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In continuation of our earlier work (Chen & Sreenivasan, J. Fluid Mech., vol. 908, 2021,
R3; Chen & Sreenivasan, J. Fluid Mech., vol. 933, 2022a, A20 – together referred
to as CS hereafter), we present a self-consistent Reynolds number asymptotics for
wall-normal profiles of variances of streamwise and spanwise velocity fluctuations as
well as root-mean-square pressure, across the entire flow region of channel and pipe
flows and flat-plate boundary layers. It is first shown that, when normalized by peak
values, the Reynolds number dependence and wall-normal variation of all three profiles
can be decoupled, in excellent agreement with available data, sharing the common inner
expansion of the type φ( y+) = f0( y+) + f1( y+)/Re1/4

τ , where φ is one of the quantities
just mentioned, the functions f0 and f1 depend only on y+, and Reτ is the friction Reynolds
number. Here, the superscript + indicates normalization by wall variables. We show
that this result is completely consistent with CS. Secondly, by matching the above inner
expansion and the outer flow similarity form, a bounded variation φ( y∗) = αφ − βφy∗1/4

is derived for the outer region where, for each φ, the constants αφ and βφ are independent
of Reτ and y∗ ≡ y+/Reτ – also in excellent agreement with simulations and experimental
data. One of the predictions of the analysis is that, for asymptotically high Reynolds
numbers, a finite plateau φ ≈ αφ appears in the outer region. This result sheds light on the
intriguing issue of the outer shoulder of the variance of the streamwise velocity fluctuation,
which should be bounded by the asymptotic plateau of approximately 10.
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1. Introduction

The Reynolds number dependencies of variances of streamwise and spanwise velocity
fluctuations as well as pressure are thought to present exceptional challenges for the
classical notion of wall scaling (Marusic et al. 2010; Smits, McKeon & Marusic 2011).
A salient example is that, when scaled in wall units, the peak values of these quantities
near the wall grow with increasing Reynolds number over the Reynolds number range
for which data are available (though the peak locations are remarkably invariant, see,
e.g., Sreenivasan (1989) and § 2.1 here). In Chen & Sreenivasan (2021, 2022a) (together
referred to as CS hereafter), the growth of these peaks was cast as a finite Reynolds number
effect, and it was shown that a bounded growth model (discussed below) fits the data
better. In this paper, we turn our attention to wall-normal profiles of the variances of these
fluctuations. This work is an alternative to Townsend’s (1956) attached-eddy hypothesis,
which ascribes a logarithmic decay for fluctuations in the outer flow as

φ( y∗) = Bφ − Aφ ln y∗. (1.1)

Here, φ represents the variance of 〈uu〉+ or 〈ww〉+; the superscript + indicates
normalization by the friction velocity uτ ≡ (τw/ρ)1/2 (and, where the height from the wall
is involved subsequently, also by ν); u and w for fluctuation velocities in the streamwise
(x) and spanwise or azimuthal (z) directions; y∗ = y/δ where δ is the flow thickness; the
bracket 〈〉 indicates the spatiotemporal averaging on x, z and time t ensembles; the slope
Aφ and intercept Bφ are constants independent of y∗ and the friction Reynolds number
Reτ = uτ δ/ν, but may depend on φ. We do not consider 〈vv〉 here (v is the wall-normal
fluctuation velocity) because it basically follows the wall-normal variation of 〈−uv〉: they
both agree with the law of the wall and exhibit plateaus in the bulk region, as illustrated
recently by Smits et al. (2021) for channel, pipe and the turbulent boundary layer (TBL),
and by Yao, Chen & Hussain (2022) for the open channel.

The rationale behind (1.1), as discussed by Marusic & Monty (2019), is that the
number density of the attached eddies that contribute to turbulent fluctuations varies
inversely with y∗, and an integration with respect to y∗ leads to the total fluctuation
intensity given by (1.1). Some consequences of this idea have been explored in laboratory
measurements (EXP) (Metzger & Klewicki 2001; Hultmark et al. 2012; Vincenti et al.
2013; Willert et al. 2017; Samie et al. 2018; Ono et al. 2022) as well as direct numerical
simulations (DNS) (Wu & Moin 2009; Jimenez et al. 2010; Schlatter & Örlü 2010;
Lee & Moser 2015; Pirozzoli et al. 2021; Hoyas et al. 2022; Yao et al. 2023). The
resulting findings have been discussed in terms of mixed scaling (DeGraaff & Eaton
2000; Diaz-Daniel, Laizet & Vassilicos 2017), the k−1 velocity spectrum (Perry, Henbest
& Chong 1986), a multiregime of the power-law spectrum (Vassilicos et al. 2015),
inner–outer interactions (Marusic, Baars & Hutchins 2017) and a random addictive process
(Yang & Lozano-Durán 2017). The notion of attached eddies has been extended to study
high-order moments of single point velocity fluctuations (Meneveau & Marusic 2013) as
well as to velocity structure functions (de Silva et al. 2015) and to an adverse pressure
gradient boundary layer flow (Hu, Dong & Vinuesa 2023).

Pressure fluctuations have also received attention in the past (Bradshaw 1967; Klewicki,
Priyadarshana & Metzger 2008; Panton, Lee & Moser 2017), in part because of their
importance for aircraft cabin noise. By extending Townsend’s attached-eddy hypothesis,
Bradshaw (1967) obtained a k−1 spectrum by an inner–outer matching in wavenumber
space and hence a ln Reτ growth of wall pressure fluctuation. The k−1 spectrum so deduced
is marginally detected in laboratory boundary layers at Reτ ≈ 6000 (Tsuji et al. 2007), but
not in the DNS data so far. This unsatisfactory situation prompted Panton et al. (2017) to
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Asymptotics of wall-turbulence fluctuations

develop alternative matching analysis in the spatial domain, also yielding the log profile
of the type (1.1). This is reminiscent of Hultmark (2012) who derived the ln y variation in
pipes by matching 〈uu〉+ between the inner and outer regions. It is worth noting that the
Reτ effects included in these models are not part of Townsend’s original attached-eddy
hypothesis. To account for this, Hwang, Hutchins & Marusic (2022) revisited Townsend’s
model and introduced the Reτ dependence for the proportionality coefficient A as well as
the intercept B in (1.1), and revised the spectral analysis. Finally, Pullin, Inoue & Saito
(2013), Laval et al. (2017) and Nils (2021) have suggested an additional power-law term in
(1.1), which incorporates the finite Reτ dependence.

