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ABSTRACT. The relativistic and lunar perturbations must be included in a realistic 
theory of the secular evolution of the planetary elements. In our general theory, we 
include the first order of these perturbations. Comparison with more elaborated studies 
shows that it is sufficient with respect to the accuracy of our theory. 

INTRODUCTION 

The long period variations of the orbital elements of the solar system are of increasing 
interest since the development of the Milankovitch theory of climate (Berger et a/., 1984). 
The early solution of Brouwer and Van Woerkom (1950) contains the first order linear 
terms and the second order terms in the Jupiter-Saturn couple computed by Hill (1897) 
up to degree 5 in the eccentricity. Bretagnon (1974) took into account all the second 
order terms of degree 3 in eccentricity and inclination for the 8 major planets. 

We have undertaken a new general theory for the 8 planets, based on the works 
of Brumberg and Egorova (1971), Brumberg (1980), Chapront (1970), Abu El Ata and 
Chapront (1975), and on Duriez's theory of the 4 outer planets (1977, 1979). Special 
attention is given to estimating the accuracy of the solution, which includes all the terms 
of order 2 up to degree 5 in eccentricity and inclination. The relativistic and lunar 
perturbations must be included in a realistic solution (Bretagnon, 1984a). 

* This paper was not formally presented during the symposium because the 
author was unable to attend due to visa problems. 
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THE SECULAR EQUATIONS 

The elliptic elements are denoted by the classical notations a, e,t, f2, t*7,e . We use also 
the variables {p,q,z>$,k,h,q,p) defined by: 

a = A(l + p ) - 2 / 8 <=> n = N(l + p) 

A = Nt- y/-lq = j ndt + e 

z — e exp y/^lw = k + V^Th 

f = sin ̂  exp = q + V^Ip 

( 1 ) 

where n is the mean motion,N the observed mean mean motion, and A the semi-major 
axis of reference related to N by the Kepler relation N*AS = n 2 a = GM Q (1 + ttx/Mq) 
where G is the gravitation constant, M© the solar mass, and m the planetary mass. 

The variations of the osculating elements (p, q, z, f) are given by the classical La­
grange equations : 

* = ^ " ' + A T A 2 [ 3 ( 1 + p ) ^ + H z U + * aFj + ^ V * + < W . 

dt ^ v / 3 l ( l + p ) l / 8 

dt JVA2 

A 2^iVA2 

„ . , 3i? z f dR _dR\ 
2 ^ - ^ Z - d q - + ^ { ^ + ^ ) _ 

dR dR ( dR _dR\] 

(2) 
where </> = y/T^zz and ̂  = 1/(1-f^) . The disturbing function R is expanded in Poisson 
series depending on the variables p», g», ft, ft and on the time t (Duriez, 1977; Laskar, 
1985a). 

We gather the variables p i y qiy Zi> z^ ft, ft in a single vector V. The differential system 
(2) is then written in the short form: 

To integrate this system, we split V in two parts: 

V = V0 + AV(V0,t) 

(3) 

(4) 

where V0 denotes the secular part of the variables and AV" the short period part, depend­
ing on Vb and t. Substitution in (3) and identification by order gives then the secular 
differential system of order 2: 

dVc 
dt (5) 
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where (a;) is the average of x over the time and AiV is the short period solution of order 
1 (Duriez, 1977, 1979; Laskar, 1985a). The secular system of order 1 is given by the first 
part of (5); it does not contain the contributions of the short period terms to the secular 
terms which arise from the products of the second part of (5). 

We performed a extensive computation of the secular system (5) up to degree 5 in the 
eccentricity and inclination variables (Laskar, 1985a). In the equation (5), the time does 
not appear any more, nor the variables g» which are related to the longitudes. Besides, 
the secular part of pi are constant and they are replaced by their numerical values in (5). 
The secular system (5) depends then only on the variables . 

We denote by a the secular part of ....,*8>£i> >?s) and isolate in (5) the differ­
ential system giving the variations of a : 

^ = V - T ^ i a + *3 («, ct) + $5 (<*, <*)) (6) 

This system contains 153 824 monomial terms. $ i is a real matrix with constant coeffi­
cients, $3 gathers the terms of degree 3 and $5 the terms of degree 5. 

INTEGRATION OF THE EQUATIONS 

In order to avoid the problems of small divisors in the analytical integration of (6) 
(Laskar, 1984), we integrate (6) numerically integration which can be performed with a 
large step size of about 500 years. Moreover, we have also included in our differential 
system (6) the equations of (Kinoshita, 1977) for the secular evolution of precession and 
obliquity of the Earth which are then integrated together with the orbital elements. 

