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AUTOMATIC CONTINUITY OF POSITIVE FUNCTIONALS
ON TOPOLO6ICAL INVOLUTION ALGEBRAS

P.G, DIXON

This paper surveys the known results on automatic continuity of

positive functionals on topological *-algebras and then shows

how two theorems on Banach ''-algebras extend to complete

metrizable topological *-algebras. The two theorems concerned

are Loy's theorem on separable Banach ''-algebras A with centre

Z such that AZ is of countable codimension and Varopoulos1

result on Banach ^-algebras with bounded approximate identity.

Both theorems have the conclusion that all positive functionals

on such algebras are continuous. The extension of the second

theorem requires the algebra to be locally convex and the

approximate identity to be 'uniformly bounded'. Neither

extension requires the algebra to be LMC. This means that the

proof of the first theorem is quite different from the

corresponding Banach algebra result (which used spectral theory).

The proof of the second is closer to the previously known LMC

version, but actually neater by being more general. It is also

shown that the well-known estimate of |,f(a*&a)| for a positive

functional f on a Banach *-algebra may be obtained without the

usual use of spectral theory. The paper concludes with a list of

open questions.

1. Introduction

The purpose of this paper is to give analogues for complete metrizable

algebras of the following two theorems on Banach algebras.
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THEOREM 1.1 (Loy [12, Theorem 2.1]). Let A be a separable Banaah

algebra with involution and let Z be the centre of A . If AZ is of

countable (that is, at most countable) codimension in A 3 then every

positive functional on A is continuous.

THEOREM 1.2 (Varopoulos [27]). Let A be a Banach algebra with

involution. If A has a bounded approximate identity, then every positive

functional on A is continuous.

Theorem 1.1 is the end product of a series of results. It is based on

an application of Souslin techniques to earlier results on (not necessarily-

separable) algebras (Theorem l.k below). Theorem 1.2 may be found in

Sinclair's book [79, Theorem 13.11]. Both these theorems hold for Banach

algebras whose involutions are not necessarily continuous, whereas our

proofs will require continuous involutions. However, it should be noted

that involutions on semisimple Banach algebras are automatically continuous

[79, Corollary 6.13], so this may be regarded as only a minor loss. Apart

from this, and an adjustment to the notion of 'bounded approximate

identity1, our results (Theorems 3.6 and k.3 below) are verbatim extensions

of these theorems. Our proofs, however, are substantially different.

Let us establish some terminology. All topological vector spaces will

be Hausdorff. All algebras will be over the complex field C .

Involutions will not be assumed continuous unless specifically stated. By

an F-space we shall mean a complete metrizable (not necessarily locally

convex) topological vector space. By an F-algebra we shall mean a

topological algebra which is an F-space. The multiplication is assumed to

be separately continuous, but a theorem of Arens [7] ([22, Theorem 7.2])

then makes it jointly continuous; that is, the map (x, y) i—>• xy from

A x A to A is continuous. If X, Y are subspaces of A , then XY

denotes the subspace generated by the appropriate set of products; that

is,

XY = \ T x.y. : n = 1, 2, 3, ...; x, € X, y, i Y (l < i < n) .

2
We write A for AA . By an F*-algebra we shall mean an F-algebra with

a continuous involution. The positive cone of a *-algebra A is the set
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A = \ I xix. : n = 1, 2, 3, ...; x. € A (l 5 i £ n)V .

A positive functional on A is a linear map / : A •* C such that

f(x*x) > 0 for all x € A ; that is, such that /U +) c R+ .

With these notations, we summarize the other previously known results

about automatic continuity of positive functionals on topological

*-algebras. First, a trivial argument with Hatnel bases shows the

following.

THEOREM 1.3. A necessary condition for an F-algebra A with

2
involution to have no discontinuous positive functionals is that A be

closed and of finite codimension in A .

In the other direction, we have the following.

THEOREM 1.4 ([79, Theorem 13.7]). Let A be a Banach algebra with
2

involution, and let Z be the centre of A . If Z A is closed and of

finite codimension in A , then every positive functional on A is

continuous.