While the work based on the attached-eddy models suggest a boundless growth of
turbulence peaks as Reτ → ∞, CS argued that the observed variations are bounded at
very high Reynolds numbers and follow a defect law of the type

φp(Reτ ) = φ∞ − cφ,∞Re−1/4
τ . (1.2)

Here, φ∞ the asymptotically bounded value of peak φp(Reτ ) and cφ,∞ are the fixed
coefficients. We refer to CS for details but merely remark here that the underlying physics
of (1.2) depends on the slight imbalance that exists between wall dissipation and maximum
production in the turbulent energy budget at any finite Reynolds number, and on their
tendency to eventually balance each other. Specifically, the wall dissipation falls short
of the asymptotic value at finite Reynolds number by transmitting outwards an amount
given by εd = u3

τ /η0, where η0 is the outer flow Kolmogorov length scale. This then leads
to ε+

d = εd/(u4
τ /ν) ∼ Re−1/4

τ , and hence to (1.2) for wall-dissipation and other mean flow
quantities. Subsequently, Monkewitz (2022) showed that an asymptotic expansion of 〈uu〉+
profiles with the Re−1/4

τ gauge function from CS reproduced data better than ln Reτ (Smits
et al. 2021). Recent measurements of Ono et al. (2022) in pipes for Reτ ranging from
990 to 20 750 are also supportive of the bounded behaviour. The results of CS have been
checked against DNS data in the open channel (Yao et al. 2022) and compressible channel
(Gerolymos & Vallet 2023), indicating possible universality of the bounded behaviour
for different flow conditions. Indeed, Hoyas et al. (2022) reported that the wall pressure
fluctuation in their DNS channel data for Reτ up to 104 might also be bounded. Further,
Monkewitz & Nagib (2015) have proposed a bounded perspective on the peak of 〈uu〉+
for TBL, but the difference from CS is that the deviation from the asymptotic value of the
〈uu〉+ peak, at any finite Reynolds number, is proportional to 1/ ln Reτ ; the latter scaling
was also considered by Hwang & Eckhardt (2020) and Skouloudis & Hwang (2021) in
their analysis of channel flows via a resolvent-based quasilinear approximation.

To discern one among these perspectives as correct beyond doubt, one clearly requires
much higher Reynolds numbers than currently covered (or likely to be covered for the
foreseeable future) in laboratory experiments or DNS (Nagib, Monkewitz & Sreenivasan
2022). Measurements in the atmospheric boundary layer (Metzger & Klewicki 2001;
Metzger, McKeon & Holmes 2007; Zheng & Wang 2016) might be thought of as
helpful but various uncertainties characteristic of field measurements prevent a decisive
conclusion there also. At the current stage, new theoretical ideas are highly desired to
provide additional insights. As noted by Klewicki (2022), the bounded growth, once
accepted, would necessitate a reassessment of a number of earlier empirical findings.
In this spirit, we obtain an alternative to (1.1) by using the bounded behaviour of (1.2),
providing a more complete description of the asymptotic behaviour of wall turbulence
(including pressure).
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Of interest are the root-mean-square (r.m.s.) profiles of various fluctuating quantities,
which depend on both the Reynolds number and the distance from the wall. The present
procedure consists of the following steps.

(i) We first show that the Reτ dependence in the wall-normal variation disappears in the
inner region when peak values are used for normalization. This observation presents
a good candidate for the inner expansion of r.m.s. profiles.

(ii) We develop a matching procedure between the inner and outer regions, and show
that it yields an outer defect law of the type

φ( y∗) = αφ − βφy∗1/4. (1.3)

Here, φ represents not only 〈uu〉+ and 〈ww〉+ but also the r.m.s. of pressure
fluctuation p′+ (the superscript prime denotes the r.m.s. throughout the paper);
αφ and βφ are constants independent of Reτ and y∗. The result (1.3) was first
presented in Chen & Sreenivasan (2022b), and later found by Monkewitz (2023)
independently. We may rewrite (1.3) as

φ( y∗)/φp(Reτ ) → (αφ/φ∞) − (βφ/φ∞)y∗1/4, (1.4)

where φ∞, the limiting value of φp as Reτ → ∞, is independent of Reτ within
the framework of CS. This means that the normalization by peak values is
asymptotically the same as normalization by wall variables (modulo the constants
φ∞). In contrast, this would not be the case if (1.1) were true, since φp diverges for
increasing Reτ .

(iii) Finally, we make extensive comparisons with the data. The result (1.3) advances
(1.2) to a description of wall-normal profiles of 〈uu〉+, 〈ww〉+ and p′+. While (1.2)
for the peak scaling is invoked to obtain (1.3), (1.1) could be obtained similarly if
a ln Reτ scaling for the peak value is used instead. In this sense, matching in itself
cannot preclude (1.1) or (1.3), and hence empirical evidence is much needed.

To verify (1.3), DNS data sets are collected for those with a clear Reτ trend for 〈uu〉+,
〈ww〉+ and p′+, all publicly available. In particular, we use the DNS on channels by Lee
& Moser (2015) for Reτ from 550 to 5200, on pipes by Pirozzoli et al. (2021) for Reτ

from 500 to 6000, and on TBLs by Schlatter et al. (2009, 2010) for Reτ from 490 to 1270.
Higher Reτ data in the literature (Sillero, Jimenez & Moser 2013; Hoyas et al. 2022) are
also included for comparison. For experiments, we select 〈uu〉+ data from the Princeton
pipe by Hultmark et al. (2012) for Reτ from 5411 to 98 187, from the Princeton TBLs by
Vallikivi, Ganapathisubramani & Smits (2015) for Reτ from 4635 to 25 062, and from the
Melbourne TBLs by Samie et al. (2018) for Reτ from 6000 to 20 000. Channel experiments
are not collected here because of their limited Reτ variation covered by the DNS of Lee &
Moser (2015). Note that the data uncertainty, especially concerning the probe resolution
in experiments and grid resolution in the DNS, are not addressed in this paper (see CS
for a brief discussion). We do wish to reiterate, however, that there is much need for
better-resolved data.