A first numerical integration was made over 10 000 years on each side of J2000. The 
solution is then expanded in Taylor series by numerical differentiation with respect to the 
time . It allow us to check the accuracy of the solution by direct comparisons with the 
analytical ephemeris VSOP82 (Bretagnon, 1982), and with the JPL numerical ephemeris 
DE102 (Newhall et a/., 1983). Besides, the computation of the polynomial expansion of 
the secular terms up to high powers of the time has been used to extend VSOP82 over 
6000 years for the construction of ephemerides aimed at historical computations (Laskar, 
1985b; Bretagnon et a/., 1985). 

Over a longer span of time, the polynomial expansion in powers of the time is not 
useful. A representation of the solution as a quasi-periodic function should be preferred 
to give the main frequences of the solution. We have performed a numerical integration 
of the whole system (6) over 30 millions years which should be enough to derive a solution 
in a quasi-periodic form. This work is not finished yet and we shall present the results in 
a forthcoming paper. 

RELATIVISTIC AND LUNAR PERTURBATIONS 

In both numerical integrations, we have included some perturbations due to relativity 
and to the effect of the Moon. These perturbations are simplified models which contains 

https://doi.org/10.1017/S0074180900148028 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900148028


88 J. LASKAR 

only the first order terms. They do not consider the second order terms which could arise 
from the products of short period terms. We can check their accuracy by comparison 
with some more elaborated theories. 

For relativity, we consider the first order terms in the motion of the perihelion (Brum­
berg, 1972; Lestrade and Bretagnon, 1982), limited to the post-newtonian approximation 
in 1/c 2. In the isotropic coordinates, it adds to (6) the term: 

The contribution of this term to the secular variations of the elliptical elements are 
directly estimated by the comparison of the solution with and without the relativistic 
term (7). This contribution is given up to te for the inner planets in Table 1. For 
comparison, we put in Table 2 the complete secular terms for the same variables, derived 
from our theory and VSOP82 (Laskar, 1985b). In Table 1, we also put the term in t 
and in t2 computed by (Lestrade and Bretagnon, 1982). The constants they used were 
not exactly the same, and the coefficients of t2 contains the second order terms coming 
from the products of newtonian and relativistic short period terms which do not exist 
in our solution. The discrepencies between the two solutions are very small and lead to 
differences smaller than 2 X 10" 7 after 10 000 years in the eccentricities of Mercury and 
Mars, which is under our level of accuracy. Besides, the high powers of the relativistic 
contributions could be used to improve a newtonian solution. 

The perturbation of the Moon is limited to a single constant term (Bretagon, 1984c): 

where S = 3.192472 x 10" 7 . 
The same computations as with the relativity are made in this case and the results 

are presented in Table 3. The comparisons of the coefficients of t and t2 are made with 
the results of (Bretagon, 1984b) which computed the same quantities using the complete 
theory of the Moon ELP-2000/82 (Chapront-Touze, Chapront, 1983), and his planetary 
theory VSOP82. His values includes the contribution of the short period terms in the 
secular terms of the Moon (the comparison cannot be made with the terms in tz of 
(Bretagon, 1984b) which are not complete). In this case also, the agreement is good, 
despite the very simple form of (8). 

CONCLUSION 

An accurate secular theory of the 8 planets must include the relativistic and lunar 
perturbations. Their first order expression given in (7) and (8) are sufficient with respect 
to the actual level of precision of our theory. An improved theory should probably 
include the second order terms from the relativity, but principally a more elaborated 
representation of the lunar perturbations on the Earth-Moon center of mass. 

x z (7) 

dt L 

(8) 
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k X 10 1 0 h X 10 1 0 q X 10 1 0 p X 10 1 0 

M E R C U R Y 
t -41825 896 9306191 0 0 

-41826163 9306388 
t2 -2 522 666 -11195643 218161 -362 819 

-2520879 -11191877 219308 -362 065 
t3 1497089 -456098 129364 101391 
t4 47009 151595 -38383 23255 

-11559 5 896 2841 -9469 
t« -3 252 336 2467 1975 

V E N U S 
t -211863 -187861 0 0 

-211875 -187857 
t2 139204 146492 -7084 9087 

138041 146104 
t3 -83 173 32988 -1085 -2811 
* 4 -5071 -22 829 1625 769 
t5 5 865 335 -549 321 
t« 69 11 -195 -343 

E A R T H 
t -303062 -69618 0 0 

-303066 -69617 
t2 66348 -133624 -947 2 750 

65664 —132712 
t3 56321 24339 -1485 -607 
tA -6409 17256 76 -639 
t5 -4 876 -1706 110 150 
t6 446 -445 -10 124 