THEOREM 1.5. Let A be a complete metrizable algebra with

2 +
involution. If A is closed and of finite codimension and A is
closed, then every positive functional on A is continuous.

This is an easy corollary of a result of Namioka [75, Corollary 5.53-

In the following extension of it, due to Neumann [16, (3.6) (ii)], the

involution need not even satisfy the identity (xy)* = y*x* (x, y € A) .

THEOREM 1.6. Let A be a complete metrizable algebra with

2 +

involution such that A is of countable codimension in A and A is

complete. (It is sufficient, in fact, to assume that every increasing

+ 2

Cauchy sequence in A converges there.) Then A is closed and of

finite codimension in A and every positive functional on A is

continuous.

THEOREM 1.7 (Dao-Shing Shah [7SI). If A is an P*-algebra with

identity, then every positive functional on A is continuous.
Actually, Shah proves this only for LMC algebras, but his method
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extends easily to the general case (see [7, Theorem (1.8.5)], C6, Theorem

11.1] or [17]).

If we drop the hypothesis of metrizability, even Shah's theorem fails

easily (see [14, remark following Proposition 12.2]), since the question we

should be asking is whether positive functionals are automatically bounded.

This automatic boundedness can be proved for complete LMC algebras with

continuous involution and identity ([7, Theorem (1.8.6)], [9]), but it

fails in general. In IS, Addendum], an example is given of a complete,

commutative, locally convex algebra with identity, continuous involution

and jointly continuous multiplication, on which there is an unbounded

positive functional.

Finally, we mention two very recent results of Johnson [//, Theorems

3.5 and 3.7]. For F*-algebras, these read as follows.

THEOREM 1.8. Let A be an F*-algebra such that A2 = A . Suppose

either:

(a) A is commutative and LMC and the set of elements with

bounded spectrum is dense in A ; or

(b) there is an approximate identity {e\\\ck for A > which is

contained in the centre of A and is such that the set

{e-,x : A € A} is bounded, for every x € A .

Then every positive functional on A is continuous.

2. Results in general F*-algebras

In this section, we present the best result on F*-algebras we have

been able to reach, so far, without invoking the hypothesis of separability

(Theorem 2.5). We begin with a result which is basic to the rest of the

paper. For Banach algebras with involution, it may be proved using Ford's

square root lemma (see [79, Lemma 13.2 (iv)]). In general topological

algebras Ford's lemma is not available, so we must use Shah's theorem,

which avoids the need to consider spectra of elements, at the expense of

requiring us to assume that the involution is continuous; hence the

prevalence of this assumption in the present paper.

THEOREM 2.1. Let A be an F*-algebra and f JX positive functional
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on A . Then, for every a, b € A , the functional x *-*• f(axb) on A is

continuous.

Proof. Using the identity

haxb = (b+a*) *x(b+a*) + i{b+ia*) *x(b+ia*)

- (b-a*)*x(b-a*) - i(b-ia*)*x{b-ia*) ,

we see that it is sufficient to prove that the functional

/ : x *-*• f(a*xa) is continuous, for each a € A .

Let A~ be the algebra A ® Ce obtained by adjoining an identity e

to A in the usual way, with the obvious topology. Then / extends to a

positive functional on A~ by

fa{x+Xe) = f{a*xa) + \f(a*a) {x € A, X € C) .

By Shah's theorem (Theorem 1.7 above), / is continuous on A~ , and

hence on A .

An interesting corollary to this is that we may obtain the usual

estimate for the norm of / when A is a Banach algebra [/9, Lemma

13.2 (iv)], without using Ford's square root lemma. En route to this, we

first obtain a result for general f-algebras.

THEOREM 2.2. Let f be a positive functional on an F*-algebra A .

If . x (. A is such that (xx*)n •*• 0 [equivalently (x*x)n -*• 0 ), as

n •*• °° , then

\f(a*xa)\ < f(a*a) (a € A) .

Proof. We need the following algebraic lemma.