The paper is organized as follows. Section 2 presents data collapse for the inner flow
region, which leads to the uniform expansion scheme presented there. Section 3 begins
with the verification of outer similarity, followed by the derivation of the defect decay,
using comprehensive data comparisons. Section 4 is devoted to a discussion of the
geometry effect. A perspective and summary of the results are given in § 5.
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Asymptotics of wall-turbulence fluctuations

2. The Reτ -scaling for the near-wall region

A general framework for an asymptotic expansion for 〈uu〉+, 〈ww〉+ and p′+, represented
by φ, can be written as (Spalart & Abe 2021; Monkewitz 2022)

φ( y+, Reτ ) = f0( y+) + f1( y+)g(Reτ ) + f2( y+)g2(Reτ ) + h.o.t., (2.1)

where g is the gauge function of Reτ ; f0, f1 and f2 (as well as f introduced below
in (2.2)) are general functions depending merely on the wall-normal distance y+, and
h.o.t. indicates high-order terms. For the streamwise mean velocity φ = U+, a first-order
truncation of (2.1) is fairly accurate near the wall. In the rest of this section, we first show
data collapse of 〈uu〉+, 〈ww〉+ and p′+ after normalization by their corresponding peak
values, and then summarize a common expansion for these quantities, which is actually a
second-order truncation of (2.1); we pick up the connection to (2.1) in § 2.2.

2.1. Data collapse near the wall
Figure 1 shows the profiles of 〈uu〉+, for the channel (figure 1a,b), the pipe (figure 1c,d)
and the TBL (figure 1e, f ). While figure 1a,c,e displays marked Reτ variations,
figure 1b,d, f illustrates excellent data collapse after normalization by peak values; that
is

〈uu〉+( y+, Reτ ) = 〈uu〉+p (Reτ )f ( y+). (2.2)

Note that according to CS, the peak location is an invariant at y+
p ≈ 15. This is generally

accepted as correct (at least since Sreenivasan (1989)), see Smits et al. (2021). On the other
hand, Pirozzoli et al. (2021) commented that the invariant peak location is violated by
their pipe data, which show that y+

p slightly increases from 14.28 at Reτ ≈ 500 to 15.14 at
Reτ = 6000. Nevertheless, using finer near-wall resolutions than in Pirozzoli et al. (2021),
Yao et al. (2023) found no such variation of y+

p with Reτ (y+
p = 15.07, 15.03, 15.50 for

Reτ = 180, 2000, 5000, respectively). This small variation is typically found by others
as well (Moser, Kim & Mansour 1999; Jimenez et al. 2010; Chin et al. 2014) but
it is non-systematic, possibly owing to secondary reasons such as the grid and probe
resolutions.

As for (2.2), data collapse for the spanwise velocity fluctuation is achieved via

〈ww〉+( y+, Reτ ) = 〈ww〉+p (Reτ )h( y+), (2.3)

where 〈ww〉+p is the peak value, and h is a y+-dependent function. As shown in figure 2,
different Reτ curves are in close agreement with each other, with the self-preserving range
from the wall to the peak (at y+ ≈ 45) or beyond. We note a marginal Reτ dependence
on this peak location; it is hard to tell whether they arise from numerical uncertainty or
physical modulation by outer flow structures. Since this variation is marginal, we shall not
consider this any further.

Coming now to pressure fluctuations, figure 3(a,c,e) shows Reτ dependence of p′+. The
best collapse is obtained by plotting p′+

p − p′+, as shown in figure 3(b,d, f ). On this basis,
we may write

p′+( y+, Reτ ) = p′+
p (Reτ ) − j( y+), (2.4)

where j is (in general) a y+-dependent function. The collapse extends from the wall to the
peak (at y+ ≈ 30), with p′+

p − p′+
w a constant around 0.4. This constancy inspires us to

postulate (2.4). Instead, if one plots p′+/p′+
p , data would not collapse (not shown here).
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Figure 1. Wall-normal dependence of streamwise velocity fluctuation scaled in viscous units (abscissa in
logarithmic scale) for a series of Reτ s in (a,b) channels, (c,d) pipes and (e, f ) TBL flows. (a,c,e) Here 〈uu〉+
versus y+. (b,d, f ) Here 〈uu〉+ normalized by its (inner) peak value 〈uu〉+p , showing very good collapse.
Coloured lines indicate DNS data at different Reτ s marked in the figure legends, for channels by Lee & Moser
(2015), for pipes by Pirozzoli et al. (2021) and for TBLs by Schlatter et al. (2009, 2010).

The reason is clear from (2.4), i.e. p′+/p′+
p = 1 − j( y+)/p′+

p (Reτ ): an increasing p′+
p with

Reτ would eventually spoil the data collapse of p′+/p′+
p . That is the reason why (2.2) or

(2.3) is not applied to p′+. Note that Panton et al. (2017) attempted another data collapse
by using 〈pp〉+w − 〈pp〉+, but it is not as satisfactory as (2.4) in figure 3, as also discussed
later in § 3.
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Figure 2. The same plots as in figure 1 but for the spanwise velocity fluctuations: (a,b) channels, (c,d) pipes
and (e, f ) TBLs; (a,c,e) 〈ww〉+, (b,d, f ) 〈ww〉+/〈ww〉+p versus y+. Lines represent the same DNS data as in
figure 1.

2.2. Summary for the near-wall scaling
The above comparisons demonstrate that the Reτ and y+ dependencies could be decoupled
after a proper normalization by peak values. Recalling (1.2) for the Reτ -scaling of the peak
values and substituting it for 〈uu〉+p , 〈ww〉+p and p′+

p into (2.2), (2.3) and (2.4), respectively,
one has a uniform expansion, as reinforced for 〈uu〉+ also by Monkewitz (2022), i.e.

