
RESEARCH ARTICLE

Scipion3: Aworkflow engine for cryo-electron microscopy
image processing and structural biology

Pablo Conesa1 , Yunior C. Fonseca1, Jorge Jiménez de la Morena1, Grigory Sharov2 ,
Jose Miguel de la Rosa-Trevín3, Ana Cuervo1, Alberto García Mena1, Borja Rodríguez de Francisco1,
Daniel del Hoyo1, David Herreros1 , Daniel Marchan1, David Strelak1,4, Estrella Fernández-Giménez1,
Erney Ramírez-Aportela1, Federico Pedro de Isidro-Gómez1 , Irene Sánchez1, James Krieger1,
José Luis Vilas1, Laura del Cano1, Marcos Gragera1, Mikel Iceta1, Marta Martínez1, Patricia Losana1,
Roberto Melero1, Roberto Marabini1,5, José María Carazo1 and Carlos Oscar Sánchez Sorzano1

1National Center of Biotechnology (CNB-CSIC), Madrid, Spain
2Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
3St. Jude Children’s Research Hospital, Memphis, TN, USA
4Masaryk University, Brno, Czech Republic
5Superior Polytechnic School, Autonomous University of Madrid, Madrid, Spain
Corresponding author: P. Conesa; Email: pconesa@cnb.csic.es

Received: 10 January 2023; Revised: 29 May 2023; Accepted: 15 June 2023

Keywords: cryo-EM; extensible; software-framework; integration; multidomain; workflows

Abstract

Image-processing pipelines require the design of complexworkflows combiningmanydifferent steps that bring the raw
acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy
single-particle analysis (cryo-EMSPA), hundreds of steps must be performed to obtain the three-dimensional structure
of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies
of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep
track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of
any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low
SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources
are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present
Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main charac-
teristics are: (a) interoperability, (b) smart objectmodel, (c) gluing operations, (d) comparison operations, (e) wide set of
domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing
environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication
and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility,
(o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.

Impact statement
In fast-evolving research fields, involving software interoperability does not come first. Software developers are
focused on developing the best algorithm possible. Researchers in the field have to choose which software to use
and quite often they do not have the chance or the skills to switch to another without starting over. In case they
make the switch, they are faced with serious issues like traceability, data, and metadata conversion which will

©TheAuthor(s), 2023. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided that no alterations are made and the original article is properly cited. The written permission
of Cambridge University Press must be obtained prior to any commercial use and/or adaptation of the article.

Biological Imaging (2023), 3: e13
doi:10.1017/S2633903X23000132

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://orcid.org/0000-0003-0575-7718
https://orcid.org/0000-0002-6930-4999
https://orcid.org/0000-0003-1509-1649
https://orcid.org/0000-0003-2289-2364
mailto:pconesa@cnb.csic.es
http://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1017/S2633903X23000132
https://doi.org/10.1017/S2633903X23000132


complicate their research and divert them from theirmain activity. Scipion3 fills this gap bringing interoperability
among software, traceability, reproducibility, and versatility.

1. Introduction

Cryo-electron microscopy (cryo-EM) has become a mature structural biology technique to solve high-
resolution biological structures(1). Briefly, four consecutive tasks complete the cryo-EM pipeline: sample
preparation, image acquisition, image processing, and structure modeling(2–4). The last two steps fall into
the image or data processing activity. Over the last decade, many algorithms have been published to assist
structural biologists in achieving protein structures. However, the nature of these image-processing
programs differs in many aspects: in terms of execution, some can be called from the command line in
an automated way while others need graphical user interaction, and some require large computational
clusters and long execution times while others are swift. Concerning imaging conventions, each program
assumes a specific location of the origin of the images, contrast, preprocessing steps, the geometrical
meaning of shared parameters, and exclusive parameters uncommon to other programs. Regarding
software, programs depend on different programming languages and libraries, which in turn may conflict
with other versions of the same library required by other software; and so forth. All these differences
hinder interoperability among the various programs. Each one of these programs has different strengths
and weaknesses. Robust image-processing pipelines need to combine various software packages,
compare their results as a way to validate the outputs and continue only with those parameters that have
been consistently found by two or more different algorithms(5).

An image-processing workflow engine aims to lower the interaction barriers among the different
software packages. With this aim, Scipion wraps the image-processing steps into small modules called
protocols. Most protocols work similarly: (Step 1) Converts the input to the file format and imaging
conventions assumed by the image-processing program. (Step 2) Sets up the execution environment
needed by the program and invokes it with compatible input data and metadata. (Step 3) Collects the
output from the program and keeps annotations about the output data and metadata, possibly converting
part of the output metadata into a common representation that can be subsequently adapted to the input of
the following protocol. The internal representation of the different objects within the workflow engine
must be flexible to keep (a) the shared information in a standard representation that can be converted to
any of the integrated programs and (b) the uniquely defined information that is only used by a specific
software package that may be needed in subsequent steps. This flexibility significantly restricts how the
workflow engine can internally represent the information (see Figure 1).

In addition to the interoperability requirement and the need to construct robust image-processing
pipelines, there are other needs that any image-processing workflow engine must fulfill (in the following
list, we will include interoperability for further reference):

A. Interoperability.Guarantee that the output of one of the image-processing steps can be the input of
the next one. Interoperability involves file format and geometrical conventions, as well as
preprocessing conversions. It may also include providing an environment compatible with the
different software packages (directory structure, filename conventions, system environment,
etc.).

B. Smart object model.Different entities along the path have different meanings and can be used for
various purposes. These entities may follow an ontological hierarchy. For instance, we may have
a generic “set of images” that is further specialized into “set of movies,” “set of micrographs,” and
“set of particles.” Despite all of them being sets of images, their metadata differs among them.
Tasks may be applied to some of the object types but not to others. For example, when a protocol
defines its inputs, it may also limit its input types. Additionally, there may not be a one-to-one
relationship between an object and a file. For instance, a set of images may involve a single file
(with the entire stack of images), various files (each image stored independently), or even a set of
files and a set of associatedmetadata, which, in its turn, may be kept in one or various files, or even

e13-2 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


as a set of entries in a database. The workflow engine must be capable of supporting several
formats, as each software package may make assumptions about the physical organization of
the data.

C. Gluing. Along with the execution of a complex image-processing workflow, housekeeping and
organizational functions are required. For instance, applying a constraint to a set of images. These
constraints are generally applied to the metadata associated with the images such as alignment or
acquisition parameters, classification into different subgroups, quality factors, and so forth. Since
these operations are not usually provided by the underlying software packages, primarily focused
on scientific calculations, the workflow engine should implement them to facilitate flexible image
processing and rich analysis capabilities.

D. Comparison. Since in many cases, the same task can be solved by several algorithms, a crucial
family of operations that the workflow engine can provide is comparing the results of those
algorithms to identify metadata incorrectly estimated.

