
2

One-Parameter Families

In Kollár (2013b) we studied in detail canonical and semi-log-canonical
varieties, especially their singularities; a summary of the main results is given
in Section 11.1. These are the objects that correspond to the points in a moduli
functor/stack of canonical and semi-log-canonical varieties. We start the study
of the general moduli problem with one-parameter families.

In traditional moduli theory – for instance, for curves, smooth varieties or
sheaves – the description of all families over one-dimensional regular schemes
pretty much completes the story: the definitions and theorems have obvi-
ous generalizations to families over an arbitrary base. The best examples are
the valuative criteria of separatedness and properness; we discussed these in
(1.20). In our case, however, much remains to be done in order to work over
arbitrary base schemes.

Two notions of locally stable or semi-log-canonical families are introduced
in Section 2.1; their equivalence is proved in characteristic 0. For surfaces, one
can give a rather complete étale-local description of all locally stable families;
this is worked out in Section 2.2.

A series of higher dimensional examples is presented in Section 2.3. These
show that stable degenerations of smooth projective varieties can get rather
complicated.

Next we turn to global questions and define our main objects, stable families,
in Section 2.4. The main result says that stable families satisfy the valuative
criteria of separatedness and properness.

Cohomological properties of stable families are studied in Section 2.5. In
particular, we show that in a proper, locally stable family f : X → C, the basic
numerical invariants hi(Xc,OXc ) and hi(Xc, ωXc ) are independent of c ∈ C. We
also show that Xc being Cohen–Macaulay (10.4) is also independent of c ∈ C.

In the next two sections, we turn to a key problem of the theory: under-
standing the difference between the divisor-theoretic and the scheme-theoretic
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58 One-Parameter Families

restriction of divisors, equivalently, the role of embedded points. The general
theory is outlined in Section 2.6. Then in Section 2.7 we show that if all the
coefficients of the boundary divisor are > 1

2 , then we need not worry about
embedded points in moduli questions.

Checking local stability is easier in codimension ≥ 3, we discuss this and its
relation to Grothendieck–Lefschetz-type theorems in Section 2.8.

From now on we use many definitions and results about log canonical and
semi-log canonical pairs as in Kollár (2013b). The most important ones are
summarized in Section 11.1.

Assumptions The basic definitions in Section 2.1 are formulated for schemes.
In the rest of Sections 2.1–2.5 and 2.7, we work in characteristic 0, unless a
more general set-up is specified.

In Section 2.6 we work with arbitrary Noetherian schemes.

2.1 Locally Stable Families

Following the pattern established in Section 1.4, we expect that the definition
of a stable family f : (X,∆) → S consists of some local conditions describing
the singularities of f , and a global condition, that KX/S +∆ be f -ample. We are
now ready to formulate the correct local condition, at least for one-parameter
families.

Note on R-divisors From now on, we state definitions and results for R-
divisors, which seems the natural level of generality; see Section 11.4 for a
detailed treatment. However, there will be no major differences in the proofs
between Q- and R-divisors until Chapter 6.

We already defined stable varieties in (1.41). The basic objects of our moduli
theory are their generalizations.

Definition 2.1 (Stable and locally stable pairs) A locally stable pair (X,∆)
over a field k consists of a pure dimensional, geometrically reduced k-
scheme X and an effective R-divisor ∆ such that (X,∆) has semi-log-canonical
(abbreviated as slc) singularities (11.37).

(X,∆) is a stable pair if, in addition, X is proper and KX + ∆ is an ample
R-Cartier divisor (11.51). Thus a locally stable pair is the same as an slc pair;
we usually use the former terminology for fibers of families.

If ∆ = 0, we have a stable variety as in (1.41).

Definition 2.2 Let C be a regular one-dimensional scheme. A family of vari-
eties over C is a flat morphism of finite type f : X → C, whose fibers are
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2.1 Locally Stable Families 59

pure dimensional and geometrically reduced. We also call this a one-parameter
family. For c ∈ C, let Xc := f −1(c) denote the fiber of f over c.

