szulkin and Weth [22].

In this paper, based on [22-25, 34], we further develop the approach in [23-25]
to find ground state solution of Nehari-Pankov type for (1.1). To state our results, in
addition to the aforementioned hypotheses, we make the following assumption:
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(W4) Forall 8 >0, z,{ e R?,

1- 62

VW(x,2)-z— VW (x,2) - {+ W(x,0z+ () - W(x,z) >0.
We are now in a position to state the main result of this paper.

Theorem 1.1  Assume that V and W satisfy (V), (W1), (W2), (W3), and (W4). Then
(1.1) has a solution zg € E such that ®(zq) = infy- © > 0.

However, it is not easy to check assumption (W4). Next, we give several classes of
functions satisfying (W4). Prior to this, we define one set as follows:

ND = { h e C(RNxR*,R*) : h(x, t) is I-periodic in each of xy, x5, . .., xy and
nondecreasing in t € [0, co) for every x € RN;
h(x,0) = 0 for x € RY;
there exist constants p € (2,2*) and Cy > 0 such
that |h(x, )| < Co(1+[P2) V(x,t) e RN xR. }

Corollary 1.2 Assume that V and W satisfy (V) and (W3), and that

k laiu+piv| ! \u?+2bjuv+a;jv?
W(x,u,v) =3y f gi(x, 0)tdt+ > f hj(x, t)tdt,
iz1 70 =170

where a;, fi,a;,bj € R, af + 7 # 0Oand a; > bJZ., gi»hj € ND. Then (1.1) has a solution
zg € E such that ®(zy) = inf- @ > 0.

Remark 1.3 Itis easy to see that the functions
W(x,u,v) = (i +uv +v?) In(1+ u® + uv +v?),
W(x,u,v) = (u+2v)*In[1+ (u+2v)*] + (2u —v)*In[1+ (2u - v)?],
W(x,u,v) =|u+2v|" + Bu+2v|, 01,00 € (2,2%)

satisfy (W1), (W2), (W3), and (W4).

The remainder of this paper is organized as follows. In Section 2, we provide some
preliminaries and present a variational setting for (1.1). The proofs of our theorem
and corollary are given in Section 3.

2 The Variational Setting

Let A := —A + V; then A is self-adjoint in L*(R") with domain D(A) = H*(RY).
Let {&(1) : =00 < A < +00} be the spectral family of A, and let |A|'/? be the square
root of | A|. Set U = id ~&(0) — &(0-); then U commutes with A, |A|, and |A|"/2, and
A = U|A| is the polar decomposition of A (see [11, Theorem 4.3.3]). By (1.2),

A :=sup[o(A) N (-00,0)] <0< A :=inf[c(A) N (0,00)].
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Let Ao = min{-A, A}, then the following hold:

A:[:AdE(A):[:AdE(A)+fAOOAd€(/\),

A= [ ke = [T e - e-0),
A= [ T araeay = [T apae) - -0l

It is well known that © (| A4]/2) is a Hilbert space endowed with inner product
(V) oqapey = (2w, |AM) |, YV u,v e D(JA[M2).

L2
Then
lutl% ey = IAPulZz > Aglul3 v ue DAM?).
(lAp2)

Obviously, ® (|A[/?) = H'(RY) with equivalent norm.
Set E = D(|A[Y?) x D(JA[/?); then E is a Hilbert space with the inner product
(Z],Zz) = (ul,uz)@(wm) +(V1,V2)33(|A|1/2) VZ,' = (Lli,Vi) eE, i=12,

the corresponding norm is denoted by | - |. By the Sobolev embedding theorem, the
embedding E — L?(RN) x L?(RY) is continuous and locally compact.
Let

E_:{(u,—Uu):ue©(|A|1/2)}, E+:{(u,Uu):ue©(\.A|l/2)},
Foranyz = (u,v) € E, set
_ (u-Uv u—-Uv u+ Uy u+ Uy
== (5u(5) (),

It is easy to check that Uu € D (|A|"/?), forall u € D (|A|?). Thus, E~ c Eand E* c E,
z~ € E” and z* € E". It is obvious that z = z~ + z*. On the other hand, z~ and z*
are orthogonal with respect to the inner products (-, - );2 and (-, - ). Thus, we have
E = E~ @ E*. By a simple calculation, one can get that