LEMMA 2.3. If f is a positive functional on a *-algebra A } then

pn+l n n n
\f(xyz) |2 £ ftxx*)2 -Xf{x(yy*f x*)f{z*z)2

for n = 0, 1, 2, ... and every x, y, s € A .

Proof. We start with the fact that / must satisfy the Cauchy-

Schwarz inequality

\f(a*b)\2 < f{a*a)f(b*b) {a, b € A) .

Putting a* = xy , b = z in this gives
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(1) \f(xyz)\2 £ f(xyy*x*)f(z*z) ,

which proves the lemma for n = 0 . Furthermore, (l) implies

on o o n + 1

(2) f[x{yy*r x*)d < f[x{yy*f x*)f(xx*),

for a l l n . Now suppose the lemma holds for n . Then

on+2 n n n o

\f(xyz)\2 2 [f(xx*f -Xf{x{yy*)2 x*)f(z*z)2 ] 2

n+1 w+1 n+1

S /(xx*)^ ~Lf{x(yy*)d x*)f{z*z)d

by (2) . Thus the lemma i s proved, by induction.

Proof of Theorem 2.2 continued. By Theorem 2 . 1 , we have

(3) /(a*(zx*)2 a) -• 0

as n •*• °° and, by the lemma,

(U) | / ( a * x a ) | 2 5 f(a*af -Xf{aHxx*)2 a) (n = 1 , 2 , 3 , . . . ) .

If /(a*a) = 0 , then (It) implies f(a*xa) = 0 , as desired. Otherwise,

(3) and (1*) give

f(a*xa) d

f(a*a)

as n •*• °° , so

f(a*xa)
< 1 .f(a*a)

This completes the proof.

COROLLARY 2.4 ([/9, Lemma 13.2 (iv)]). If f ie a positive

functional on a Banach algebra A with continuous involution, then

\f{a*ba)\ < f(a*a)v(b*b)* (a, b € A) ,

where v(x) denotes the spectral radius of x . Equivalently [ 79 , Lemma

13.2 (iii)],

\f(a*ha)\ S f(a*a)\){h) (a € A, h = h* € A) .

Proof. This i s immediate from Theorem 2.2 , since (b*b)n •* 0 as
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n •* <» when \){b*b) < 1 .

Returning to F*-algebras, we can develop Theorem 2.1 further, as

follows.

THEOREM 2.5. If f is a positive functional on an F*-algebra A

with centre Z , then the mapping

(x, y, z) *-y f(xyz) : A x A x Z -»• C

is continuous.

Proof. Since xyz = xzy = zxy, Theorem 2.1 implies that

x H-t- f{xyz) , y >-+ f(xyz) , z •-»• f(xyz)

are continuous maps from A to £ , for all values of the other two

variables. It only remains to apply a 'separate continuity implies joint

continuity1 lemma similar to the theorem of Arens cited above. The

following has sufficient generality for our purpose. Its proof is a

straightforward generalization of that of Arens1 original theorem (see [/]

or [22, Theorem 7.2]), and is therefore omitted.

LEMMA 2.6. Let E , E , ..., E be F-spaces and let F be any

topologieal vector space. Let T : E' x ... x E -*• F be a multilinear

map, separately continuous in each variable. [That is, each of the maps

xi i— 2-(xlt ..., xn) : Ei*F [x. € E. (j # i), 1 < i < n)

is continuous.) Then T is (jointly) continuous.

3. Separable F*-algebras

When the F*-algebra is separable, we may improve on the results of

the previous section by using the theory of analytic spaces. We first

recall the basic definitions and results we shall need. For details, we

refer the reader to [3], [73], [70] or, with slightly different

terminology, [2].

DEFINITION 3.1. A topologieal space is analytic if it is the

continuous image of a complete, separable metric space.

THEOREM 3.2 ([3, Theorem 5.5]). Let E be an F-space and F an

analytic (linear) subspace of countable codimension. Then F is closed
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and of finite oodimension.

