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PERSISTENT RANDOM WALKS MAY HAVE
ARBITRARILY LARGE TAILS

D. R. GREY*, University of Sheffield

Abstract

We give a probabilistic proof of a result of Shepp, that a symmetric
random walk may have jump size distribution with arbitrarily large tails and
yet still be persistent.

PERSISTENCE; TRANSIENCE; TAIL BEHAVIOUR

1. Introduction and statement of result

Let Xl' X z, . · •• be independent, identically distributed random variables, which we shall
take to be integer valued and symmetrically distributed about zero. Define the random walk
{Sn} by

S; = Xl + X z + ... + X n for n = 0, 1, 2, ....

The random walk is called persistent if

P(Sn = 0 for some n ~ 1) = 1.

Otherwise it is called transient. The one-dimensional Chung-Fuchs theorem (see Section 3)
tells us that for the random walk to be transient it is necessary that E IXII = 00. If the tail
G(x) = P( IXII > x) is assumed to be regularly varying, then using the analytic necessary and
sufficient condition for persistence (Spitzer (1964)) and Tauberian theorems of Pitman (1968)
it is possible to obtain necessary and sufficient conditions in terms of G. However, Shepp
(1964) proved the following surprising result.

Theorem. Given a function e with e(x) ! 0 as x~ 00, there exists a persistent random walk
with G(x) ~ e(x) for all large enough x.

This result suggests that the size of the tail of the distribution of X I does not tell the whole
story. It may be regarded as a counterexample in the spirit of Stoyanov (1987).

The purpose of this note is to provide a probabilistic proof of Shepp's theorem, which was
originally proved by analytic methods involving characteristic functions. The motivation for
considering this problem was the resemblance to a similar problem in branching processes
(Grey (1989)).

2. A probabilistic proof

Let (PI' pz ...) be a probability distribution with Pi> 0 for all i = 1, 2, ... , and let
(Xl' Xz, ...) be an increasing sequence of positive integers. Let Wk be the defective random
walk which takes jumps of sizes ±xi with probabilities ~Pi for i = 1, 2, ... , k, and which 'dies'
at any step with probability qk = 1 - E7=1 Pi. We show below that it is possible to choose the
pairs (PI' Xl), (Pz, x z), ... successively, in the style of Grey (1978), in such a way that

(1) Wk has probability at least 1 - k- 1 of returning to zero before dying;
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and

(2)

Letters to the editor

It then follows, if "'t, W2 , ••• are constructed on the same probability space in an obvious
way, that W = limk_ao Wk exists in a strong sense, is a proper random walk taking jumps of
sizes ±xi with probabilities ~Pi for i = 1, 2, ... , and, because of (1) and (2), satisfies the
requirements of the theorem.

The proof is by induction. The choice of (PI' Xl) poses no problem. Suppose, therefore,
that we have chosen (PI' Xl), ... , (Pk' xk). Consider the proper random walk on the
two-dimensional integer lattice 7l? taking jumps of sizes ±(xi, O) with probabilities ~Pi and
jumps of sizes ±(0,1) each with probability ~qk. This random walk is persistent, by the
two-dimensional Chung-Fuchs theorem (see Section 3). Hence it has countably many partial
sample paths returning to (0,0) and with total probability 1. If we reduce the probability of
jumps of sizes ±(O, 1) by a suitably small amount to ~Pk+I say, thereby making the random
walk defective, we can ensure that these partial sample paths still have total probability at least
1- (k + 1)-1. If we now choose Xk+I > x, such that e(xk+I);;; qk+I where qk+I = 1 - ~7:? Pi'
and map this defective random walk linearly into one dimension using the transformation
(x, Y)~X + yXk + I , we have constructed Wk + t • This completes the induction.

3. The Chung-Fuchs theorem

The above proof depends upon the following result, which we state for completeness. Here
11·11 denotes Euclidean length.

Theorem. (Chung and Fuchs (1951); see also Chung and Ornstein (1962)).
(a) If EXt = 0 then the random walk {Sn} in one dimension is persistent.
(b) If EXt = 0 and E IIXt l12 < 00 then the random walk {Sn} in two dimensions is persistent.
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