1 _
S = 127 ) = (A0 AP 2Y) |, = (AR )5 = (A )
= [RN[Vu Vv + V(x)uv]dx.
Therefore, the functional ® defined in (1.3) can be rewritten in a standard way:
1 _
21 ©(z) = S (12" - [2717) - ¥(z) Vz=(wv)<eE,

where ¥(z) = [pv W(x,z)dx. Our hypotheses imply that ® € C'(E,R), and a stan-
dard argument shows that critical points of ® are solutions of (1.1). Moreover, by (1.4),

@2 (020 = (AW APY) |, + (IAP2Ug, AP,
—/D;NVW(x,z)[dx
- (2.0) - (. 0) - [ TW(xz) -G
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forall z = (u,v), { = (¢,¥) € E, and (®'(2),z) = |z*|* - |z7|* = (¥'(2), z) for all
z€E.

3 Proofs of the Main Results

Let X be a real Hilbert space with X = X~ @ X* and X~ 1 X™. For a functional ¢ €
C!'(X,R), ¢ is said to be weakly sequentially lower semicontinuous if for any u, — u
in X, one has ¢(u) < liminf, . ¢(u,), and ¢’ is said to be weakly sequentially
continuous if lim,_,co (¢’ (1), v) = (¢"(u), v) for each v € X.

Lemma 3.1 ([14,15]) Let X be a real Hilbert space with X = X~ & X* and X~ 1 X7,
and let ¢ € C'(X,R) be of the form

1 + - - + - +
$() = > (I P~ | ) —y(w), w=u +u’ eX © X"

Suppose that the following assumptions are satisfied:

(KS1) y e C'(X,R) is bounded from below and weakly sequentially lower semicontin-
uous;

(KS2) v' is weakly sequentially continuous;

(KS3) there exist r > p > 0 and e € X" with |e| = 1such that x = inf §(S;) >

sup ¢(0Q), where S, = {u e Xt lul| = p} and Q = {v+se veX,s2>0,
Hv+se\|£r}.

Then there exist a constant ¢ € [x,sup ¢(Q)] and a sequence {u,} c X satisfying
¢(un) = cand |¢"(un) [ (1+ [un]) — 0.

Employing a standard argument, one can easily check the following lemma.

Lemma 3.2 Suppose that (V), (W1), and (W2) are satisfied. Then ¥ is nonnegative,
weakly sequentially lower semicontinuous, and V' is weakly sequentially continuous.

Lemma 3.3  Suppose that (V), (W1), (W2), and (W4) are satisfied. Then

1-6?

3.1) D(2) > D(0z+ () + %H(HZ N (@'(2),2) - (D' (), ()

forall@ >0,z€E, (cE".
Proof By (2.1),(2.2), and (W4), one has
D(z) - D(0z+ ()
1- 62

= I+ IS (1 - 1) + 62 0)

- fRN[W(x,z) - W(x,@z+()]dx
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- 92
*HCHZ —— (D' (2),2) - 6(D'(2), )
+[RN[ —ZGZVW(x,z)~z—9VW(x,z)~(+W(x,@z+()—W(x,z)]dx
s B 0@, 00,0 vo20, zeE, (B
This shows that (3.1) holds. -

From Lemma 3.3, we have the following two corollaries.
Corollary 3.4  Suppose that (V), (W1), (W2), and (W4) are satisfied. Then forz e N~,
D(z)>®(0z+() VO20, (cE".
Corollary 3.5 Suppose that (V), (W1), (W2), and (W4) are satisfied. Then
(32) @(z)> —Hsz 20 (D' (2),2) + XD (2),27) - [RN W(x,0z")dx,
forallzeE, 6 >0.

Applying Corollary 3.4, we can prove the following lemma in the same way as
[22, Lemma 2.4].

Lemma 3.6  Suppose that (V), (W1), (W2), and (W4) are satisfied. Then
(i)  there exists p > 0 such that

s s : N _ _
m: 1351_f<1>2x inf{®(z):z€ E*, ||z| = p} > 0;
(i) |z*| 2 max{|z"|,V2m} forallz e N".