M A R S 
t 248226 559105 0 0 

248 226 559103 
t2 -448110 248285 -516 2048 

-446324 247 3 " 
t3 -108 734 -184672 -2 558 -399 
t* 50478 -31382 -159 -2204 
tb 6041 9807 1474 -283 
t 6 -1532 1222 331 736 

Table 1. Contribution of the relativity in the secular terms (Eq.7). The values in oldstyle are 
the corresponding values obtained by Lestrade and Bretagnon (1982), which include the second 
order terms due to the product of short period terms. The time t is measured in units of 10 000 
Julian years from J2000 (JD 2 451 545.0). 
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k x 10 1 0 h x 10 1 0 q x 10 1 0 p x 10 1 0 

MERCURY 
2 007 233 137 406 156 338 456 355 046 

t - 552 114 624 143 750 118 65 433 117 - 127 633 657 
t2 - 18 607 467 - 79 744 997 -- 10 713 296 - 9 134 193 
t3 7 904 951 - 3 043 725 2 245 279 1 898 818 
t4 589 540 811 285 - 376 780 - 640 089 
t* - 156 482 - 78 243 - 30 978 - 25 951 
t« - 52 991 27 580 10 508 47 156 

VENUS 
- 44 928 213 50 668 473 68 241 014 288 228 577 

t 31 259 019 - 36 121 239 138 133 826 - 40 384 791 
t2 6 041 681 18 468 752 -- 10 909 716 - 62 328 916 
t3 - 6 834 889 328 049 -- 18 641 793 2 473 042 
t4 493 964 - 613 650 601 726 4 228 784 
tb 597 550 - 168 598 746 057 - 57 042 
t 6 - 109 138 - 123 616 - 40 592 - 116 943 

EARTH 

- 37 408 165 162 844 766 0 0 
t - 82 266 699 - 62 030 259 - 113 469 002 10 180 391 
t2 27 626 329 - 33 829 810 12 372 674 47 020 439 
t3 11 695 572 8 510 121 12 654 170 - 5 417 367 
t4 - 2 695 722 2 770 542 - 1 371 808 - 2 507 948 
t* - 715 070 - 467 407 - 320 334 463 486 
t6 218 146 - 62 395 5 072 56 431 

MARS 
853 656 025 - 378 997 324 104 704 257 122 844 931 

t 376 330 152 624 657 465 17 138 526 - 108 020 083 
t2 - 246 579 527 155 295 878 -- 40 776 201 - 19 221 776 
t3 - 36 760 524 - 63 487 894 -- 13 883 445 8 718 504 
t4 11 112 422 - 6 592 895 916 176 3 090 121 
t6 259 071 729 862 1 759 071 37 687 
t* 7 855 113 707 112 984 8 722 

Table 2. Secular terms for the inner planets. The time t is measured in units of 10 000 Julian 
years from J2000 (JD 2 451 545.0). 
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k x 10 1 0 h X 10 1 0 q x 10 10 p x 10 1 0 

MERCURY 
t 0 0 0 0 

t2 -1710 5690 6 58 
— l 712 5 6 9 5 

t3 -114 -548 -173 -78 
t4 151 -568 -6 -105 
t5 -126 -130 1 8 
t« -40 -62 15 23 

VENUS 
t 0 0 0 0 

t2 -18 608 72095 -233 -174 
- 1 8 4 8 0 7 1 3 6 6 

t3 -44274 -13952 636 274 
t* 8931 -10568 -149 217 
t5 4 594 109 -329 -203 
t6 -1288 -276 99 -135 

EARTH 
t -519 878 -119425 0 0 

- 5 1 8 9 8 5 - 1 1 9 6 3 0 
t2 136257 -290016 -105 236 

135 2 5 9 — 2 8 7 4 2 7 
t3 101735 57019 -402 -305 
t4 -17 564 25 773 336 -160 
t5 -6 293 -3 225 196 243 
t6 1146 -739 -138 75 

MARS 
t 0 0 0 0 
t2 -3 584 22600 982 -293 

-3 599 2 2 5 0 5 
t3 -14815 -3170 -697 171 
t4 1616 -5 460 -904 -78 
t5 1346 89 243 -299 
t6 -108 226 267 85 

Table 3. Contribution of the Moon in the secular terms (Eq.8). The values in oldstyle are the 
corresponding values obtained by Bretagnon (1984), which include the second order terms due to 
the product of short period terms. The time t is measured in units of 10 000 Julian years from 
J2000 (JD 2 451 545.0). 
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