A family of pairs over C is a family of varieties f : X → C plus an effective
Mumford R-divisor ∆ (p.xv) on X, That is, for every c ∈ C, the support of ∆

does not contain any irreducible component of Xc and none of the irreducible
components of Xc ∩ Supp ∆ is contained in Sing Xc; see (4.16.4) and Sec-
tion 4.8 for details. This condition holds if the fibers are slc pairs. It turns out
to be technically crucial, so it is much easier to assume it from the beginning.

The assumptions imply that X is regular at the generic points of Xc ∩ Supp ∆.
We can thus define ∆c as the closure of the restriction of ∆ to Xc \ Sing Xc.

Warning For non-Cartier divisors, the divisor-theoretic restriction is a divisor,
but the scheme-theoretic restriction ∆ ∩ Xc may have extra embedded points.
This becomes quite important starting from Section 2.6.

Our main interest is in families with demi-normal (11.36) fibers, but we
also want to understand to what extent this follows from other assumptions.
However, we do not wish to get bogged down in technicalities, so we almost
always assume the following conditions, both of which hold if the fibers are
demi-normal.
(2.2.1) X satisfies Serre’s condition S 2. Since the fibers are assumed reduced,

X is S 2 iff the generic fiber Xg is S 2.
(2.2.2) The canonical sheaf ωXc of the fiber Xc is locally free at codimension 1

points for every c ∈ C. Equivalently, the relative canonical sheaf ωX/C (2.5)
is locally free at codimension 1 points of Xc. Thus the relative canonical
class exists; we denote it by KX/C (2.5).

We can now define local stability for one-parameter families in characteristic
0. (We define stable families in (2.46).)

Definition–Theorem 2.3 Let C be a one-dimensional, regular scheme over a
field of characteristic 0 and f : (X,∆) → C a family of pairs satisfying (2.2.1–
2). We say that f is locally stable or semi-log-canonical at a point p ∈ Xc, if
the following equivalent conditions hold:
(2.3.1) KX/C + ∆ is R-Cartier at p and

(
Xc,∆c

)
is slc at p.

(2.3.2) KX/C + ∆ is R-Cartier at p and
(
X̄c,Diff X̄c

(∆)
)

(11.14) is log canonical
at π−1(p), where π : X̄c → Xc denotes the normalization.

(2.3.3) (X, Xc + ∆) is slc at p.
(2.3.4) There is an open neighborhood p ∈ X◦ ⊂ X such that (X, X f (q) + ∆) is

slc at q for every q ∈ X◦.
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60 One-Parameter Families

Proof If (2) holds, then inversion of adjunction (11.17) shows that (X, Xc + ∆)
is slc at p. The converse also holds since (11.17) works both ways. Thus (2)⇔
(3) and Kollár (2013b, 4.10) shows that (3)⇔ (4).

Since Xc is a Cartier divisor in X, the restriction ∆c equals the different
DiffXc (∆) by (11.15). Furthermore, by (11.14.5)

KX̄c
+ Diff X̄c

(∆) = π∗
(
KXc + DiffXc (∆)

)
.

Thus (11.37) shows that (1)⇒ (2). Note that (11.37) is an equivalence, but in
order to apply it we need to know that Xc is demi-normal.

By assumption, Xc is geometrically reduced. A local computation shows that
Xc is either smooth or has nodes at codimension 1 points; see Kollár (2013b,
2.33). Thus it remains to prove that Xc is S 2.

This is actually quite subtle. We outline three different approaches, all of
which provide valuable insight.

First, if the generic fiber is klt, then, by (2.15), (X,∆) is klt. Thus X is CM
(10.4) by (11.18), so is every fiber Xc. In general, however, (X,∆) is not klt and
X is not CM. However, CM is much more than we need.

We should look carefully at weaker versions of CM that still imply that
the fibers are S 2. Since the Xc are Cartier divisors in X, it would be enough
to prove that X is S 3. However, as noted in Kollár (2013b, 3.6), X is not S 3

in general. Fortunately this is not a problem for us. If g ∈ C is the generic
point, then a local ring of Xg is also a local ring of X, hence Xg is S 2 if X is S 2.
Therefore,

(
Xg,∆g

)
is slc. If c ∈ C is a closed point and p ∈ Xc has codimension

≥ 2, then p ∈ X has codimension ≥ 3, thus depthp OX ≥ 3 by (11.21), hence
depthp OXc ≥ 2. Thus again Xc is S 2.