φ( y+) = φ0( y+) + φ1( y+)/Re1/4
τ , (2.5)
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Figure 3. Wall-normal dependence for the r.m.s. of pressure fluctuation p′+ = 〈pp〉+1/2 in (a,b) channels, (c,d)
pipes and (e, f ) TBL flows: (a,c,e) p′+; (b,d, f ) p′+

p − p′+ versus y+. Lines are the same DNS data as in figure 1.

where φ0( y+) = φ∞f ( y+) and φ1( y+) = −cφ,∞f ( y+) for u; φ0( y+) = φ∞h( y+) and
φ1( y+) = −cφ,∞h( y+) for w; φ0( y+) = φ∞ − j( y+) and φ1( y+) = −cφ,∞ for pressure
fluctuations.

Note that (2.5) is a specific case of

φ( y+, Reτ ) = f0( y+) + f1( y+)g(Reτ ), (2.6)

which is a second-order truncation of (2.1), considered also by Spalart & Abe (2021) and
Monkewitz (2022). If f0 = 0, (2.6) reduces to

φ( y+, Reτ ) = f1( y+)g(Reτ ), (2.7)
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which is the scaling proposed by Smits et al. (2021) for 〈uu〉+ with g(Reτ ) = ε+
x−w

(streamwise wall dissipation). However, Smits et al. (2021) found that their proposal did
not work as well for 〈ww〉+, which they speculated was due to different superposition
and modulation enforced by outer flow structures. Here, we show that replacing wall
dissipation by peak value, i.e. g = φp, (2.7) applies for both 〈uu〉+ and 〈ww〉+. Even so,
(2.7) is not proper for pressure due to a constancy p′+

p − p′+
w as explained earlier. The

non-zero f0 needed in (2.6) has been missed in the past.
Finally, we recall that from (2.6), Monkewitz (2022) developed a composite model for

〈uu〉+, which shows that g = Re−1/4
τ yields a better data description than the alternative

g = ln Reτ considered by Smits et al. (2021). The gauge function g = Re−1/4
τ in (2.6)

restores wall scaling for asymptotically high Reτ ; we will use it below to derive an outer
decay profile, which has not been achieved before.

3. The Reτ -scaling for the outer region and the defect law for fluctuations

Similar to (2.1) for the inner region, an asymptotic expansion for the outer flow reads

φ( y∗, Reτ ) = F0( y∗) + F1( y∗)G(Reτ ) + F2( y∗)G2(Reτ ) + h.o.t., (3.1)

where y∗ = y+/Reτ is the outer unit; F0, F1 and F2 are general functions depending on y∗,
and G(Reτ ) is the gauge function. In analogy to law of the wall, the outer flow similarity
corresponds to the first-order truncation in (3.1), i.e.

φ( y∗, Reτ ) = F0( y∗). (3.2)

When we take φ = U+
e − U+, the resulting equation for the mean velocity is known as the

velocity defect law. Here, the subscript e indicates the value at y∗ = 1, i.e. the centreline for
channel and pipe flows, and the boundary layer edge for TBL. This law has been explored
extensively in the literature – see Nagib, Chauhan & Monkewitz (2007) and She, Chen &
Hussain (2017) for recent efforts. We shall now develop the equation for the fluctuating
quantities.

An assessment of outer similarity for the three fluctuation profiles is shown in figure 4,
with figure 4(a–c) for the channel, figure 4(d–f ) for the pipe and figure 4(g–i) for the TBL.
It is particularly remarkable that the pressure fluctuation displays an excellent data collapse
from y∗ = 0.1 to y∗ = 1. In the same flow region, the spanwise velocity variance data also
collapse well, with a deviation of the order of 0.1 (scaled on u2

τ ). For streamwise velocity,
the outer similarity holds better towards the outer edge though discernible Reτ dependence
exists towards small Reτ . For Reτ > 1000, the streamwise variance profiles collapse
together closely (figures 5 and 6), thus supporting the outer similarity of fluctuations for
high Reτ .

3.1. Matching for the defect law for fluctuations
Based on the above inner expansion and outer similarity, we now develop a matching
procedure to derive the analytical form in the intermediate zone. One may invoke the
derivation of Millikan (1938) for the log law in the mean velocity distribution, which
has been extended for 〈uu〉+ by Hultmark (2012) and for 〈pp〉+ by Panton et al. (2017).
Nevertheless, different orders of matching would lead to different scaling proposals, and
here we present a short account of matching to obtain the defect law for fluctuations.

As a starting point, we note an exact matching between the inner and outer flows for
the total stress in channels or pipes. That is, τ+( y+, Reτ ) = 1 − y+/Reτ , which can be
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Figure 4. Wall-normal dependence of turbulence fluctuations in outer length unit y∗ = y/δ (the abscissa in
linear scale): (a–c) channels, (d–f ) pipes and (g–i) TBLs; (a,d,g) 〈uu〉+; (b,e,h) 〈ww〉+; (c, f,i) p′+. Lines are
the same DNS data as in figure 1.

rewritten as τ+( y∗, Reτ ) = 1 − y∗. The first version of τ+( y+, Reτ ) corresponds to the
two-term inner expansion of (2.6) with φ = τ+, f0( y+) = 1, f1( y+) = y+ and g = Re−1

τ ;
the second version of τ+( y∗, Reτ ) corresponds to the one-term expansion in (3.1), or to the
outer similarity in (3.2) with φ = τ+ and F0( y∗) = 1 − y∗. Thus, the total stress satisfies
a straightforward matching between (2.6) and (3.2), i.e. f0( y+) + f1( y+)g(Reτ ) = F0( y∗),
valid for the entire flow, quite unlike Millikan’s matching analysis that requires 1/Reτ �
y∗ � 1 (or 1 � y+ � Reτ ) and dictates a term-by-term balance.

