
BULL. AUSTRAL. MATH. SOC. 15A18, 15A63

VOL. 62 (2000) [459-465]

QUADRATIC FORMS ASSOCIATED WITH PLANAR
ENDOMORPHISMS

G.E. PRINCE

Any linear operator A on E2 is shown to have two real quadratic forms on S1

associated with it. They represent the expansion and rotation of the map and the
eigenvalues of A can be described in a geometrically intrinsic way in terms of the
eigenvalues of these two quadratic forms via the formula

A number of theorems concerning these quadratic forms are presented.

1. INTRODUCTION

The geometric structure of linear maps is usually analysed through the standard
(additive) decomposition into an expansionary part, a shear and a twist through the
Euler-Cauchy-Stokes decomposition theorem [3]. However, in the planar case any endo-
morphism A on E2 has associated with it a pair of quadratic forms Aexp, Ami on S1 which
represent the expansion and rotation of the map. In particular, the associated eigenval-
ues Aixp, Alf and X[ot, A™' are the minimum and maximum values of the expansion and
rotation of the map.

The result of the main theorem is that

l

e x P

where Alj2 are the (possibly complex) eigenvalues of A.

As a corollary of this result, in the case of a repeated eigenvalue of A, the correspond-
ing eigenspace has dimension 2 when AJot = A!,ot = 0 and dimension 1 when only one
of these rotations is zero. Apart from their intrinsic attraction and apparent originality,
these results find application in the classification of planar flows [1, 2].
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460 G.E. Prince [2]

2. QUADRATIC FORMS ON THE CIRCLE

Here are some elementary results concerning quadratic forms on S1 needed in the
next section when the expansion and rotation of a linear operator on E2 are introduced.

THEOREM 2 . 1 . Let Q : S1 -> M. be a non-zero quadratic form on the circle with
symmetric matrix representation [Q] (relative to some orthonormal basis) so that

Q(u) = [u}T[Q)[u}

where u = (cos(4>), sin(0)), 0 € [0,2?r). Then the eigenvalues of'Q are its maximum and
minimum values and these values are achieved in the corresponding eigendirections. The
quadratic form is constant if and only if it has a repeated eigenvalue.

PROOF:

since — [u] = [ux] and [Q] is symmetric. Hence the local extrema occur in the eigendi-
dq)

rections of Q. Because the domain of Q is S1 this pair of local extrema are global in
character.

Let u be an eigendirection of Q belonging to A, then

Q(u) = \[u}T{u] = A.

Clearly if A is a repeated eigenvalue, then Q has this value in every direction. D
DEFINITION 2.2: The average value of a non-zero quadratic form Q : S1 —>• K is

Q ( ( 0 , sin <

THEOREM 2 . 3 . Let Q : S1 ->• R be a non-zero quadratic form on S1, then

Q = - trace (Q).

P R O O F : Suppose that

Q((cos0, sin<£)) = acos2<^ + 20 cos <p sin <t> + 7 sin2 4>

for some a, 0,7 e R. Then

Q = — / (a cos2 <j> + 20 cos 0 sin <£ + 7 sin2 0) d<j>
2TT y0

(a + 7) 1
- ^ 7 ; = - t r a c e (Q).
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THEOREM 2 . 4 . Let Q : S1 -* R be a non-zero quadratic form on S1 with average

value Q = (1/2) trace (Q). This average value is achieved in the direction

uiV = ~j=(umax + umiB)

where u m a x , u m i n are t i e eigendirections corresponding to the max/min values ofQ.