Third, we know that Xc is a Cartier divisor on a demi-normal scheme. A local
version of the Enriques–Severi–Zariski lemma (2.93) implies that if p ∈ Xc is
a point of codimension ≥ 2, then X̂c,p \ {p} is connected, where X̂c,p denotes
the completion of Xc at p.

Furthermore, Xc is the union of log canonical centers of
(
X, Xc + ∆

)
. There-

fore, Xc is seminormal by (11.12.2). These two observations together imply
that Xc is S 2, hence demi-normal. �

Comment 2.3.5 For proofs, the versions (2.3.3–4) are the most useful, but it is
not clear how they could be generalized to families over higher dimensional
bases. By contrast, the variants (2.3.1–2) are harder to use directly, but they
make sense in general. This observation leads to the general definition of our
moduli functor in Chapters 6–8.

2.4 (Positive characteristic) For arbitrary regular, one-dimensional schemes
C, the conditions (2.3.1–4) are equivalent if the relative dimension of X/C is

https://doi.org/10.1017/9781009346115.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.004


2.1 Locally Stable Families 61

1, and are expected to be equivalent if the relative dimension of X/C is 2.
However, the examples of Kollár (2022) show that they are not equivalent if
the relative dimension of X/C is ≥ 3. We discuss this in Section 8.8.

Here we adopt (2.3.4) as the definition of local stability in positive and mixed
characteristics. This is dictated by the proof of (2.51), but few of the arguments
work in full generality; see (2.15), (2.50), and (2.55).

2.5 (The relative canonical or dualizing sheaf I) Let C be a regular scheme of
dimension 1 and f : X → C a flat morphism of finite type. Then the relative
canonical or dualizing sheaf ωX/C exists; see (2.68) or (11.2) for discussions.

If C is a smooth curve over a field, then ωX/C = ωX ⊗ f ∗ω−1
C .

If each ωXc is locally free in codimension 1 (for example, the fibers are
normal or demi-normal) then ωX/C is also locally free in codimension 1 and
determines the relative canonical class KX/C .

By (11.13), for c ∈ C there is a Poincaré residue (or adjunction) map

R : ωX/C |Xc → ωXc . (2.5.1)

The map exists for any flat morphism f : X → C. General duality theory
implies that it is an isomorphism if the fibers are CM, see (2.68.2). It is, how-
ever, not an isomorphism in general, but we prove in (2.67) that, for locally
stable morphisms, the adjunction map is an isomorphism. Thus ωX/C can be
thought of as a flat family of the canonical sheaves of the fibers.

The isomorphism in (2.5.1) is easy to prove if the fibers are dlt, or if KX/C is
Q-Cartier (2.79.2). For the general case, see Section 2.5.

It is also worth noting that the reflexive powers (3.25) of the residue map

Rm : ω[m]
X/C |Xc → ω[m]

Xc
(2.5.2)

are isomorphisms for locally stable maps if ∆ = 0, but not in general; see
(2.79.2) and (2.44).

In (2.3.1) we make a fiber-wise assumption, that (Xc,∆c) be slc, and a total
space assumption, that KX/C +∆ be R-Cartier. As in Section 1.4, usually (2.3.1)
cannot be reformulated as a condition about the fibers of f only.

However, if ωXc is locally free then (2.5.1) implies that ωX/C is also locally
free along Xc. Thus (2.67) and (2.3) imply the following.

Lemma 2.6 Let C be a smooth curve over a field of characteristic 0 and
f : X → C a flat morphism of finite type such that Xc is slc and ωXc is locally
free for some c ∈ C. Then ωX/C is locally free along Xc and f is locally stable
near Xc. �
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62 One-Parameter Families

Note that (2.6) is a special property of slc varieties. Analogous claims fail
both for normal varieties (2.45) and for pairs (X,D). To see the latter, consider
a flat family Xc of smooth quadrics in P3 becoming a quadric cone for c = 0.
Let Dc ⊂ Xc be two disjoint lines that degenerate to a pair of distinct lines on
X0. Then KXc and Dc are both Cartier divisors for every c, but on the total space
X they give a divisor KX + D that is not even Q-Cartier.