Therefore, we match (2.6) directly with (3.2), i.e. φ( y+, Reτ ) = F0( y∗), and obtain

φ( y+, Reτ ) = f0( y+) + f1( y+)/Re1/4
τ

= f0( y+) + h1( y+)y∗1/4

= F0( y∗) (3.3)

(where g = Re−1/4
τ is used and h1( y+) = f1( y+)/y+1/4). Note that f0 = φ0 and h1 =

φ1/y+1/4 as the wall is approached, so that (3.3) approaches (2.5), but f0 and h1 towards
the outer region are to be determined. At this stage, as F0( y∗) in (3.3) depends only on y∗,

976 A21-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

92
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.928


Asymptotics of wall-turbulence fluctuations

y/δ
0

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0
y/δ

0

2

10–3 10–2 10–1 100

4

6

8

10

DNS TBL
Reτ = 1270

Reτ = 1570

Reτ = 1990

DNS Pipe
Reτ = 2000

Reτ = 3000

Reτ = 6000

DNS Channel
Reτ = 2000

Reτ = 5200

Reτ = 10 000

〈u
u〉

+

0

0

2

4

6

8

10

0.2 0.4 0.6 0.8 1.0

0

2

10–310–4 10–2 10–1 100

4

6

8

10

〈u
u〉

+

0

0

3

6

9

0.2 0.4 0.6 0.8 1.0

0

3

10–310–4 10–2 10–1 100

6

9

〈u
u〉

+

(a) (b)

(c) (d)

(e) ( f )

Figure 5. Variance of streamwise velocity fluctuation of DNS data at high Reτ . Channel data in (a,b) are
Reτ = 2000, 5200 from Lee & Moser (2015), Reτ = 104 from Hoyas et al. (2022). Pipe data in (c,d) from
Pirozzoli et al. (2021). Panels (e, f ) for TBL, Reτ = 1270 from Schlatter & Örlü (2010), Reτ = 1570, 1990
from Sillero et al. (2013). Here (a,c,e) is for abscissa in linear and (b,d, f ) in logarithmic outer units y∗ = y/δ,
to highlight wall-normal distances close to the wall. Dotted (green) line in (a,b) indicates 1.61 − 1.25 ln y∗ by
Hultmark et al. (2012); 2.2 − 1.26 ln y∗ in (c,d) by Marusic et al. (2013) and 1.95 − 1.26 ln y∗ in (e, f ) by Samie
et al. (2018). Dashed (red) lines indicate the present relation (1.3), i.e. 10 − 9.3y∗1/4, the same for all the flows
here.
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Quantity φ α
(CH)
φ α

(Pipe)
φ α

(TBL)
φ β

(CH)
φ β

(Pipe)
φ β

(TBL)
φ

〈uu〉+ 10 10 10 9.3 9.3 9.3
〈ww〉+ 3.9 3.9 3.6 3.45 3.45 2.6
p′+ 4.84 4.6 4.65 4.1 3.7 3.15

Table 1. Parameters in (1.3), for different fluctuations. Superscripts ‘CH’, ‘Pipe’ and ‘TBL’ represent channel,
pipe and boundary layer flows, respectively. Note that both αφ and βφ vary only modestly among different flows,
implying that essentially the same mechanisms applies for all flows. Moreover, βφ is quite close to αφ , as φ at
the boundary layer edge y∗ = 1 is fairly small.

we have ∂F0( y∗)/∂y+ = 0 in (3.3), and hence

f0( y+) = c0, (3.4a)

h1( y+) = c1, (3.4b)

where c0 and c1 are constants independent of y∗, y+ and Reτ , but may depend on the
variable φ. Denoting c0 = αφ and c1 = −βφ , we obtain (1.3) from (3.3) and (3.4). It is
readily verified that (1.3) matches (3.2) in the outer region and (2.6) in the inner, hence
offers a common description connecting the two.

In the above procedure, we have assumed that the two-term expansion f0( y+) +
f1( y+)g(Reτ ) extends to the outer flow, so that it matches with F0( y∗) and satisfies the
outer similarity as well. As explained above, the procedure works exactly for the total
stress in channels and pipes with g = Re−1

τ .

3.2. Comparison with the data
Figures 5–8 show comparisons of data with (1.1) and (1.3) for 〈uu〉+, 〈ww〉+ and p′+,
respectively. Table 1 collects all the parameters for the three profiles, arising from these
fits to the data, which we now discuss.

Similar to figures 1–3, figures 5(a,b), 6(a,b), 7(a,b) and 8(a,b) are for channel,
figures 5(c,d), 6(c,d), 7(c,d) and 8(c,d) for pipe and figures 5(e, f ), 6(e, f ), 7(e, f ) and 8(e, f )
for boundary layers; for figures 5(a,c,e), 6(a,c,e), 7(a,c,e) and 8(a,c,e) the abscissa are in
linear units while for figures 5(b,d, f ), 6(b,d, f ), 7(b,d, f ) and 8(b,d, f ), logarithmic units
are used. A difference from figures 1–3 is that the data in figures 5–8 are denoted by black
symbols, so that (1.1) and (1.3) are better marked to guide the eye.

Particularly for 〈uu〉+, to avoid distractions by data scatter at small Reτ , we collect in
figure 5 only high Reτ profiles from DNS, namely, Reτ from 2000 to 104 for channel; 2000
to 6000 for pipe; and 1270 to 1990 for TBL. Compared with figure 4(a,d,g), it is clear in
figure 5(a,c,e) that all high Reτ profiles collapse on each other in the flow range 0.1 �
y∗ � 1, thus bearing witness to outer similarity. This is confirmed again by experimental
data in figure 6 corresponding to higher Reτ .

Note that the logarithmic behaviour advanced in the literature (Hultmark et al. 2012;
Marusic et al. 2013; Samie et al. 2018) is indicated by a green dotted line. Although it
characterizes data in the region from 0.1 � y∗ � 0.3, the value of the intercept Bφ needs
to be adjusted for the three flows from 1.61 to 2.2, while Aφ holds constant around 1.26. In
contrast, the red dashed line represents (1.3) with the same αφ = 10 and βφ = 9.3, which
reproduces data well for channel, pipe and TBL flows, covering not only the logarithmic
range (vis-à-vis the mean flow) but also the so-called wake region, almost all the way to
the centreline of channel and pipe flows.
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Figure 6. Variance of streamwise velocity fluctuation in high Reτ experiments. Data in (a,b) from Princeton
pipe (Hultmark et al. 2012), (c,d) from Princeton TBL (Vallikivi et al. 2015) and (e, f ) from Melbourne TBL
(Samie et al. 2018). Dotted (green) line in (a,b) indicates 1.61 − 1.25 ln y∗ by Hultmark et al. (2012); 2.2 −
1.26 ln y∗ in (c,d) by Marusic et al. (2013) and 1.95 − 1.26 ln y∗ in (e, f ) by Samie et al. (2018). Dashed (red)
lines indicate (1.3), i.e. 10 − 9.3y∗1/4 in all the panels (here y∗ = y/δ).