E. Wide set of domain-specific operations. The availability of the required tools for image-
processing analysis is partly behind the success of a workflow engine. In cryo-EM image
processing, Scipion integrates over 60 software packages and over 1,000 protocols(6), all related
to the computational analysis of macromolecular structures. This richness allows very sophisti-
cated image analysis pipelines thanks to the possibility of combining multiple software packages
along the path and comparing their respective outputs.

F. Execution in streaming.The acquisition of a cryo-EMdataset typically takes a fewdays duringwhich
some TBs of data could be generated. To identify problems related to the acquisition or the sample
quality early and take corrective actions, it is essential to start processing the data as it is produced.
Nevertheless, this poses a challenge to the design of the workflow engine as the entities flowing
through the pipeline are not “closed.” Instead, they are continuously updated with new data that need
further processing. This fundamental characteristic is specific to image processing and is missing in
most alternative workflow engines, which typically assume that the input datasets are static.

G. Smooth integration in high-performance computing (HPC) environments.Due to the large size of
the acquired datasets, these images are typically analyzed in HPC clusters. However, local fat
nodes for the analysis are also used due to the recent introduction of GPUs. Therefore, the
workflow engine must be flexible enough to allow local execution and distributed execution in
HPC clusters, which further impose limitations on the use of queues, connection/authentication
constraints for accessing the worker nodes, setting up the execution environments on the fly, and
so forth.

H. Execution with and without graphical capabilities. Graphical interfaces are handy for designing
the workflow analysis interactively, making decisions at the sight of the results of the executed
steps, including or excluding images from the study, and so forth. However, HPC environments
often do not allow graphical interfaces. Therefore, the workflow engine must enable the analysis
in these more challenging environments by providing automatic selection tools.

I. Flexible visualization. Additionally, different software packages may provide separate data
analysis tools for the same entity type. The workflow engine must allow multiple viewers for
the same object to coexist.

J. User authentication and validation. Another critical issue, especially in shared environments, is
the need to restrict access to the data and analysis exclusively to those users allowed to access
them. For instance, two different users may share the same workflow engine to analyze their data.
Each one must have access to their analysis but should be prevented from accessing the other
user’s data.

K. Scripting capabilities. On many occasions, it is convenient to define the workflow on-the-fly
following some logic that may automatically decide the next step to execute. Scripting languages,
such as Python, are very suitable for this kind of application as they combine ease of development
with expression richness and an extensive collection of existing libraries. It is desirable that the

Biological Imaging e13-3

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


workflow engine itself could be called from such scripts and grant full access to its functionality
through an API (Application Program Interface).

L. High performance. The workflow engine should be light in its own computational and storage
requirements; that is, the maintenance of the metadata and the status of the execution state of each
one of the protocols should not hinder high throughput (e.g., in cryo-EM, the microscope
produces a movie of about 8 GB every 5 s and the workflow engine cannot spend a significant
part of the computational resources for its function). A similar situation can be caused by the
handling of indexes and metadata of millions of images, a common case in cryo-EM, in which
thousands of movies are aligned into micrographs containing hundreds of particles each resulting
in a few million images.

M. Traceability. In cryo-EM, as in many other image-processing domains, the analysis of millions of
images must be tailored to the specific structure and acquisition being processed. This involves
hundreds of smaller steps, trial and error workflow branches, dozens of decisions, and so forth,
until the final result is produced. Keeping track of all the parameters of the hundreds of steps and
all the decisions is a formidable task without the help of some specific software. The workflow
engine should keep track of all the steps, their inputs and outputs connectivity, and all the
parameters used along the path.

N. Reproducibility. All steps or even the whole workflow should be reproducible when the same
image-processing pipeline is executed twice on the same input data. Some underlying processes
hinder this reproducibility with a random initialization, which makes perfect sense from the point
of view of image processing. This prevents obtaining the same result if the same program is
executed multiple times on the same input. Therefore, the workflow engine should provide the
mechanisms to get the same result if the underlying process is deterministic and to compare two
different outcomes if it is not.

O. Self-reporting.Once an image analysis workflow has been executed, the workflow engine should
provide some form of self-report so that the user and an external reader may follow the operations
and decision branches to go from the raw input data to the final result. This report should be
complete enough to allow a critical assessment of the results without omitting any
intermediate step.

P. Reusability. Although each project may involve different image-processing steps and user
automatic decisions, some parts of the applied workflow could be consistently repeated in other
projects. Therefore, amature workflow engine should allow the definition of templates that can be
reused among projects with minimal user intervention. At the same time, it should allow the
modification of critical parameters so they can be adapted to the specific project. Ideally, these
templates should be publicly available in some repository for more accessible user interchange.

Q. Extensibility.Theworkflow enginemust allow extending its operations through somemechanism
so that new software packages and functionality can be added without modifying the workflow
engine source code.

R. Software updates. The workflow engine should provide a mechanism to update itself and the
various plugins that perform the image processing as the underlying packages evolve. Some
of them make new releases periodically, some others release with irregular time patterns, and
some others are never officially released and have to be updated from their source code
repository. The workflow engine must identify the need to update, propose to the user to do so,
and effectively update and install the different packages. This process has to be done in a vast
number of environments (vast concerning visible libraries, compiler and interpreter versions,
user permissions, etc.) and must be able to detect and report installation failures.

S. Non-restrictive software licensing. The installation of the underlying packages should be as
transparent to the user as possible. The free academic use of most software packages allows the
workflow engine to automatically download and install most of the different programs. However,
some software tools require user registration or are commercial, requiring the user to take specific

e13-4 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


actions on the web, the command line, or even to install the program by themselves and letting the
workflow engine know how to invoke the particular program.

As seen from this long list, designing a workflow engine with all these characteristics is a challenging
endeavor. Currently, existing workflow engine solutions typically used in academia or in a bioinformatics
setupmeet some but not all, simultaneously.Moreover, we understand that some requirements are specific
to image processing, some to image processing in streaming with large volumes of data, and others to a
complex and evolving software ecosystem. This is the case of cryo-EM, which is whywe have developed
aworkflow engine devoted explicitly to this domain, Scipion. Table 1 compares the fulfillment of all these
requirements by some of the workflow engines used in related domains.

Scipion was first developed in 2013 and has evolved over the years to adapt better and fulfill all above
mentioned requirements. Although Scipion started exclusively as a workflow engine for single-particle
analysis by cryo-EM(7), it has been extended, over the years, into other related domains: atomic
modeling(8), electron tomography(9), microED(10) and currently, virtual drug screening. It integrates
currently over 60 plugins and more than 1,000 protocols, each implementing a high-level task. Scipion
has been used in thousands of cryo-EMprojects distributedworldwide. At present, we teach four courses a
year on image processing using Scipion: (1) single-particle analysis, (2) atomic modeling and flexibility
analysis, (3) image processing at the acquisition site, and (4) electron tomography, with a total of hundred
attendees per year. Overall, Scipion can be regarded not only as an excellent platform for performing
Structural Biology, but also as a suitable engine for any other image or data processing domain with
similar requirements to cryo-EM.