THEOREM 3.3 (The Pettis Lemma [3, Theorem 5.1]). Let E be a

topologiaal vector space and let X be a subset of E which is analytic

and non-meagre in E . Then X - X (that is, ix-y : x, y € X) ) is a

neighbourhood of zero in E .

THEOREM 3.4 (The Analytic Graph Theorem [3, Theorem 5.2]). Let E

be an F-space, F any topological vector space and T : E •*• F a linear

mapping whose graph is an analytic svbspace of E x F . Then T is

continuous.

We shall express our use of analytic space techniques in the form of a

general lemma (which may be of independent interest). Part (i) is very

similar to the main result of [4] and to [12, Theorem 1.3 (i)], but we

include it, for completeness.

LEMMA 3.5. (i) Let E , ..., E , E be separable F-spaces. Let

T : E' * ... x E •+ E be a continuous multilinear mapping such that the

linear span H of T(E X x E ) is of countable codimension in E .

Then H is closed and of finite codimension and there is a positive

integer K such that every element of H is expressible in the form

K
Y, T{xix, . . . . xin) for some x^ C £\ ( l £ i < K, 1 < j < n) .

"V—1

(ii) If, further, F is another F-space and S : E •*• F is a linear

map such that ST : E * ... x E -*• F is (jointly) continuous, then S is

continuous.

Proof. Let H^ be the set of elements of H expressible in the form

k
.1 T{xix, ..., xin) for some x^ IE. (l « i < fc, l < j « n) . Then
i—l

each Hy is analytic, being a continuous image of the complete, separable

metric space [E X .., x E) , and H is analytic, being a continuous

image of the complete, separable metric space consisting of the disjoint

00 it

union U (E X ... x E) . By Theorem 3.2, H is closed and of finite
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codimension in E . So H is a complete metric space. Moreover,

00

H = U H, so, by Baire's Category Theorem, R, is non-meagre in R , for

some k . Applying the Pettis Lemma to this R. , we see that R-y - R-, is

a zero-neighbourhood in R . Since R^ is a linear subspace, this means

that Hv - R, = H ; that is, RoV = H . This proves (i) with K = 2k .

To prove (ii), we first consider the restriction S\R of S to R .

We observe that, since ST is continuous, the map

K,, .... xjf.,- I ST{x .... x ) : fe x ... XBJZ + F

is continuous, so its graph G is a closed subset of

[E x ... x E ) •* F . Therefore G is a complete separable metric space.

Now the graph Gr{S\R) of S\H is the image of G under the continuous

map

Therefore Gr(S\H) is analytic. By the Analytic Graph Theorem, Theorem

3.1t, S\H is continuous. Since H is closed and of finite codimension,

it follows that S is continuous.

THEOREM 3.6. Let A be a separable F*-algebra with centre Z such

that AZ is of countable codimension in A . Then every positive

functional on A is continuous.

Proof. Let / be a positive functional on A . Since AZ is of

2
countable codimension, so is A Z . We apply the previous lemma with

n = 3 , Ex = E2 = E = A , E^ = Z , F = C , S = f and 21 the

multiplication map (so that Theorem 2.5 just says that ST is continuous).

2
The conclusion is that A Z is closed and of finite codimension and that

/ is continuous. (A similar argument shows that AZ is closed and of

finite codimension.)

COROLLARY 3.7. Let A be a commutative, separable F*-algebra.
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Then a necessary and sufficient condition for every positive functional on
o

A to be continuous is that A be closed and of finite codimension

[equivalently, that A be of countable codimension).

Proof. By Theorems 3.6 and 1.3.

4. F*-algebras with approximate identities

In extending Varopoulos' theorem (Theorem 1.2 above) to F*-algebras,

we shall follow his approach of first proving a version of Cohen's

Factorization Theorem and then combining it with the fact that the map

x •—*• f(axb) is continuous (our Theorem 2.1). The required version of

Cohen's Theorem was first proved by Craw [5] for Frechet (that is,

complete, metrizable, LMC) algebras; another proof being given, using

modules, by Summers [20]. We shall show here that Cohen's Theorem

extends, in a particularly neat way, to complete, metrizable, locally

convex (but not necessarily LMC) algebras. We follow Summers' approach.