In Section 1.4, we saw families of surfaces with quotient singularities where
KX/C is not R-Cartier, but the situation gets better in dimension ≥ 3.

Theorem 2.7 (Kollár, 2013a, Thm.18) Let C be a smooth curve over a field of
characteristic 0 and f : (X,∆)→C a family of pairs over C satisfying (2.2.1–2).
Let c ∈ C be a closed point and Zc ⊂ Xc a closed subset of codimension ≥ 3.
Assume that
(2.7.1) f is locally stable along Xc \ Zc, and
(2.7.2)

(
X̄c,Diff X̄c

(∆)
)

(11.14) is log canonical.
Then f is locally stable along Xc.

Note that Diff X̄c
(∆) is the closure of Diff X̄c\Z̄c

(∆), which is defined by
(2.7.1). We prove this in Section 2.8; see (5.6) for higher dimensonal base
spaces.

If Xc is canonical, then KXc is Cartier in codimension 2. We can thus use
(2.6) in codimension 2 and then (2.7) to obtain the next result.

Corollary 2.8 (Families with canonical fibers) Let C be a smooth curve over a
field of characteristic 0 and f : X → C a flat morphism of finite type such that
Xc has canonical singularities for some c ∈ C. Then KX is Q-Cartier along Xc

and f is locally stable near Xc. �

Next we study permanence properties of local stability. We start with the
invariance of local stability for morphisms that are quasi-étale, that is, étale
outside a subset of codimension ≥ 2.

Lemma 2.9 Let C be a smooth curve over a field of characteristic 0 and
f : (X,∆) → C a family of pairs over C satisfying (2.2.1). Let π : Y → X be
quasi-étale, where Y is S 2. If f is locally stable then so is f ◦ π. The converse
also holds if π is surjective.

Proof This follows directly from (2.3) and (11.23.3). �
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2.1 Locally Stable Families 63

Note that πc : Yc → Xc need not be quasi-étale, but codimension 1
ramification can occur only along the singular locus of Xc. A typical example
is given by A2

xy
π
−→ A2/ 1

n (1,−1)
τ
−→ A1, where π ◦ τ(x, y) = xy.

Next we consider base changes C′ → C.

Proposition 2.10 Let C be a smooth curve over a field of characteristic 0 and
g : C′ → C a quasi-finite morphism. If f : (X,∆)→ C is locally stable, then so
is the pull-back

g∗ f : (X′,∆′) :=
(
X ×C C′,∆ ×C C′

)
→ C′.

Proof We may assume that g : (c′,C′) → (c,C) is a finite, local morphism,
étale away from c′. Set D := Xc and D′ := X′c′ . By (11.23.5), (X,D + ∆) is lc
iff (X′,D′ + ∆′) is. The rest follows from (2.3). �

The following is useful for dimension induction.

Lemma 2.11 Let C be a smooth curve over a field of char 0 and f : (X,D +

∆)→ C a locally stable morphism, where D is a Z-divisor with normalization
n : D̄→ D. Then f ◦ n : (D̄,DiffD̄ ∆)→ C is also locally stable.

Proof For any c ∈ C, the fiber Xc is a Cartier divisor, thus

DiffD̄(∆ + Xc) =
(
DiffD̄ ∆

)
+ Xc|D̄ =

(
DiffD̄ ∆

)
+ D̄c.

Together with adjunction (11.17), this shows that fD : (D̄,DiffD̄ ∆) → C is
locally stable. �

Complement 2.11.1 Since KD̄ + DiffD̄ ∆ ∼Q n∗(KX + D + ∆) and D̄ → D is
finite, if KX + D + ∆ is f -ample, then KD̄ + DiffD̄ is f ◦ n-ample. Thus if f is
stable (2.46), then so is f ◦ n.

The following result shows that one can usually reduce questions about
locally stable families to the special case when X is normal; see also (2.54).

Proposition 2.12 Let C be a smooth curve over a field of characteristic 0 and
f : (X,∆)→ C a family of pairs over C. Assume that X is demi-normal and let
π : X̄ → X denote the normalization with conductor D̄ ⊂ X̄ (11.36).
(2.12.1) If f : (X,∆)→ C is locally stable, then so is f ◦ π :

(
X̄, D̄ + ∆̄

)
→ C.