In the remainder of the article, we briefly explain the SPA workflow to better illustrate Scipion’s
flexibility. Then, we go over all the requirements from aworkflow engine and explain how they are met in
Scipion. Finally, we provide some insights regarding Scipion’s technical implementation that may be
useful in other developments.

Table 1. Table showing how the main functionality Scipion covers is fulfilled by, to the best of our
knowledge, some of the workflow engines available to perform similar tasks.

Scipion Galaxy Nextflow Knime

Interoperability x x x x
Smart object model x x
Gluing operations x x x x
Comparison operations x
Wide set of domain-specific operations x x x
Execution in streaming x
Smooth integration in HPC environments x x x x
Execution with and without graphical capabilities x x x
Flexible visualization x
User auth. and validation x x x x
Scripting capabilities x x x x
High performance x x x x
Traceability x x x
Reproducibility x x x x
Self-reporting x
Reusability x x x x
Extensibility x x x
Non-restrictive software licensing x x x x

Biological Imaging e13-5

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


2. Single-Particle Analysis by Cryo-EM

A detailed overview of the steps of this image-processing pipeline is explained by Sorzano et al.(11). In the
following,we describe it in detail so that the role of theworkflowengine canbe understood. First, the electron
microscope acquires the so-called movies from a sample. Thousands of these movies are recorded during a
session. Thesemovies aremade ofmultiple frames (typically 10–70 frames)whose dose is in the order of 0.5
electrons/Å2 per frame. The signal-to-noise ratio (SNR) per frame is typically around 1/1,000. These multi-
frame images have to be aligned into single images (micrographs)(12). This process accounts for rigid and
flexible alignment; after averaging, the SNR rises to 1/100. Then, the microscope aberrations must be
estimated from the micrographs; most notably, the defocus, that is, the distance between the sample and the
image formation plane, varies fromonemicrograph to another(13–15). To achieve high resolution, this defocus
must be determined with a precision below 200–300 Å. Astigmatic micrographs, micrographs for which the
defocus cannot be determined, micrographs on the carbon edge, with ice crystals or any other contamination
are typically discarded. Even so, many thousand micrographs pass this screening. Then, particles must be
identified from these micrographs. Due to the low SNR and contrast, many areas of the micrograph are
wrongly identified as particles (seeFigure 2). Particles are then classified into allegedly homogeneous groups.
This is challenging, as many algorithms tend to favor large, nonhomogeneous groups due to an attraction
effect related to the SNR(5). An initial model is constructed either from the selected 2D classes or the particles
being grouped under the selected 2D classes(16). Several rounds of 3D classification are now run to identify
possible distinct conformations of the macromolecule under study. Finally, once a homogeneous set of
particles is achieved, the projection direction of each of the particles is sought, resulting in a final 3D map.

Due to the low SNR and contrast, all these steps are highly prone to errors. For this reason, each step
must be executed more than once, ideally with different algorithms, to identify those parameters that are

Figure 1. A set of 2D particles in the standard representation must be converted into the internal
representation of software X, whose output is collected again by the workflow engine and converted again

to its standard representation to serve as the input of further following processes.

e13-6 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


consistently found. The user defines the degree of consistency, which may vary depending on the dataset
and the step within the image-processing pipeline. The simplified description provided in the previous
paragraph results in a few hundred steps for a typical project. In this context, the role of the workflow
engine is bringing order into the processing, keeping track of everything, allowing interoperability among
different algorithms, and guaranteeing the reproducibility of the whole process, among others. In the
following section, we describe all the desired requirements for a workflow engine in this domain and how
Scipion addresses all the needed issues.

3. Workflow Engine Requirements

In the following sections, we discuss how Scipion addresses the different requirements.

3.1. Interoperability

As in any fast-advancing research field, in cryo-EM, the solutions and software are produced at high speed
without waiting for standards to be agreed on. Thus, many image-processing software for cryo-EM have
been developed without a coordination effort to unify data and metadata conventions. Most popular
software such as Relion(17), Cryosparc(18), EMAN2(19), Xmipp(20), cistem(21), motioncor2(22), and so
forth are able to read and write a common image file format such as mrc, but when it comes to the
metadata, they all define their own specification. This is the case for Relion or Xmipp using .star(23) files
with their own labels, Cryosparc using NumPy(24) saved files (.cs), or EMAN2 handling amixture of .hdf,
.json, and .box files. In some cases, some of the mentioned software provides metadata conversion

Figure 2. Some images produced during SPA image processing. (a) An example of a section of a movie
frame from EMPIAR-10579. (b) Micrograph with hundreds of apoferritin particles with 2D coordinates
(green boxes) marked from same EMPIAR dataset. (c) 2D averages of the spikes of SARS-CoV-19.

(d) Refined 3D map where the structure of an apoferritin protein can be appreciated.

Biological Imaging e13-7

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


methods. However, interoperability among all of them is far from being fully covered, especially when it
comes to geometric conventions (the location of the image origin, the direction of the axes and positive
rotations, etc.)(25). Some of them provide a complete set of methods to cover the whole SPA image-
processing pipeline or when missing a step, they integrate third-party software to cover it. This is the case
for Relion integrating cistem’s CTF estimation or Cryosparc integrating Topaz(26). If the data are
“friendly,” image processing may go perfectly fine doing it all inside one of those “complete” software.
If the results are not satisfactory, users may want to try another software. In this case, things can get
complicated. If the software, the user wants to try, does not provide an entry point for importing current
processed data and metadata, the user needs to convert them. While converting data (image files) is
probably the most straightforward task, metadata conversion is the most challenging one. Most likely, the
metadata’s elements described range from thousands tomillions. Therefore, usersmay not go for amanual
approach. Scripting becomes crucial at this point. Additionally, metadata may store complex information
in different conventions. For example, description in SPA of the alignment information (shifts and
rotation). Relion stores this information in two or three shift fields plus three fields for the rotation (three
Euler angles in Z, Y, Z). EMAN2 uses Euler angles but uses the Z, X, Z’ convention. Proper conversions
require understanding an Euler matrix and the exact conventions followed by each software the user may
want to use. Even if the user has the skills and time to implement them, there is a high risk ofmaking errors
in the process. And, in the ideal case of no mistakes being committed, annotating all the steps for a future
repetition or simply reporting the steps in a future scientific article in an attempt to follow the FAIR
principles(27) becomes an issue.