Lemma 3.7 Suppose that (V), (W1), (W2), and (W3) are satisfied. Then for any
ecE*, sup®(E~ @ R"e) < oo, and there is a R, > 0 such that

O(z) <0 VzeE @®R'e, |z >R..
The proof is standard; see [34, Lemma 4.3].

Corollary 3.8  Suppose that (V), (W1), (W2), and (W3) are satisfied. Let e € E* with
le| =1. Then there is a ro > p such that sup ®(0Q) < 0 for r > ro, where

(3.3) Q:{(+se:(eE‘,520, H(+se\|§r}.

Lemma 3.9  Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then there
exist a constant ¢ € [k, sup ©(Q)] and a sequence {z, } c E satisfying

D(zy) > ¢, [ (zn)[(1+]zal) >0,
where Q is defined by (3.3).

https://doi.org/10.4153/CMB-2015-019-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-019-2

658 X. Tang
Proof Lemma 3.9 is a direct corollary of Lemmas 3.1, 3.2, 3.6(i), and Corollary 3.8.
|

Analogous to the proof of [23, Lemma 3.8], it is easy to show the following lemma.

Lemma 3.10  Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then
there exist a constant c, € [k, m] and a sequence {z, } = {(u,,v,)} c E satisfying

(3.4) D(zp) > s [ (2)|(1+ [za]) > O.

Lemma 3.11 Suppose that (V), (W1), (W2), and (W3) are satisfied. Then for any
ze ENE, N n(E-®R*z) # @, ie., there exist t(z) > 0 and {(z) € E~ such that
t(z)z+{(z) e N".

The proof is the same as that of [22, Lemma 2.6].

Lemma 3.12  Suppose that (V), (W1), (W2), (W3), and (W4) are satisfied. Then any
sequence {z,} = {(un,vy)} C E satisfying

(3.5) D(z,) >¢c>0, (D'(z,),24) >0, (D'(2),2,)—>0

is bounded in E.

Proof To prove the boundedness of {z,}, arguing by contradiction, suppose that
|zn| = oo. Let &, = z,/|z4|l. Then ||&,]| = 1. By the Sobolev embedding theorem,
there exists a constant C; > 0 such that ||, |, < C;. If

8 :=lim sup sup |&52dx = 0,
n—oo  yeRN Bi(y)

then by Lions’ concentration compactness principle [28, Lemma 1.21], ¢& — 0 in
LP(RN). Fix R > [2(1 + ¢)]Y2. By virtue of (W1) and (W2), for & = 1/4(RC;)? > 0,
there exists C, > 0 such that

W(x,2) < elz]* + Clz|P ¥ (x,2) e RN x R,

Hence, it follows that

(3.6) lim sup f W(x, Rz, /|2 )dx
]RN

n—oo

:limsup/ W(x,RE!)dx
RN

n—oo

£limsupR28/ |f:,r|2dx+limsupRPC£/ |EX|Pdx
RN RN

n—oo n—oo

1
<e(RG)* = T
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Let 0, = R/|z,|. Hence, by virtue of (3.2), (3.5), and (3.6), one can get
c+0(1) = D(z,)

93, 2 + 1_631 ! 2 / -
> 22|z, | —fRNW(x,enzn)dH (@ (201 20) + 02O (20).2;)

-Ri-[ W(x, Rz}/|za]) dx
2 RN %> Bnl2n
1 R2 ’ R2 ! -
(E - W)“D (z0):20) + W<® (o)
_R W(x, Rz, [z | )dx + 0(1)
=5~ Juu W RE ) 0

2

3
>2—-—+0(l)>—+c+o(l).
o> revo()

This contradiction shows that § > 0. We may assume the existence of k, € ZY such
that /BHﬁ(kn) |EF12dx > g. Let {,(x) = &,(x + ky,). Then

5
(3.7) f I Pdx > 2.
B1+\/ﬁ(o) 2

Now we define Z,(x) = z,(x + ky); then Z,/||z,| = {, and ||(,| = 1. Passing to a

subsequence, we have {, ~ (in E, {, —» (in L} (R"), and {, - (ae. on RV,

Obviously, (3.7) implies that { # 0. Hence, it follows from (3.5), (W3), and Fatou’s
lemma that
c+o(l) . D(z,)
0=1 - = 5
oo zy[2 nmee iz,
T 1 (2 12 W(x,z,)
-}EEO[Q(HE,,H -1&.1%) —fRN de]
o T 2 2 W(x+kn2n),, 1
= lim [ (G -161) - [, = 5 ]
1 W(x,Zy
< timing [ WEE) g
2 nooeo JRN O |Z,)2
which is a contradiction. Thus, {z,} is bounded in E. [ |