Let A be a locally convex F-algebra. Its topology may be defined

by a countable set of seminorms {p. : i = 1,"2, 3, ...} , and these may be

chosen so that p.(x) £ p.(a:) whenever i - j and x € A . Since the
*• 0

multiplication is jointly continuous, we may further adjust the choice of

defining seminorms so that

(5) p^xy) £ pi+1(*)pi+1(y) (i = 1, 2, 3, ...; x, y € A) .

By a uniformly bounded left approximate identity in A , we shall mean a

net (exKeA s u c n t l l a ' t e\a •* a f ° r every a € A and there exists K > 0

such that the set

A : X € A , n = 1 , 2 , 3 , . . . j

is bounded in A . (Note that this agrees with Craw's definition in the

LMC case.) By a left Frechet A-module, we shall mean a left /1-module X

which is an F-space (not necessarily locally convex), such that the

multiplication map (a, x) i—»• ax : A x X •*• X is separately (and hence

jointly) continuous. We shall say that X is essential if A has a

uniformly bounded left approximate identity {eiKeA suc-h t h a t e\x ~*~ x
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for all x € X . We shall let d denote a translation-invariant metric

defining the topology on X , and write \x\ = d(x, 0) (x € X) . (Note

that |*| is subadditive, but that we do not have |oun| = |a| |x| (a € C,

x € X) .)

THEOREM 4.1. Let X be an essential Frechet A-module. Then, for

every x € X and every e > 0 , there exist a € A , y € X such that

x = ay y y € Ax and d(x, y) < e .

Proof. Let {e\}\c\ b e a uniformly bounded left approximate identity

and p. (i = 1, 2, 3, ...) seminorms, as described above. Let A~

denote the algebra A @ Ce obtained by adjoining an identity e to A in

the usual way. To simplify notation, we shall write a + £ for (a, E,e)

(a € A, £ € C) . The seminorms p. on A extend naturally to A~ by
3

= p.(a) + (a € € C) .

Let K be the uniform bound for {e;Jx€A ' as a t o v e» a n d l e t P > 0

be chosen so that p/(l+p) < 1/(2K) . Then, for each X € A , (l+p-pe,)

is invertible in A~ . To show this, we must check that our hypotheses are

sufficient for the usual argument to work. We have

N r \n i -viV+1
d + p r 1 X I 1 ^ ^ 1 ^(6) = 1 -

Since

j , a constant

(7) P

Hence

: A € A, n = 1, 2, 3, f i: A € A

such that

is bounded, we have, for each

) 3) •"

U = i, 2, 3,

and so the right hand side of (6) tends to 1 as N •* <*>

1«

Now the pa r t i a l

sums of
n=l

-1
p(l+p) e form a Cauchy sequence, since
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n=p

^ Z~nM. (p <q, j = 1, 2, 3,

Hence the infinite sum converges and

(Notice that in this well-known argument we have not required the seminorms

to be submultiplicative, but we have used the local convexity of A .) We

note that

(8)
n=l

2"V =

We shall choose a sequence e , e^, ... of elements of {e, : X € A}

inductively, beginning with e which is chosen so that

(9)

Suppose e ,

|px-pe x| < e/2

e have been chosen. We write
n

tn =

hn =

)" n

Then we choose e

(10)

and

(11)

n+1

an= hn- (l+p)"n € A ,

= t x .n

so that

,(er,+iar,-aJ * 2'

e2'
,-n-l

We can obtain (10) because e,a •+• a and (ll) because pt e,x -»• pt x , by

A n n n A n

continuity of scalar and module multiplication and the fact that X is

essential. Since the seminorms p. are increasing, (10) implies
3
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(12) P j K ) n

We prove that (a ) is a Cauchy sequence. It follows from the

definition of (a ) that

" an

Hence , u s i n g (5)>

for a l l 3 . Applying ( 8 ) , (12) and t h e i n e q u a l i t y p . ( e j < KM. (A € A,
<7 " 3

j = 1 , 2 , 3 , - - . ) , wh ich i s a s p e c i a l c a s e o f ( T ) s we s e e t h a t

for 1 £ 3 £ n-1 . This shows that [a ) is a Cauchy sequence: we let

a = lim a . (Note that we have again used the local convexity of A .)