3.2. A smart object model

Scipion integration is firmly based on converting one software’s output into another’s input. For this, data
andmetadata have to be correctly converted. Scipion does not providemultiple conversions, for example,
from software A to software B and C, from software B to A and C, and from software C to A and B, which
means six conversions for three software, or more generically,N*(N – 1), beingN the number of software
integrated. On the contrary, Scipion defines a standard object model. This is a set of Python classes that
can hold any data andmetadata produced by any integrated software at a specific step. Therefore, software
A’s output is converted to Scipion’s standard object model. If another software needs to consume this
output later, it reads the Scipion object model instead of the software’s A output. Conversions follow the
following pattern: Software A produces its output A’, which is converted to Scipion standard object model
S0, which is finally converted to software B input B0. More generically, the amount of conversions needed
is N*2. In addition, Scipion provides generic self-persistence data types like string, integer, float, lists,
object, and so forth. These “primitive” Scipion data types allow the definition of more complex objects to
model any output. This has been the case for SPA image processing, where we have defined specific
objects such as micrographs, movies, CTFs, FSCs, particles, classes2D, coordinates2D, volumes, and so
forth. All these objects in combination with a set object aiming to store collections of previous elements
provide a stable model capable of storing all data and metadata produced during the SPA image
processing. In the few cases where the standard model is insufficient, objects are automatically extended
with specific attributes that are also automatically persisted. Those extra attributes are ignored by other
software but probably read later by the same software that extended the object.

The objects that flow through the image-processing pipeline have to be persisted on disk so that they
can be recovered later. This is achieved in Scipion by translating this flexible object datamodel into a set of
SQLite tables. In this way, each set has its SQLite file, and we avoid having a single table with millions of
entries corresponding to the many millions of images handled along the processing. This implementation
allows us to speed up the reading/writing of objects and also to isolate possible database corruption
problems.

Defining the standard object model for a specific domain (in this case, single-particle analysis) is not
trivial. Therefore, it may take time to get a mature model, but at the same time, if versatile enough, it could
be a starting point for a future standard definition initiative the field may dive into (see Figure 3).

e13-8 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


3.3. Gluing operations

When carrying out a complex analysis of millions of images to generate one or several maps according
to the different molecular conformations present in the sample, we can distinguish two different types of
operations: (1) “heavy” operations performing the domain-specific tasks on thousands or millions of
images (align thousands of movies into micrographs, estimate their microscope aberrations, identify
particles, align those particles, etc.), and (2) “light” operations performing house-keeping tasks (divide
large sets into smaller sets for comparison purposes, select a subset of images according to some criteria,
filter out images that do not meet the required quality, merge subsets into larger sets, combine the
information of multiple algorithms computed on the same set, compute a subset of a more extensive set
according to the information provided by another subset, etc.). All these housekeeping operations are
crucial for successfully completing a project and the workflow engine must support them. One of the
most challenging tasks is to keep track of the information of a particle, even if it is spread over multiple
objects. In Scipion, we assign each particle a ParticleID consistent across the project. An interesting
feature of our implementation is that the ParticleID represents the information of a particular location
within a micrograph, irrespective of the downsampling and possible transformations that the image
could suffer. Also, our domain has a natural hierarchy of images: a single micrograph usually contains
many different particles. This hierarchy has to be kept along the process so that the MicrographID
corresponding to a given ParticleID is always known. This information allows performing subsets of
micrographs according to some criteria and then subsets of particles coming from a given subset of
micrographs.

3.4. Comparison operations

Image processing in SPA involves the estimation of many different parameters: whether a location in a
micrograph represents the central point of a macromolecule (a binary parameter indicating whether a
coordinate points to a particle or not), the three-dimensional orientation of a given particle
(a categorical parameter with several possible values), the defocus and alignment of that particle
(some continuous parameters), and so forth. The different algorithms performing the “heavy”

Figure 3. Partial UML diagram of some of the classes defined for SPA image processing. On the left, the
set’s hierarchy for images, particles, micrographs, and movies. On the right, single-item classes for the

same concepts. Only attributes are shown for clarity.

Biological Imaging e13-9

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


workflow operations aim to estimate these parameters. However, they have to do it in an environment
where the SNR is around 1/100, meaning there is about 100 times more noise than signal. Conse-
quently, these estimations are prone to mistakes(5), and it is crucial to provide quality control
operations. These quality control algorithms may be addressed at (a) the images themselves, assigning
a quality score that the user may use to filter out the images (algorithms such as xmipp screen
particles(28), relion 2D class ranker(17), and xmipp movie gain(29)); (b) checking that the estimated
parameters are within a given range (for instance, the defocus, the correlation with some reference
images, etc.); and (c) comparing the estimates of two equivalent algorithms and checking that their
difference is smaller than a given threshold (estimates like angular assignment, defocus, etc.).
Additionally, users may want to try different attempts and modify some quality thresholds to check
if the results can be improved. All these trials must be traced and should be reproducible, and again, the
help of the workflow engine in this regard is invaluable.

3.5. Wide set of domain-specific operations

Besides the good technical features of a workflow engine, a crucial aspect of its success in a given
domain is the availability of operations for a specific domain. Galaxy(30) is an example of a well-
known workflow engine for genomics and related-omics analysis. It performs over 1,000 operations
in these domains. However, it does not offer any tool in cryo-EM image processing, and very few for
atomic modeling. In this regard, Scipion offers over 1,000 operations in Structural Biology around the
following domains: single-particle analysis, electron tomography, atomic modeling of cryo-EM
maps, and virtual drug screening. The availability of so many operations in a specific domain
dramatically facilitates the analysis of complex data, even in cases where a relatively rare operation
is needed. Furthermore, it becomes a platform for developers to integrate the developed tools. This is
especially useful for those developers whose software packages only cover part of the image-
processing pipeline.

3.6. Execution in streaming

Cryo-EM image acquisition produces images (uncorrected motion movies), and its quality assessment
is only possible by accomplishing a few image-processing steps in the pipeline. An electronmicroscope
produces a movie every 10–60 s and acquisition time typically lasts 1 or 2 days at a cost of 500–5,000
euros/day depending on the subsidies provided by the host institution(31,32). Thus, microscope users
need to assess the quality of the new data as soon as possible to make corrections on the ongoing
acquisition process if data does not reach quality standards. Scipion protocols allow real-time data
assessment working in “streaming” mode. A protocol can be launched without having all input data
available. It will actively look for new input during its execution or stay idle until it checks again. If
further input elements are discovered, they are processed, and new results are added to the protocol
output. This process lasts until all the input data is processed and the input is closed (no more
information will appear).