One may imagine that the data in figure 5 have not reached the asymptotic state
and that (1.1) might agree with data better for higher Reτ . But experimental data from
Princeton pipes (Hultmark et al. 2012) with Reτ covering one more decade, e.g. Reτ

from approximately 5000 to 105, do not show any improvement of the fit to (1.1) (see
figure 6a,b). A similar observation is also true for the TBL, as shown in figure 6(c–f ).

Likewise, for 〈ww〉+ and p′+, (1.3) extends almost all the way to the centreline of
channel and pipe flows. Here, data in figures 7 and 8 are the same DNS groups as in
figure 1 and contain those low Reτ profiles. The agreement with (1.3) is excellent at the
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Figure 7. Variance of spanwise velocity fluctuation in channel (a,b), pipe (c,d) and TBL (e, f ) flows scaled in
outer units y∗ = y/δ. Dashed (red) lines indicate the bounded decay (1.3) with parameters in table 1. Dotted
(green) lines indicate the logarithmic decay (1.1), i.e. 1.08 − 0.387 ln y∗ for channel and pipe, and 1.23 −
0.387 ln y∗ for TBL. Symbols with lines are the same DNS data as in figure 1, i.e. channel from Lee & Moser
(2015), pipe from Pirozzoli et al. (2021), TBL from Schlatter et al. (2009, 2010).

smallest Reτ ≈ 500 for channel and pipe, in contrast to the log variation that agrees with
data only for Reτ � 2000. Therefore, in both y and Reτ ranges, (1.3) covers a wider range
than (1.1).

Three further points will now be discussed. First, the difference between (1.3) and (1.1)
is more vital for asymptotically high Reτ . For (1.1), an infinitely large of φ ∝ ln Reτ would
arise as y∗ → 0 and Reτ → ∞. In contrast, (1.3) assigns a plateau of φ ≈ αφ in the same
limit. Such an asymptotic plateau implies that turbulent eddies in the bulk would be in a
quasiequilibrium state in the sense that their contribution to φ is invariant when y changes.
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Note also that according to (1.3), the outer peak of 〈uu〉+, if it exists, should be bounded
by 〈uu〉+ ≈ 10. Clarification of such differences of perspectives in the asymptotic state
require data at higher Reynolds numbers.

Second, while (1.3) adheres closely with TBL data of Vallikivi et al. (2015) up to y∗ = 1
(figure 6c), it is slightly and uniformly higher than the TBL data of Samie et al. (2018) for
y∗ > 0.6 (figure 6e). This is due to the fact that the former set of data are obtained for
flow over a flat plate mounted in the same pipe in which data of Hultmark et al. (2012) are
measured. Therefore, the data of Vallikivi et al. (2015) in its outer wake region resemble
the centre behaviour of pipe data by Hultmark et al. (2012), both in agreement with (1.3) up
to y∗ = 1. In contrast, TBL data of Samie et al. (2018) are measured in the Melbourne wind
tunnel with the standard free stream boundary condition, so that a vanishing 〈uu〉+ ≈ 0
towards the boundary layer edge is observed (figure 6e, f ), which is lower than (1.3). This
difference reflects the wake influence on 〈uu〉+ in TBL. In fact, the wake influence is much
sharper for 〈ww〉+ and p′+ in TBL (figures 7e and 8e). This issue will be addressed in § 4.2.

The third point is that, for p′+, the green dotted line in figure 8 represents

p′+( y∗) = √
Bφ − Aφ ln y∗, (3.5)

which is the square root of (1.1) for pressure variance

〈pp〉+( y∗) = Bφ − Aφ ln y∗. (3.6)

This equation is obtained by Panton et al. (2017) via an inner–outer matching (i.e. a
viscous inner layer overlapping with an inviscid outer layer). It is almost indistinguishable
from (1.3) in figure 8. Nevertheless, as shown in figure 9(a–c), 〈pp〉+w − 〈pp〉+ versus y+
produces no data collapse for y+ > 5. Particularly for the trough located at approximately
y+ = 30, the data are markedly lower for increasing Reτ , thus creating a challenge for the
inner–outer matching analysis. To reconcile this challenge, Panton et al. (2017) introduced
two logarithmic slopes, i.e. ACP = 2.56 for the common part of presumed log profile in the
overlap layer, and another Aw = 2.24 for the Reτ variation of the wall pressure. Following
this fix, one can estimate

〈pp〉+p − 〈pp〉+w ∝ (ACP − Aw) ln Reτ ≈ 0.32 ln Reτ , (3.7)

which would break the wall scaling completely.
As a comparison, figure 3(b,d, f ) show that data of p′+

w − p′+ collapsed well up to the
trough, better than 〈pp〉+w − 〈pp〉+ in figure 9(a–c). Moreover, via the bounding relation
p′+

w ≈ 4.4 − 10.5/Re1/4
τ and p′+

p ≈ 4.84 − 10.5/Re1/4
τ given in CS, we have

〈pp〉+p − 〈pp〉+w = p′+2
p − p′+2

w ≈ 4.07 − 9.24/Re1/4
τ , (3.8)

which depicts data satisfactorily over a wider Reτ range than (3.7) in figure 9(d).
Finally, to evaluate the goodness of the theoretical fits with the data, taking the

channel at Reτ = 5200 (Lee & Moser 2015) for example, we have calculated the variance
of difference between DNS data (φData) and theoretical predictions (φEq), i.e. σ 2 =∑

0.1≤y∗
i ≤1 [φData(y∗

i ) − φEq(y∗
i )]