(2.12.2) If KX + ∆ is R-Cartier and f ◦ π :
(
X̄, D̄ + ∆̄

)
→ C is locally stable,

then so is f : (X,∆)→ C.

Proof Fix a closed point c ∈ C. By (11.38) or Kollár (2013b, 5.38), if KX + ∆

is R-Cartier, then
(
X, Xc + ∆

)
is slc iff

(
X̄, X̄c + D̄ + ∆̄

)
is lc. �
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The next result allows us to pass to hyperplane sections. This is quite useful
in proofs that use induction on the dimension. (As with many Bertini-type
theorems, the characteristic 0 assumption is essential.)

Proposition 2.13 (Bertini theorem for local stability) Let C be a smooth curve
over a field of char 0 and f : (X,∆)→ C a locally stable morphism. Fix a point
c ∈ C and let H be a general divisor in a basepoint-free linear system on X.
Then there is an open c ∈ C◦ ⊂ C such that the following morphisms are also
locally stable over C◦:
(2.13.1) f : (X,H + ∆)→ C,
(2.13.2) f |H : (H,∆|H)→ C, and
(2.13.3) the composite f ◦ π :

(
Y, π−1(∆)

)
→ C where π : Y → X is a µm-cover

ramified along H; see (11.24).

Proof As we noted in (2.12), we can assume that X is normal. Let p : Y → X
be a log resolution (p.xvi) of (X,∆) such that p−1(Supp ∆) + Ex(p) + Yc is an
snc divisor. Pick H such that p−1(H) = p−1

∗ (H) and

p−1(H) + p−1(Supp ∆) + Ex(p) + Yc

is an snc divisor. Then every exceptional divisor of p has the same discrepancy
with respect to (X, Xc +∆) and (X, Xc + H +∆). Therefore, (X, Xc + H +∆) is slc
near Xc. Thus f : (X,H + ∆)→ C is locally stable over some C◦ ⊂ C, proving
(1). By adjunction, this implies that (H,Hc′ + ∆|H) is slc for every c′ ∈ C◦,
proving (2). By (11.23),(

Y,Yc′ + π−1(∆)
)

is slc ⇔
(
X, Xc′ +

(
1 − 1

m
)
H + ∆

)
is slc.

The latter holds since even (X, Xc′ + H + ∆) is slc for every c′ ∈ C◦. �

2.14 (Inverse Bertini theorem, weak form) Let H ⊂ X be any Cartier divisor.
If f |H : (H,∆|H)→ C is locally stable, then f : (X,H + ∆)→ S , and hence also
f : (X,∆)→ S , are locally stable in a neighborhood of H by (11.17). Stronger
results are in (2.7) and (5.7).

The following simple result shows that if f : (X,∆) → C is locally stable,
then (X,∆) behaves as if it were canonical, as far as divisors over closed fibers
are concerned. In some situations, for instance in (2.50), this is a very useful
observation, but at other times the technical problems caused by log canonical
centers in the generic fiber are hard to overcome.

Proposition 2.15 Let f : (X,∆) → C be a locally stable morphism. Let E be
a divisor over X (p.xv) such that centerX E ⊂ Xc for some closed point c ∈ C.
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Then a(E, X,∆) ≥ 0. Therefore, every log center (11.11) of (X,∆) dominates
C. In particular, if the generic fiber is klt (resp. canonical) then (X,∆) is also
klt (resp. canonical).

Proof Since (X, Xc + ∆) is slc, a(E, X, Xc + ∆) ≥ −1. Let π : Y → X be a
proper birational morphism such that E is a divisor on Y and let bE denote
the coefficient of E in π∗(Xc). Then bE is an integer and it is positive since
centerX E ⊂ Xc. Thus,

a(E, X,∆) = a(E, X, Xc + ∆) + bE ≥ −1 + bE ≥ 0.

In particular, none of the log centers of (X,∆) are contained in Xc. �

2.16 (Some results in positive characteristic) As we already noted, very few of
the previous theorems are known in positive characteristic, but the following
partial results are sometimes helpful.