3.7. Smooth integration in HPC

HPC clusters are common computing resources in academic institutions. They usually provide access to
the cluster through one or more “login nodes.” Processing commands are launched from the login node to
a job scheduling system(33) like Slurm(34), Torque(35), or others. Scipion can be configured to run with job
scheduling systems through a dedicated configuration file(36). In this way, Scipion can use the existing
computational infrastructure and resources. In addition, modern cloud infrastructure like Amazon web
services, Microsoft Azure, or other academic clouds can also be used to deploy Scipion to them(37).
Scipion has also been successfully containerized in docker instances(38) with full GPU integration.

e13-10 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


3.8. Execution with and without graphical capabilities

Graphical interfaces are handy to monitor the correct execution of the image-processing workflow, identify
particles in a micrograph, make decisions on which images to include in the analysis, filtering out images
based on the empirical distribution of a given quality measure, and make subsets based on image quality or
similarity. However, there are situations where graphical interfaces are not allowed, as in some HPC
environments, or are not convenient. In these situations, the workflow engine must be able to execute the
workflows without any graphical interface or even not loading any graphical library, which may not be
available. Then, operations typically performed by a user (identifying particles, quality control of the
process, etc.) must be performed automatically by some of the protocols. The introduction of deep learning
algorithms for particle picking, such as Cryolo(39) or Topaz(26), has enormously simplified this task, which
used to require a significant amount of user intervention. Automatic quality control is more complicated,
although some advances have been put forward in this regard(11), and it is an active research topic.

3.9. Flexible visualization

Each of the steps of the pipeline produces one or more outputs. Scipion provides a mechanism to register
viewers for specific types of outputs. Aviewer is a piece of code capable of visualizing data of a given type
within the smart object model described in requirement B. It usually wraps existing viewers provided by
the integrated software. For instance, reconstructed maps can be sent to the ChimeraX(40) or the default
map visualization utility of Xmipp, Bsoft(41), or EMAN2(19). Most of the outputs produced by the
protocols have one or more viewers able to display them. Additionally, a specific protocol could define
a list of results supporting the execution with plots or images. In more complex cases, viewers can prepare
the results, apply some statistics or create complex animations to provide users with a complete set of
analysis tools (see Figure 4).

Figure 4. Some of the visualization tools available in Scipion. (a) Context menu offered when right-
clicking in a set of tomograms displaying three different viewers: Imod, Deepfinder and Dataviewer

(Xmipp). (b) Local resolution results produced by Xmipp monores(42) and shown in ChimeraX(40). (c) 3D
coordinates picked on a tomogram generated by pySeg(43) and shown in Tomoviz plugin. (d) 3D

coordinates projected on the corresponding tilt series shown as fiducials in Imod’s fiducial viewer as a
way to visually verify all metadata and data looks correct after a “relion4 prepare” process to enter

subtomogram averaging.

Biological Imaging e13-11

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


3.10. User authentication and validation

Scipion can be installed in a private machine that can be accessed only by a single person or in a shared
computer or cluster accessed by several users. However, access to the data should be restricted to the user
that created it or the users with whom the owner decides to share it. Scipion is an application installed
locally instead of a web application with remote access. Consequently, we delegate user authentication
and data privacy to the standard Unix mechanisms (Unix user authentication and file/directory access
permissions). In this way, the data can be defined by the user to be only visible to herself, by a set of Unix
user groups, or by any user of the computer. Some groups create an image-processing user shared by all
the lab members, but this practice is entirely discretionary to the policy of each team.

3.11. Scripting capabilities

An essential feature of modern workflow engines is allowing programmatic access to the image-
processing workflow. Scipion is implemented in Python and exposes all its internal functionality through
anAPI that can be accessed at https://scipion-em.github.io/docs/release-3.0.0/docs/api/scipion-API.html.
Through the API, an external script can control the creation of a project, the creation of the different
protocols one-by-one and their interconnection (which outputs are the inputs of any of the protocols), all
protocol parameters, and so forth. It might be useful in scenarios where we want to automate several tasks
without user intervention. We may also create the workflow taking decisions within the script. For
example, depending on the number of particles available, we may decide to split the set of particles into
smaller subsets for faster processing.

3.12. High performance

Scipion does not perform any of the image-processing tasks by itself. Instead, it relies on the underlying
software packages to perform these operations. However, the inputs of a protocol must be converted into
the data and metadata formats required by the underlying program. The program outputs must be
transformed back to Scipion’s representation of the object types produced. These conversions must
add minimal overhead on the actual image-processing time so that the workflow engine does not add any
significant delay in the image-processing pipeline. In Scipion, we have paid attention to these issues trying
to make the conversions as efficient as possible.

High performance applies also to any Scipion’s native visualization. This is particularly important for
visualizing sets of particles, which may contain millions of images. In this case, an efficient display
strategy is adopted in which we only need to read those images displayed at any given moment, usually a
few tens.

3.13. Traceability

Due to the natural complexity of theworkflow, especially in challenging cases, usersmaywant to try several
analysis alternatives, combine software, and add validation methods in between. Annotating all the
decisions taken with the purpose of later reporting or reproducibility becomes a critical and highly tedious
task. Traceability is one of Scipion’s core principles, and it comes out of the boxwhenusing it. Each protocol
in the pipeline is represented in Scipion as a single rectangle in themain project window. The protocol stores
all the parameters used and allows their edition in a dedicated form (Figure 5). The whole workflow can be
exported as a JSON file containing all the information and sent to EMPIAR(44), a repository of raw data for
cryo-EM.EMPIAR understands this Scipion JSON file and represents it on theweb using aweb component
developed by us(45), as shown in some entries (EMPIAR-10891, EMPIAR-10516, and EMPIAR-10514).

3.14. Reproducibility

The accurate and detailed recording of algorithm parameters, inputs, and outputs of all the image-
processing steps performed along the pipeline enables launching each one of the steps with exactly the

e13-12 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://scipion-em.github.io/docs/release-3.0.0/docs/api/scipion-API.html
https://doi.org/10.1017/S2633903X23000132


same inputs and parameters used in the execution process, leading to the final result deposited in the public
databases. In this way, the whole workflow can be exactly reproduced from the beginning to the end as
long as the underlying algorithms are deterministic. Nevertheless, reproducibility is limited by the
underlying software packages and hardware. Particularly, some algorithms start from a random solution
that is later refined. If this random initial solution makes the algorithm not deterministic, Scipion cannot
guarantee to obtain the same results. Also, we have observed that deterministic algorithms running on two
different computers may yield different results. This result comes from a combined influence of the
underlying hardware and the system libraries installed.

3.15. Self-reporting

Due to the complexity of the image analysis performed in cryo-EM, the final result is never the “direct”
processing of all the movies acquired. Instead, to reach these results, dozens of decisions have been taken
along the path (particles selected and discarded in the analysis, conformational class of each particle and
its relative orientationwith respect to it, parameters of each of the image-processing algorithms employed,
etc.) Without this information, it is impossible to fully understand all the steps leading from the raw
acquired data to the final result. This information is never reported in scientific papers to a level of detail
that allows reproducibility or even its complete understanding. In Scipion, we have developed a tool that
uploads a detailed summary of the executed workflow to a server(46). Although recommendable, this
uploading is optional.