2/N where N is the total number of data points in the

range from y∗ = 0.1 to y∗ = 1. For (1.3), σ 2 is 0.007 for 〈uu〉+, 0.002 for 〈ww〉+ and
0.002 for p′+; while for (1.1), σ 2 is 0.26, 0.14 and 0.004 for 〈uu〉+, 〈ww〉+ and p′+,
respectively. The larger σ 2 of (1.1) for 〈uu〉+ and 〈ww〉+ is not surprising because of their
deviation from data towards the centreline. But we should remember that (1.1) is derived
for asymptotically high Reτ and is not supposed to depict the data behaviour towards
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Figure 8. The r.m.s. of pressure fluctuation in channel (a,b), pipe (c,d) and TBL (e, f ) flows scaled in the outer
unit y∗ = y/δ. Dashed (red) lines indicate the bounded decay (1.3) with parameters in table 1. Dotted (green)
lines indicate the logarithmic decay in (3.5), i.e.

√
0.27 − 2.56 ln y∗ for channel,

√
0.6 − 2.45 ln y∗ for pipe and√

2.5 − 2.45 ln y∗ for TBL. Symbols with lines are the same DNS data as in figure 7.

y∗ = 1. In this sense, 1/Reτ � y∗ � 1 might be better for the competition between the
two proposals, but that would lose sight of the advantage that (1.3) covers a wider outer
domain.

3.3. Brief critique of the matching arguments
Two further points will be considered here. Despite the agreement with the data, one
should note that, according to (1.3), ∂φ/∂y∗ = −βφ/4 at y∗ = 1, which is against the
mirror symmetry of ∂φ/∂y∗ = 0 at the centreline of channel and pipe. This indicates that
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Figure 9. Wall-normal dependence of the variance of pressure fluctuations is shown in the plots of 〈pp〉+w −
〈pp〉+ versus y+, where 〈pp〉+w is the wall-value of 〈pp〉+. Lines are the same DNS data as in figure 3:
(a) channels; (b) pipes; (c) TBLs. Note that lines depart markedly from each other with increasing Reτ in
the region y+ > 5. (d) Difference between the peak and wall values of pressure variance, i.e. 〈pp〉+p − 〈pp〉+w ,
for channel, pipe and TBL flows for a series of Reτ values. Dotted line (green) indicates the logarithmic growth
by (3.7), i.e. 0.32 ln Reτ + 0.33. Dashed line (red) indicates the bounded variation of (3.8) according to CS.
Symbols are DNS data, squares for channel (Lee & Moser 2015), circles for pipe (Pirozzoli et al. 2021) and
diamonds for TBL (Schlatter et al. 2009). Note that DNS channel data at Reτ = 150, 300, 400 of Iwamoto,
Suzuki & Kasagi (2002), and Reτ = 180, 550, 944, 2000 of Hoyas & Jimenez (2006) are also included here.

there is a discrepancy between (1.3) and data towards the centreline, for which a centre
core layer or the wake modification is needed, as shown in Monkewitz (2023).

Secondly, a perusal of the fits with data suggests the existence of a gap between the inner
peak and the outer data collapse, particularly for 〈uu〉+ (figure 1b,d, f ). This indicates
a modest Reτ -dependence even after normalization by the peak. This may also be the
influence of higher-order terms in (2.1), as explained here by the two-term expansion.
From (2.6), we expand φ( y+)/φp( y+) by the parameter g(Reτ ); that is,

φ(y+)

φ( y+
p )

= f0(y+)

f0( y+
p )

{
1 +

[
f1(y+)

f0(y+)
− f1( y+

p )

f0( y+
p )

]
g(Reτ ) + · · ·

}
. (3.9)

When f0( y+) and f1( y+) are proportional to each other, one has f1(y+)/f0(y+) −
f1(y+

p )/f0(y+
p ) = 0, and hence φ(y+)/φ(y+

p ) from (3.9) is independent of g(Reτ ). This case
corresponds to the data collapse of 〈uu〉+ from the wall to the peak. However, when f0( y+)

and f1( y+) are no longer proportional to each other, the gauge function g(Reτ ) in (3.9)
indicates that (3.9) still has Reτ -dependence, which corresponds to the gap between the
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inner peak and the outer approximation (1.3). Therefore, the proportionality or otherwise
of f0( y+) and f1( y+) in (2.6) would determine the data collapse or slight mismatch when
plotting via φ(y+)/φ(y+

p ). There is no stipulation here that the ratio of f0( y+) to f1( y+)

is constant in matching (3.3). In fact, according to (3.4), f0( y+)/f1( y+) = c0/(c1y+1/4).
Therefore, even if f0 and f1 are not proportional to each other, we can still match (2.6) with
(3.2) to obtain (3.3).

4. Discussion on the influence of flow geometry

4.1. Near wall universality
We focus here on the geometry effects. First, a universal data collapse is summarized by
unifying (2.2), (2.3) and (2.4) together, i.e.

φ( y+, Reτ ) − φw(Reτ )

φp(Reτ ) − φw(Reτ )
= fφ( y+), (4.1)

where fφ( y+) depends on y+ and φ but is independent of Reτ . For 〈uu〉+, φw = 0 so
that (4.1) reduces to (2.2); the same is true for 〈ww〉+. For p′+, as φp − φw is a constant
independent of Reτ shown in figure 3, (4.1) reproduces (2.4) with fφ = 1 − j( y+)/j(0).

Moreover, as y+ moves from the wall to the peak location, it is interesting to check
whether fφ( y+) is universal for channel, pipe and TBL flows. This is indeed verified in
figure 10(a–c), for 〈uu〉+, 〈ww〉+ and p′+, respectively. Profiles from these three wall flows
collapsed together from the wall to the peak location, which means that Reτ -dependence
and geometry influence are cancelled by the ratio of relative variations composed of φw
and φp. This is conceivable if the near-wall region is viewed as a self-organized entity,
so that superposition and modulation effects enforced by the outer flow structures are
characterized to the first order by wall and peak values.