(2.16.1) Let (X,∆) be a pair and g : Y → X a smooth morphism. By Kollár
(2013b, 2.14.2), if (X,∆) is slc, lc, klt, . . . then so is (Y, g∗∆).

(2.16.2) As a special case of Kollár (2013b, 2.14.4) we see that if (X,∆) is slc
then, for every smooth curve C, the trivial family (X,∆)×C → C is locally
stable.

(2.16.3) The proof of (2.15) works in any characteristic. Applying this to a
trivial family will have useful consequences in (8.64).

(2.16.4) Let (Xi,∆i) be two pairs that are slc, lc, klt, . . . . Then their product(
X1 × X2, X1 ×∆2 + ∆1 × X2

)
is also slc, lc, klt, . . . . This is a generalization

of (2.16.2) and can be proved by the same method as in Kollár (2013b,
2.14.2), using Kollár (2013b, 2.22).

(2.16.5) Assume that f : (X,∆) → C is locally stable and let g : C′ → C be
a tamely ramified morphism. Then g∗ f :

(
X ×C C′,∆ ×C C′

)
→ C′ is also

locally stable. This follows from (11.23.3) as in (2.10); see Kollár (2013b,
2.42) for details.

(2.16.6) Neither the wildly ramified nor the inseparable case of (2.16.5) is
known. By Hu and Zong (2020), the inseparable case would imply the
wildly ramified one. The case when all fibers are snc divisors is treated in
(2.55).

The dualizing sheaf plays a very special role in algebraic geometry, thus it
is natural to focus on understanding the powers of the relative dualizing sheaf.
The next result, closely related to Lee and Nakayama (2018, 7.18), says that
the relative dualizing sheaf is the “best” deformation of the dualizing sheaf.
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Proposition 2.17 Let C be a smooth curve over a field of characteristic 0 and
f : X → C a flat morphism of finite type such that Xc is slc for some c ∈ C.

Let L be a rank 1, reflexive sheaf on X such that a reflexive power L[n] (3.25)
is locally free for some n > 0 and L|Xc\Z ' ωXc\Z for some closed subset Z ⊂ Xc

of codimension ≥ 2.
Then there is a line bundle M such that L ' ωX/C ⊗ M, near Xc.

Proof We may assume that X is local, hence L[n] is free. By (11.24) we
can take a cyclic cover π : Y → X, giving direct sum decompositions into
µn-eigensheaves π∗OY = ⊕n−1

i=0 L[−i] and

π∗ωY/C ' HomX
(
π∗OY , ωX/C

)
= ⊕n−1

i=0 L[i] [⊗]ωX/C ,

where [⊗] is the reflexive tensor product (3.25.1).
The resulting g : Y → C is locally stable by (2.9) and ωYc is locally free.

Therefore, ωY/C is locally free by (2.6), hence free since Y is semilocal. Thus
π∗ωY/C ' π∗OY , so one of the summands L[i] [⊗]ωX/C is free. Restriction to Xc

tells us that in fact i = n − 1. Next note that

ωX/C ' ωX/C [⊗] L[n−1] [⊗] L [⊗] L[−n] ' OX ⊗ L ⊗ OX ' L,

where at the end we changed to the usual tensor product, since the tensor
product of a reflexive sheaf and of a line bundle is reflexive. �

2.2 Locally Stable Families of Surfaces

In this section, we develop a rather complete local picture of slc families of
surfaces. That is, we start with a pointed, local slc pair (x ∈ X0,∆0) and aim to
describe all locally stable deformations over local schemes 0 ∈ S

(X0,∆0) �
� //

��

(XS ,∆S )

��
0 ∈ S .

In the study of singularities it is natural to work étale-locally.

Definition 2.18 Following Stacks (2022, tag 02LD), an étale morphism
π : (s′, S ′) → (s, S ) is called elementary étale if the induced map on the res-
idue fields π∗ : k(s) → k(s′) is an isomorphism. (This notion is also called
strictly étale or strongly étale in the literature.) The inverse limit of all ele-
mentary étale morphisms is the Henselisation of (s, S ), denoted by (sh, S h).
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The inverse limit of all étale morphisms is the strict Henselisation of (s, S ),
denoted by (ssh, S sh). See Stacks (2022, tag 0BSK) for details.