3.16. Reusability

Scipion workflows can be exported to serve as templates for future analyses. This is particularly
relevant in the first steps of the processing, where few decisions are taken, or in specific parts of the
analysis where the sequence of steps is always the same. We provide a repository of valuable workflow
templates at http://workflows.scipion.i2pc.es/ as JSON files. Users can import those templates into

Figure 5. Simplified visualization of some possible first steps of a tomography workflow showing a use
case of four different software on the left. On the right, an example of the “aretomo—til-series align and
reconstruct” protocol detailing its parameters and its link to the “tomo—import tilt-series” output called

“outputTiltSeries.”

Biological Imaging e13-13

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

http://workflows.scipion.i2pc.es/
https://doi.org/10.1017/S2633903X23000132


existing projects or create new projects based on a template. An imported workflow template will likely
have some parameters specific to each project that need to be set up before running any protocol. This is
the case for most of the session’s acquisition parameters (path to images, sampling rate, electron dose,
voltage, particle size, and symmetry). Those parameters may be spread throughout the workflow. Since
reviewing all the protocols to update those parameters could be tedious, with the risk of running the
complete workflow with the wrong parameters, Scipion provides dynamic templates(47). Dynamic
templates are also JSON files, similar to the already mentioned workflow files, but with some
parameters marked. When importing a template, Scipion looks for these special marks. If found, it
will pop-up a window with all the marked parameters in the dynamic template before creating and
running the workflow. This functionality allows users to fulfill parameters changing from one dataset to
another, adapting the workflow template to the specific data being processed (see Figure 6). Alterna-
tively, the parameters can also be given through the command line without needing any graphical
interface.

3.16.1. Designing, scheduling and queuing
Scipion also allows the user to design a workflow in advance without running it. Protocols can define in
advance their output type and name. This is enough for other protocols to be linked. At this initial stage,
their inputs are not ready and cannot be executed but can be scheduled. A scheduled protocol is run in a
separate process that keeps checking if everything is ready to run. Once a scheduled protocol finds all its
inputs available, it launches itself to start its actual image processing. Optionally, a protocol can be told to
wait for the completion of another “unrelated” protocol before starting, even in the absence of any input
dependencies. This “wait for” parameter (see Figure 5) is checked during the scheduling process and stops
the protocol from being executed until the dependency is satisfied. Scheduling will enable users to avoid
idle CPU/GPU time in machines and plan and schedule an overnight workflow to keep processing
machines busy at night.

3.17. Extensibility

Software packages and new operations can be added to Scipion through plugins. A Scipion plugin
(https://scipion-em.github.io/docs/release-3.0.0/docs/developer/creating-a-plugin.html) is a Python
package that follows some specific conventions. Beyond these requirements, the Python module
defines its structure. Once installed, Scipion is capable of discovering all the new protocols and new
data types defined by the plugin so that they become immediately available to the user. Protocols are
wrappers to the underlying image-processing algorithms. Typically, they extract the information from
the inputs to the protocol, convert it to the format required by the underlying software, execute it, and
send the output back to Scipion’s representation. This plugin structure makes Scipion very flexible to
cover all the processing in single-particle analysis, electron tomography, atomic modeling, virtual drug
screening, and chemoinformatics(48).

3.18. Software updates

Scipion plugins are generally distributed through PyPi (https://pypi.org/search/?q=scipion), although
other installation possibilities are also supported. Every time Scipion is launched, it checks for updates
and informs the user whether there is an update of the workflow manager. Plugins update status can be
checked in the plugin manager. Once a plugin is updated, its binaries (third-party software it integrates)
may also be updated in case new releases are available. This way, we can keep the most up-to-date
versions of the underlying programs.

3.19. Software licenses

Most scientific packages integrated into Scipion do not have any special software license or are free for
academic use. A few require user registration or a specific installation procedure involving some form of

e13-14 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://scipion-em.github.io/docs/release-3.0.0/docs/developer/creating-a-plugin.html
https://pypi.org/search/?q=scipion
https://doi.org/10.1017/S2633903X23000132


license. In those cases, where the installation can be performed without special permission, Scipion
handles all the processes of downloading the software, compiling it if necessary, and installing it in an
accessible path. In those cases, where the license is granted by filling out a form, Scipion guides the user to
that form and then handles the installation. For commercial software or packages that require a particular
installation procedure, users can install the program by themselves and simply inform Scipion about its
location. This possibility is available to all software packages and is very useful when working with their
development versions.

Figure 6. Details of the dynamic templates. (a) List of templates found in a Scipion installation. Those
starting with “local-” are user templates found in a dedicated folder for templates. The rest are provided
by some of the plugins like relion or tomo plugin. (b) A dynamic window is shown after selecting the
“Tomocourse-Dec22-D1-Reconstruction” template. It offers to choose the name of the project to be

created and to cancel scheduling or avoid showing the project once created. For this particular case, it
additionally shows one dynamic field to be asked for its value: the “EMPIAR-10164 mdocs folder” field.
(c) Excerpt of the same template opened in a text editor showing the part where the dynamic field is

defined (filesPath).

Biological Imaging e13-15

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000132


4. Conclusions

Within the image-processing community, researchers usually center on the mathematical and algorithmic
aspects of the computational solutions to the various image-processing tasks. They normally focus on one
specific problem (image alignment, denoizing, restoration, reconstruction, etc.) and devise sophisticated
algorithms to tackle it. Although this approach is crucial for solving the “low-level” tasks at the core of the
whole image-processing activity, hundreds of these low-level operations are sometimes needed to solve a
biological macromolecule’s three-dimensional structure from the raw acquired images. Moreover, due to
the extremely lowSNR, the underlying algorithms are prone to errors in estimating the various parameters
involved. The only way of identifying these mistakes is by estimating the same parameter with different
algorithms and comparing their results, but this multiplies the number of low-level operations at least by a
factor of 2. If the various estimates are close, averaging them should give an even better estimate. If the
estimates are far from each other and some cluster, then probably that is the area of the actual parameter. If
they do not cluster, the corresponding image is too noisy to allow a reliable estimation of its pose or
conformation.

Tracing the decisions and parameters of these hundreds of operations is critical for the reproducibility
and accountability of the final result. Interoperability between the different software packages is also
essential to allow the comparison of other estimates of the same parameters. It is, at this point, where
workflow engines come into play. They help to solve high-level problems. Whereas most workflow
engines usually concentrate in one application domain, Scipion does in image processing by cryo-EM and
some other related topics (atomicmodeling and virtual drug screening). This application domain has some
unique features that are not shared with other domains, for instance, the large size of the data to process,
defining data types so that the information has well-defined semantics, the need to process as the data are
acquired, and the need to call locally installed programs with very different software dependencies and
execution environments. On the other hand, it has needs that are shared with other domains. In particular,
most workflow engines must be efficient, integrate into HPC environments, extendible, traceable, and
reproducible, have a data privacy policy, and so forth.