4.2. Wake modification in TBL
Note that in figures 7 and 8, 〈ww〉+ and p′+ depart from (1.3) for y∗ � 0.5 in TBL, but
the agreement persists all the way to the centreline of channel and pipe flows. Recall the
findings by Chen, Hussain & She (2019) that the total shear stress τ+ and the Reynolds
shear stress 〈−uv〉+ in the wake of the TBL differ notably from that in channel and pipe
flows. The reason for this difference, according to Chen et al. (2019), is the non-zero mean
momentum transport in the wall-normal direction of TBL, i.e. V/Ve ∝ y∗3/2 (the subscript
e indicates the value at the boundary layer edge, as noted earlier), which offers a power
law modelling for the V profile in the bulk region. The latter leads to 〈−uv〉+ ≈ τ+ ≈
1 − y∗3/2 in TBL, differing from 〈−uv〉+ = 1 − y∗ in channel and pipe flows for which
V ≡ 0.

Once we accept the difference in the 〈−uv〉+ behaviour, we may expect a similar wake
modification on 〈ww〉+ and p′+ by the non-zero V in TBL; that is,

φ − φe ∝ φuv − φuv,e, (4.2)

where φ represents 〈ww〉+ or p′+, and φuv represents 〈−uv〉+. If so, substituting φuv ≈
1 − y∗3/2 into (4.2) yields

φ( y∗) − φe = cφ(φuv − φuv,e) ≈ cφ(1 − y∗3/2), (4.3)

where the proportionality coefficient cφ is independent of y∗ but may depend on φ.
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Figure 10. Wall-normal dependence for fluctuations after normalization by the corresponding peaks:
(a) 〈uu〉+/〈uu〉+p ; (b) 〈ww〉+/〈ww〉+p ; (c) ( p′+ − p′+

w )/( p′+
p − p′+

w ). Lines are DNS data of channel at Reτ =
1000 (Lee & Moser 2015), of pipe at Reτ = 1140 (Pirozzoli et al. 2021) and of TBL at Reτ ≈ 1270 (Schlatter
et al. 2010), all of which collapse closely on each other near the wall.

Verification of (4.3) for TBL is provided in figure 11. The agreement with the data is
quite satisfactory for y∗ > 0.2, and the fitting parameters are φe = 0 and cφ = 2.02 for
〈ww〉+, while φe = 0.8 and cφ = 1.8 for p′+. This model for the wake flow could also
be applied to describe 〈uu〉+ towards the free stream of the TBL, but the deviation is
fairly small as shown in figures 5(e) and 6(e). Monkewitz & Nagib (2023) have shown
a different behaviour of 〈uu〉+ and U+ profiles in the TBL compared with channel and
pipe flows using scaling indicator function, which implies different flow physics between
external and internal flows.

5. Perspective and conclusions

New methods of analysis and generations of new experiments and simulations have
revealed deeper and interesting questions on wall flow dynamics. Previously unthinkable
questions, such as the universality of the Kármán constant in the mean flow description
(Nagib et al. 2017; Monkewitz & Nagib 2023) and the scaling of fluctuations in these flows,
as well as the implications of the behaviour of fluctuations for the mean velocity itself,
can now be asked, and reasonable answers for them can be attempted. In contrast to the
mean velocity, concerted effort to understand the scaling of fluctuations is relatively new.
This paper, when taken together with our earlier work (Chen & Sreenivasan 2021, 2022a),
provides a self-consistent description of fluctuations in streamwise and spanwise velocity,
as well as pressure fluctuations. One of the main qualitative conclusions of this work is that
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Figure 11. Same plot as figure 7(e) for 〈ww〉+, and as 8(e) for p′+, with newly added solid (cyan) lines (4.3)
for wake modification in TBL. That is, 〈ww〉+ = 2.02(1 − y∗3/2) in (a) and p′+ = 0.8 + 1.8(1 − y∗3/2) in (b).

wall-normalized fluctuations are bounded even when Reτ → ∞, thus restoring the validity
of the standard law of the wall. The alternative scenario of attached-eddy hypothesis and
its consequences lead to a different conclusion.

We should reiterate that there exists no rigorous proof of either (1.1) or (1.3). The first
step in establishing such a proof might be to justify the boundedness or otherwise of
the peak values. An expansion analysis like that of Monkewitz & Nagib (2015) is highly
desired, but how to choose a correct expansion parameter from first principles is currently
unclear. Similarly, the quasilinear approximation by Hwang & Eckhardt (2020) is of also
interest, as such an approach could reveal with much less computation the asymptotic
feature of the Navier–Stokes equations as Reτ → ∞. There are significant issues for future
study.

Aiming for an asymptotic description of fluctuations in canonical wall flows, we have
obtained several new results, summarized as follows. First, excellent data collapse is
achieved for the near-wall r.m.s. profiles of streamwise and spanwise velocity fluctuations
(〈uu〉+ and 〈ww〉+) as well as pressure fluctuations (p′+). Their spatial variations and the
Reynolds number dependence are decoupled via the normalization through peak values.
With the defect law for the peaks given in CS, a universal near-wall expansion (2.6) is
obtained with the specific gauge function g = Re−1/4

τ .
Moreover, a defect decay (1.3) is derived by matching (2.6) with the outer similarity

(3.2). Compared with the log profile by Townsend’s attached-eddy hypothesis, it is shown
that (1.3) reproduces the data better, not only over a wider Reτ domain but also in a larger
flow region. As indicated by (1.3), there would appear an asymptotic plateau as y∗ → 0
and Reτ → ∞, which implies a quasiequilibrium state with contributions to fluctuations
coming from all associated eddies that are invariant as wall-normal position changes. If
so, the intriguing outer peak of streamwise fluctuation, if one exists, would be bounded by
〈uu〉+ ≈ 10.

Finally, a near-wall universality (4.1) is obtained independent of both Reynolds number
and flow geometries. In addition, a wake flow modification in TBL is introduced for 〈ww〉+
and p′+, which shows close agreement with data towards the boundary layer edge.

There is no gainsaying that more and better data are required to put all these results on
a firmer foundation. It is exciting to await cleaner data at higher Reynolds numbers with
improved resolution.
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