P R O O F : If Q has a repeated eigenvalue the result follows immediately from Theo-

rem 2.1. If Q has a distinct eigenvalues we use {umax,umin} as an orthonormal basis for

S 1 and write

u := cos <j> umax + sin (j> um i n

so that

Q{u) = Amax cos2 <f> + Amin sin2 0

S 0 1 1
Q{u) = - trace (Q) «=>• cos2 cj> = - = sin2 <j>

and so

"av = - ^ ( U m a x + Wmin)-

(This is intended to cover all 4 points on S1.) D

3. EIGENVALUES OF PLANAR ENDOMORPHISMS

Let A be a linear operator on E2, then for any non-zero u 6 E2 with u := u/||u||

A{u) = (A{u) • u)u+ (A{u) • u-^S1,

where u1 := i^/2(u) (so that if u= (ul,u2) then uL = (—v},u1)). Hence

A{u) = (A{u) • u)u + (A(u) • uL)ux

and, since the adjoint of R^it is R-^/2 relative to the standard inner product,

A{u) = (A{u) • u)u + (R-n,2 o A(u) • u)uL.

If the matrix representation of A (relative to the natural basis) is

[A)=(an aA
\CL2i a-zi)

then the matrix representations of the two quadratic forms

Aexp{u) := A{u) • u, /Tot(u) := R^, o A{u) • u

are
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DEFINITION 3.1: Aexp(u) and Arot(u) are respectively called the expansion and
rotation of the operator A in the direction of u. The average values of the expansion and
rotation of A are the average values of /lexp(u) and ATOi(u) respectively.

It is interesting to compare this result with the standard Euler-Cauchy-Stokes de-
composition theorem [3]:

THEOREM 3 . 2 . (Euler-Cauchy-Stokes Decomposition Theorem) The matrix rep-
resentation of A can be uniquely decomposed as

[A] = | / 2 + E + n

where 0 :— trace ([̂ 4]) (so that 6 / 2 is the average expansion of A), E is a trace-free
symmetric matrix representing shear and Q, is a skew-symmetric matrix representing the
twist of the map. Explicitly

r , i _ (an +0-22) , 1
2 2

It is a simple matter to show (in an obvious abuse of notation) that

4exp(u) = A^P + E(u) • u, Arot(u) = A™ + E(u) • uL.

Now we apply Theorem 2.1 to the rotation and expansion of A. Part (c) of the
following theorem follows from the definition of Arot.)

PROPOSITION 3.3.

(a) If the quadratic form Aexp is not zero, then its eigenvalues are the maximum
and minimum values of the expansion of the map A and these are achieved
in the corresponding eigendirections. The map A has constant expansion
in all directions if and only if Aexp has a repeated eigenvalue.

(b) If the quadratic form Arot is not zero then its eigenvalues are the maximum
and minimum values of the rotation of the map A and these are achieved
in the corresponding eigendirections. The map A has constant rotation in
every direction if and only ifATOt has a repeated eigenvalue.

(c) The zeros of ATOt occur in the eigendirections of A.

The main theorem relates the eigenvalues of A to those of Aexp and .4rot:

THEOREM 3 . 4 . Let the (possibly repeated) eigenvalues of A be Ai, A2 and those
ofAexp and ATOt be A*xp, \fp and A;ot, A^ot respectively. Then

\ e xP
A,.2 = ' 2

 2 ± yF
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PROOF: This is a straight forward calculation using the matrix representations of

A, Ae*p and ATOt (relative to the natural basis). The crucial facts are:

det[Arot] = - i ( t r a c e [A])2 + det[A]

and

trace [A***] = trace [A].

D
This theorem shows that the average expansion of A is the arithmetic mean of

the maximum and minimum expansions. More strikingly it shows that A has complex
eigenvalues precisely when the maximum and minimum rotations have the same sign,
so that the map rotates every direction in the same sense. This is intuitively satisfying
given the behaviour of pure planar rotations. Finally, the theorem has a corollary which
explains the geometric multiplicity of repeated eigenvalues of the map A.

COROLLARY 3 . 5 . If the linear operator A has a repeated eigenvalue X its geo-
metric multiplicity is 2 if and only if X[ot = 0 = Aijot (so that ATOt is the zero quadratic
form) and its geometric multiplicity is 1 if and only if only one of AJ04, Aj01 is zero.