Overall, Scipion is an excellent environment for the execution of workflows with similar character-
istics to the ones exposed in this article (large volumes of data, strong semantics, streaming, and
command-line programs with long execution times). It is also an excellent environment for any other
scientific domain related to Structural Biology or Structural Bioinformatics. Complex image analyses
beyond cryo-EM also fall into the first category, and some groups are extending Scipion to work with
fluorescent microscopy data.

Scipion’s first release (1.0.0) was in February 2016. Since then, thousands of image-processing
projects (https://scipion.i2pc.es/report_protocols/projectStats) have been created and thousands of instal-
lations (https://scipion.i2pc.es/report_protocols/installationStats) have been performed.

All software code, Scipion core and plugins, is open-sourced and publicly available at https://github.
com/scipion-em.

Acknowledgments. The authors would like to thank the more than 60 developers (https://scipion.i2pc.es/acknowledgements) that
have contributed to either developing the core or any of the plugins evidencing that Scipion open-source project is supported by
numerous developers in the community.

Authorship contribution. Y.C.F., J.J.M., G.S., J.M.R.-T., R.M., C.O.S.S., and P.C. have contributed to Scipion core and cryo-EM
domain extension. A.C., B.R.F., L.C., M.G., M.I., M.M., P.L., R.M., and I.S. have beta tested all the functionality covered by
Scipion, not only SPA but modeling and tomography They also have assisted in the virtualization of Scipion and in all the training
courses we yearly organize.M.M. and R.M. have extended Scipion towardmodeling. A.G.M. and D.M. have contributed tomaking
streaming functionality better and more robust not only for SPA but also for tomography. D.H. has extended Scipion to the
cheminformatics domain. D.H., E.F.-G., F.P.I.-G., and J.L.V. have extended Scipion toward cryo-EM tomography. D.S. has made
exhaustive and critical performance analyses. E.R.-A. has improved the SPA tools in Scipion for local resolution analysis and
sharpening tools. J.K. and D.H. are extending Scipion toward SPA flexibility analysis. J.M.C. and C.O.S.S. are leading the project
and providing scientific advice.

Competing interest. The authors declare no competing interests exist.

e13-16 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://scipion.i2pc.es/report_protocols/projectStats
https://scipion.i2pc.es/report_protocols/installationStats
https://github.com/scipion-em
https://github.com/scipion-em
https://scipion.i2pc.es/acknowledgements
https://doi.org/10.1017/S2633903X23000132


Funding. The authors acknowledge the economical support fromMICIN to the Instruct Image Processing Center (I2PC) as part of
the Spanish participation in Instruct-ERIC, the European Strategic Infrastructure Project (ESFRI) in the area of Structural Biology,
Grant PID2019-104757RB-I00 funded by MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe,” by the
“European Union.” European Union (EU) and Horizon 2020 through grants: EOSC Life (INFRAEOSC-04-2018, Proposal:
824087), HighResCells (ERC – 2018 – SyG, Proposal: 810057), and iNEXT-Discovery (Proposal: 871037).

References
1. Namba K &Makino F (2022) Recent progress and future perspective of electron cryomicroscopy for structural life sciences.

Microscopy 71, i3–i14.
2. D’Imprima E & Kühlbrandt W (2021) Current limitations to high-resolution structure determination by single-particle

cryoEM. Q Rev Biophys 54, e4.
3. Seffernick JT & Lindert S (2020) Hybrid methods for combined experimental and computational determination of protein

structure. J Chem Phys 153, 240901.
4. Sorzano COS & Carazo JM (2022) Cryo-electron microscopy: The field of 1,000+ methods. J Struct Biol 214, 107861.
5. Sorzano COS, Jiménez-Moreno A, Maluenda D, et al. (2022) On bias, variance, overfitting, gold standard and consensus in

single-particle analysis by cryo-electron microscopy. Acta Crystallogr D Struct Biol 78, 410–423.
6. Scipion protocols ranking. https://scipion.i2pc.es/report_protocols/protocolTable/.
7. de la Rosa-Trevín JM, Quintana A, Del Cano L, et al. (2016) Scipion: A software framework toward integration,

reproducibility and validation in 3D electron microscopy. J Struct Biol 195, 93–99.
8. Martínez M, Jiménez-Moreno A, Maluenda D, et al. (2020) Integration of cryo-EM model building software in Scipion. J

Chem Inf Model 60, 2533–2540.
9. Jiménez de la Morena J, Conesa P, Fonseca YC, et al. (2022) ScipionTomo: Towards cryo-electron tomography software

integration, reproducibility, and validation. J Struct Biol 214, 107872.
10. Bengtsson VEG, Pacoste L, de La Rosa-Trevin JM, et al. (2022) Scipion-ED: A graphical user interface for batch processing

and analysis of 3D ED/MicroED data. J Appl Crystallogr 55, 638–646.
11. Sorzano COS, Jiménez-Moreno A, Maluenda D, et al. (2021) Image processing in cryo-electron microscopy of single

particles: The power of combining methods. Methods Mol Biol 2305, 257–289.
12. Střelák D, Filipovič J, Jiménez-Moreno A, Carazo JM & Sánchez Sorzano CÓ (2020) FlexAlign: An accurate and fast

algorithm for movie alignment in cryo-electron microscopy. Electronics 9, 1040.
13. Sorzano COS, Jonic S, Núñez-Ramírez R, Boisset N & Carazo JM (2007) Fast, robust, and accurate determination of

transmission electron microscopy contrast transfer function. J Struct Biol 160, 249–262.
14. Rohou A & Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol

192, 216–221.
15. Zhang K (2016) Gctf: Real-time CTF determination and correction. J Struct Biol 193, 1–12.
16. Vargas J, Álvarez-Cabrera A-L, Marabini R, Carazo JM & Sorzano COS (2014) Efficient initial volume determination from

electron microscopy images of single particles. Bioinformatics 30, 2891–2898.
17. Kimanius D, Dong L, Sharov G, Nakane T& Scheres SHW (2021) New tools for automated cryo-EM single-particle analysis

in RELION-4.0. Biochem J 478, 4169–4185.
18. Punjani A, Rubinstein JL, Fleet DJ&BrubakerMA (2017) cryoSPARC:Algorithms for rapid unsupervised cryo-EM structure

determination. Nat Methods 14, 290–296.
19. Tang G, Peng L, Baldwin PR, et al. (2007) EMAN2: An extensible image processing suite for electron microscopy. J Struct

Biol 157, 38–46.
20. Strelak D, Jiménez-Moreno A, Vilas JL, et al. (2021) Advances in Xmipp for cryo–electron microscopy: From Xmipp to

Scipion. Molecules 26, 6224.
21. Grant T, RohouA&Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. Elife 7, e35383.
22. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y & Agard DA (2017) MotionCor2: Anisotropic correction of beam-

induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332.
23. Hall SR (1991) The STAR file: A new format for electronic data transfer and archiving. J Chem Inf Comput Sci 31, 326–333.
24. Harris CR, Millman KJ, Van Der Walt SJ, et al. (2020) Array programming with NumPy. Nature 585, 357–362.
25. SorzanoCOS,Marabini R, Vargas J, et al. (2014) Interchanging geometry conventions in 3DEM:Mathematical context for the

development of standards. In Computational Methods for Three-Dimensional Microscopy Reconstruction, pp. 7–42 [GTHer-
man & JFrank, editors]. New York: Springer.