We also have that [y ) is Cauchy, since

(13) \yn+1-yn\ = I P V - P V » + I * I < &
n-x (« = i, 2, 3, ...) ,

by the definitions Of y and t and inequality (ll). We let
n n

y = iim yn •

The conclusions of the theorem are now clear. Since hu = x and

y = t x for all n , we have x = ay and y € Ax . Finally,

00

d(x, y) < Ix-j/J + £ li/B+1-tfnl
tt=l

00

5 62-1 + X Z2~n-1 , by (9) and (13),
n=l

= £ .

COROLLARY 4.2. Let 4 fee a locally convex F-algebra with uniformly

bounded left approximate identity. Then, for every sequence x •*• 0 in
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A , there exists a € A and a sequence y •*• 0 in A such that x = ay

for all n .

Proof. Let e
n(-^) denote the left Frechet 4-module of all zero-

convergent sequences in A with the topology given by the seminorms

*•((«)) = sup p.(a)
3 n n * n

corresponding to the topology-defining seminorms p. on A . Then (5)
0

implies

3'

and i t i s easy to check that arS&) i s essent ia l . The corollary now

follows by appling Theorem k.l with X = <?.(i4) •

THEOREM 4.3 . Let A be a locally convex F*-algebra with uniformly

bounded left approximate identity. Then every positive functional on A

is continuous.

Proof. Let x •*• 0 in A . Then, by Corollary U.2, we may writen

x = ay with a € A and y -*• 0 in A . By a second application of

Corollary h.2, we can write y* = b*z* with b* € A and z* •*• 0 in A .

Thus, since * i s continuous, we have x - az b with s •*• 0 . By

Theorem 2 . 1 , f[x ) -»• 0 ; hence the resu l t .

5. Problems

In this final section, we list a few questions which we believe to be

open.
o

5.1. Is it true that if A is an F*-algebra with A closed and of

finite codimension, then every positive functional on A is continuous?

Is this true under any of the following additional hypotheses on A •

(i) A is Banach;

(ii) A is separable;

(iii) A is Banach and separable;
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(iv) A is commutative (but not separable)?

5.2. Does Theorem U.I (and hence Corollary k.2 and Theorem k.3) hold

when A is not locally convex?

5.3. A possible approach to 5.1 would be to try to obtain something

like the conclusion of Corollary k.2, that is, simultaneous factorization

2
of a sequence, from a hypothesis such as A - A which is weaker than the

existence of a uniformly bounded left approximate identity. Specifically,

we ask the following questions.

(i) Suppose that A is a separable Banach algebra such that, for

every x (. A , there exist a, b € A with x = ab (and we may also

require that ||a||||fc|i < K||x|| for some fixed K ). Is it then true that

every sequence x •* 0 in A may be written as x = ay for some a € A

and y •*• 0 in A ?

(ii) Suppose that A is a separable Banach algebra with A = A .

k
Then every x € A may be written in the form x = £ a.b. for some

£=1 v "*"

a . , . . . , a. , b , ... , b. € A , where k i s a positive integer independent
X K 1 K

of x (see [ 4 ] , [ J2 ] or Lemma 3.5 (i>) above) . We a l s o know t h a t we may

k
arrange that £ \\a .\\\\b. || 5 #||x|| for some number K independent of x

i=l v v

LI21. Does it follows that every sequence x •*• 0 in A may be written

k
in the form x = £ a.y. , for some a., y. £ A (l £ £ * fc,

W •_-. ^ ^W 1r 1*1%

n = 1, 2, 3, ...) with #. + 0 as n •* °° (l < £ £ fc) ?

(iii) Do (i) and (ii) hold even when the sequence (x ) is replaced

by a pair (x^ x2) ?
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