PROOF: The main theorem indicates that the repetition of A is equivalent to
A™' • A!,ot = 0. Notice also that ATOt(u) - 0 in any eigendirection of A (whether the
corresponding eigenvalue is repeated or not).

Now suppose that A has geometric multiplicity 2 so that A = XI. Then Atoi = 0 so
that A;01, A£" are trivially zero. On the other hand, if A?" = 0 = XT

2
0t then Arot = 0 since

A™1, A™' are the global maximimum and minimum values of the rotation of A. Thus

A{u) = Aexp(u)u, V u £ E2

and so the repeated eigenvalue has geometric multiplicity 2.

It is an immediate consequence of this argument that geometric multiplicity 1 is

equivalent to only one of X\ot, A™' being zero. D

This corollary shows that a repeated eigenvalue occurs when a map's rotation is zero
in at least one direction (and the eigenvalue achieves geometric multiplicity 2 only when
the map itself is a pure expansion).

We can now classify the eigenvalues of linear operators on E2 according to their
corresponding rotations using X\01 ^ ATOl(u) ^ A^ot, Vu 6 S1:

zeros of Arot on [0, TT)

none
1
2

CO

Eigenvalues of A

complex
repeated, geometric multiplicity 1
real and distinct
repeated, geometric multiplicity 2
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Needless to say the eigenvectors of A are the zeros of Aroi.

Finally, two remarks: while the constructions of Arot and >lexp are not invariant
under similarity transformations, their determinant and trace respectively are. That is,
the determinant of the symmetrisation of P~x o (i?_w/2 o A) o P is the same as that of
the symmetrisation of R-n/2 ° A. and similarly for the trace of the symmetrisation of
P~x o A o P. The second remark is that any inner product for R2 would have done: the
rotation R-w/2 being replaced by a linear map R with R2(u) — —u and R(u) orthogonal
to u (for nonzero u).

4. GENERALISATIONS

There are two clear directions for generalisation of these results: one is to C2 and
the other is to E™. The C2 results are rather disappointing inasmuch as the two quadratic
forms Aexp, AT0X of the real case do not become Hermitian quadratic. If u = (u1, u2), then
u1- = (—u2,ul) and the map corresponding to R^/2 is then antilinear. If we denote this
map by R^/2 we have

A{u) = (A(u) • u)u + {R-n/2 o A{u) • u)uL

where R-n/2 ° A : C2 —> C2 is antilinear. The quadratic forms Aexp, ATOt defined by

(u) = A{u) • u, ATOt{u) = fl_T/2 o A(u) • u

arise from sesquilinear and completely antilinear maps on C2 x C2 respectively. Neither
quadratic form has an a priori Hermitian matrix representation although ATOt has a
symmetric matrix representation. However, the result of the main theorem still holds for
the eigenvalues of the 3 matrices

r ( f l l 2 ~l"a21) I

The corollary to the main theorem also holds because a repeated eigenvalue of A means
that both eigenvalues of the third matrix above must be real with at least one zero.

The generalisation to E" seems straight forward in one direction at least. If a linear
operator on E" has an invariant 2-space, the behaviour of its restriction to this 2-space
can be analysed with the results given here. This is probably more interesting when the
2-space is not a direct sum of eigenspaces. The case of orthogonal operators on En is
probably the simplest.

On the other hand on En one might try and generalise the decomposition of A(u)
into components along u and along its orthogonal complement:
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n- l

A(u) — (A(u) • u)u +

n- l

= (A(u) • u)u +

where {uf,.. . ,u^_{\ is any orthogonal basis for the orthogonal complement of Sp{u}
with all elements having the same length as u. The rotations R, are the linear operators
on En satisfying

Ri(u) = uj-, Ri(ul) = -u (no sum), Ri(uf) = uf, j / i.

However, these rotations in general depend on u unlike the E2 case. This is easily seen
in E3 where each of the Ri has exactly one real eigenspace spanned by the appropriate
uj-. So it seems that analysis in the En case is best accomplished by examination of
invariant two spaces.
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