26. Bepler T, Morin A, Rapp M, et al. (2019) Positive-unlabeled convolutional neural networks for particle picking in cryo-
electron micrographs. Nat Methods 16, 1153–1160.

27. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. (2016) The FAIR guiding principles for scientific data management and
stewardship. Sci Data 3, 160018.

28. Vargas J, Abrishami V, Marabini R, et al. (2013) Particle quality assessment and sorting for automatic and semiautomatic
particle-picking techniques. J Struct Biol 183, 342–353.

Biological Imaging e13-17

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://doi.org/10.13039/501100011033
https://scipion.i2pc.es/report_protocols/protocolTable/
https://doi.org/10.1017/S2633903X23000132


29. Sorzano COS, Fernández-Giménez E, Peredo-Robinson V, et al. (2018) Blind estimation of DED camera gain in electron
microscopy. J Struct Biol 203, 90–93.

30. Jalili V, Afgan E, Gu Q, et al. (2020) The galaxy platform for accessible, reproducible and collaborative biomedical analyses:
2020 update. Nucleic Acids Res 48, W395–W402.

31. Indiana U cryo-EM pricing. https://medicine.iu.edu/service-cores/facilities/electron-microscopy/pricing.
32. Cianfrocco MA& Leschziner AE (2015) Low cost, high performance processing of single particle cryo-electron microscopy

data in the cloud. Elife 4, e06664.
33. Wikipedia Contributors (2022) Job scheduler.Wikipedia. https://en.wikipedia.org/w/index.php?title=Job_scheduler&oldid=

1066771074.
34. Slurm workload manager – documentation. https://slurm.schedmd.com/.
35. Torque Resource Manager (2019) Adaptive Computing. https://adaptivecomputing.com/cherry-services/torque-resource-

manager/.
36. Host configuration—Scipion 3.0.0 documentation. https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/host-

configuration.html.
37. Scipion in the cloud—Scipion 3.0.0 documentation. https://scipion-em.github.io/docs/release-3.0.0/docs/developer/scipion-

on-the-cloud.html.
38. Scipion-docker. (Github). https://github.com/i2pc/scipion-docker
39. Wagner T, Merino F, Stabrin M, et al. (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-

EM. Commun Biol 2, 218.
40. Pettersen EF, Goddard TD, Huang CC, et al. (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and

developers. Protein Sci 30, 70–82.
41. Heymann JB & Belnap DM (2007) Bsoft: Image processing and molecular modeling for electron microscopy. J Struct Biol

157, 3–18.
42. Vilas JL,Gómez-Blanco J, Conesa P, et al. (2018)MonoRes: Automatic and accurate estimation of local resolution for electron

microscopy maps. Structure 26, 337–344.e4.
43. Martinez-Sanchez A (2021) PySeg in Scipion: Making easier template-free detection and classification of membrane-bound

complexes in cryo-electron tomograms. Acta Crystallogr A Found Adv 77, a231–a231.
44. Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ & Patwardhan A (2016) EMPIAR: A public archive for raw electron

microscopy image data. Nat Methods 13, 387–388.
45. Web-workflow-viewer: HTML workflow viewer based on workflow json files exported from Scipion. (Github).
46. CryoEM workflow viewer. https://scipion.cnb.csic.es/cryoemworkflowviewer.
47. Streaming workflows—Scipion 3.0.0 documentation. https://scipion-em.github.io/docs/release-3.0.0/docs/facilities/facilities-

workflows.html.
48. Scipion-chem: Base Scipion plugin defining objects and protocols for CHEMoinformatics. (Github).

Cite this article: Conesa P, Fonseca Y. C, Jiménez de la Morena J, Sharov G, de la Rosa-Trevín J. M, Cuervo A, García Mena A,
Rodríguez de Francisco B, del Hoyo D, Herreros D, Marchan D, Strelak D, Fernández-Giménez E, Ramírez-Aportela E, de Isidro-
Gómez F. P, Sánchez I, Krieger J, Vilas J. L, del Cano L, Gragera M, Iceta M, Martínez M, Losana P, Melero R, Marabini R,
Carazo J.M and SorzanoC.O. S (2023). Scipion3: Aworkflow engine for cryo-electronmicroscopy image processing and structural
biology. Biological Imaging, 3: e13. doi:https://doi.org/10.1017/S2633903X23000132

e13-18 Pablo Conesa et al.

https://doi.org/10.1017/S2633903X23000132 Published online by Cambridge University Press

https://medicine.iu.edu/service-cores/facilities/electron-microscopy/pricing
https://en.wikipedia.org/w/index.php?title=Job_scheduler&oldid=1066771074
https://en.wikipedia.org/w/index.php?title=Job_scheduler&oldid=1066771074
https://slurm.schedmd.com/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/host-configuration.html
https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/host-configuration.html
https://scipion-em.github.io/docs/release-3.0.0/docs/developer/scipion-on-the-cloud.html
https://scipion-em.github.io/docs/release-3.0.0/docs/developer/scipion-on-the-cloud.html
https://github.com/i2pc/scipion-docker
https://scipion.cnb.csic.es/cryoemworkflowviewer
https://scipion-em.github.io/docs/release-3.0.0/docs/facilities/facilities-workflows.html
https://scipion-em.github.io/docs/release-3.0.0/docs/facilities/facilities-workflows.html
https://doi.org/10.1017/S2633903X23000132
https://doi.org/10.1017/S2633903X23000132

	Scipion3: A workflow engine for cryo-electron microscopy image processing and structural biology
	Impact statement
	Introduction
	Single-Particle Analysis by Cryo-EM
	Workflow Engine Requirements
	Interoperability
	A smart object model
	Gluing operations
	Comparison operations
	Wide set of domain-specific operations
	Execution in streaming
	Smooth integration in HPC
	Execution with and without graphical capabilities
	Flexible visualization
	User authentication and validation
	Scripting capabilities
	High performance
	Traceability
	Reproducibility
	Self-reporting
	Reusability
	Designing, scheduling and queuing

	Extensibility
	Software updates
	Software licenses

	Conclusions
	Acknowledgments
	Authorship contribution
	Competing interest
	Funding
	References