Lemma 3.13 ([25, Lemma 2.3]) Suppose that t — h(x, t) is nondecreasing on R and
h(x,0) =0 for any x € RN, Then

_ N2

6 T—Ha)h(x,r)|r|2f6 h(x,s)|s|ds V8>0, 7, 0€eR.
T+0

(3.8) ( !

Lemma 3.14  Suppose that W (x,u,v) = folau+ﬁvlg(x, t)tdt, where a, B € R with
a’ +B*#0and g e ND. Then W satisfies (W1), (W2), and (W4).
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Proof It is easy to see that W satisfies (W1) and (W2). Next, we show that W also
satisfies (W4). Let g(x, t) = 0 for ¢ < 0. Note that

(3.9) |9a+b|29|a|+a—b V0>0,a,beR.

|a

For any x € RY, it follows from (3.8) and (3.9) that

_ 2
! 26 VW (x,2) z— OV W (x,2) -+ W(x, 02+ 0) — W(x,2)
1-6° )
=[5 Caw s pr)? - 6(au + pv)(ag + py) | g Jau + b))
[|au+,3v| ( t)tdt
_ X,
[0 (au+Bv)+(ad+By)| £
1- 62 )
> [ 5 (au+ pv)° —O0(au+ pv)(ag + ﬁw)]g(x, locu + Bv])
/ e (x, )|tldt > 0
- X, Z
Olau+pv|+(au+pv)(adp+py)/|au+pv| J
forall 6 >0,z = (u,v), { = (¢, ¥) € R% This shows that (W4) holds. [ |
Lemma 3.15  Suppose that W(x,u,v) = |, ubvzbuvsavt h(x,t)tdt, where a,b € R

with a > b* and h e ND. Then W satisfies (W1), (W2), and (W4).

Proof It is easy to see that W satisfies (W1) and (W2). Next, we show that W also
satisfies (W4). Let h(x,t) = 0 for t <0 and for z = (u,v), { = (¢, ) € R?, let

(1 b T 1 b\(u)_ , 2
A—(b a)’ zAz —(u,v)(b a)(v)—u +2buv + av

and
T 1 b ‘/5) _
zA(" = (u,v) (b a) (‘/’ =up +b(¢v +uy) + avy.
Then W(x,u,v) = W(x,2) = [, At h(x, t)tdt. By virtue of Lemma 3.13, one has

(3.10) [1_202 VZAZ - H(ZA(T)]h(x, VZAZ ) VZAZ" >

VzZAZT
VzAzT
h(x, 7)|r|dT,
0V zAZzT+zALT [N zAZT

forall 6 > 0, z, { € R?. It is easy to verify that

zALT <VzZAZTNCATT Y z,{ € R,
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which, together with (3.10), implies
1- 2
TQVW(x,z) 2= 0VW(x,2) - (+ W(x,0z+ () - W(x,2)
1-62
= Th(x, VzAzT)zAz" - 0(zA{") h(x,VzAzZT)

V (0z+0)A(0z+()T
+
‘/\/zAzT
0 ZA(T)

= [#\/ZAZT - ﬁ] h(x,\/zAzT) VzAZT

\/GZ(ZAZT)+(A(T+29(2A(T)
*J
1- 62 0(2A")
> [72 VZAZT - Nord ]h(x,\/ﬁ)\/m
/emﬂw/m
+

VzAzZT

h(x,7)|r|dT

h(x,7)|7|dTr

h(x,7)|7|dT
>0
for all @ > 0, z, { € R2. This shows that (W4) holds. [ |

Proof of Theorem 1.1 Applying Lemmas 3.10 and 3.12, we deduce that there exists
a bounded sequence {z,} = {(u,,v,)} C E satisfying (3.4). The rest of the proof is

standard. [ |
Employing Theorem 1.1 and Lemmas 3.14 and 3.15, we have Corollary 1.2 immedi-
ately.
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