For deformation purposes, two pointed schemes (x1 ∈ X1) and (x2 ∈ X2) are
considered the “same” if they have isomorphic Henselisations. Equivalently,
there is a third pointed scheme (x3 ∈ X3) and elementary étale morphisms

(x1 ∈ X1)
π1
← (x3 ∈ X3)

π2
→ (x2 ∈ X2).

Since we have not yet defined the notion of a locally stable family in general,
we concentrate on the case when S is the spectrum of a DVR.

We start by recalling the classification of lc surface singularities. This has a
long history, starting with Du Val (1934). For simplicity, we work over an alge-
braically closed field. It turns out that lc surface singularities have a very clear
description using their dual graphs and this is independent of the characteristic.
(By contrast, the equations of the singularities depend on the characteristic.)

Definition 2.19 (Dual graph) Let (0 ∈ S ) be a normal surface singularity
over an algebraically closed field and f : S ′ → S the minimal resolution
with irreducible exceptional curves {Ci}. We associate to this a dual graph
Γ = Γ(0 ∈ S ) whose vertices correspond to the Ci. We use the negative of the
self-intersection number (Ci ·Ci) to represent a vertex and connect two vertices
Ci,C j by r edges iff (Ci · C j) = r. In the lc cases, the Ci are almost always
smooth rational curves and (Ci ·C j) ≤ 1, so we get a very transparent picture.

The intersection matrix of the resolution is
(
−(Ci · C j)

)
. This matrix is

positive definite (essentially by the Hodge index theorem). Its determinant is
denoted by det(Γ) := det

(
−(Ci ·C j)

)
.

Let B be a curve on S and Bi the local analytic branches of B that pass
through 0 ∈ S . The extended dual graph (Γ, B) has an additional vertex for each
Bi, represented by •, and it is connected to C j by r edges if

(
f −1
∗ Bi ·C j

)
= r.

Definition 2.20 A connected graph is a twig if all vertices have ≤ 2 edges.
Thus such a graph is of the form

c1 c2 · · · cn

Here det(Γ) is also the numerator of the continued fraction (6.70.4).
A connected graph is a tree with one fork if there is a vertex (the root) with

three edges and all other vertices have ≤ 2 edges. Such a dual graph is of the
form
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Γ1 c0 Γ2

Γ3

where each Γi is a twig joined to c0 at an end vertex.

Next we list the dual graphs of all lc pairs (0 ∈ S , B), starting with the
terminal and canonical ones. For proofs see Alexeev (1993) or Kollár (2013b,
Sec.3.3).

2.21 (List of log canonical surface singularities) Here (0 ∈ S ) is a normal
surface singularity over an algebraically closed field and B ⊂ S a curve (with
coefficient 1).
Case 2.21.1 (Terminal). (0 ∈ S , B) is terminal iff B = ∅ and S is smooth.
Case 2.21.2 (Canonical). (0 ∈ S , B) is canonical iff either B and S are both
smooth at 0, or B = ∅ and Γ is one of the following. The corresponding sin-
gularities are called Du Val singularities or rational double points or simple
surface singularities. See Durfee (1979) for more information. The following
equations are correct only in characteristic 0; see Artin (1977), in general.
An: x2 + y2 + zn+1 = 0, with n ≥ 1 curves in the dual graph:

2 2 · · · 2 2

Dn: x2 + y2z + zn−1 = 0, with n ≥ 4 curves in the dual graph:

2

2 2 · · · 2 2

En: with n curves in the dual graph:

2

2 2 2 Γ

There are 3 possibilities:
E6: x2 + y3 + z4 = 0 and Γ = 2 − 2,
E7: x2 + y3 + yz3 = 0 and Γ = 2 − 2 − 2,
E8: x2 + y3 + z5 = 0 and Γ = 2 − 2 − 2 − 2.

https://doi.org/10.1017/9781009346115.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.004


2.2 Locally Stable Families of Surfaces 69

Case 2.21.3 (Purely log terminal) The names here reflect that, at least in charac-
teristic 0, these singularities are obtained as the quotient of C2 by the indicated
type of group. See Brieskorn (1967/1968) and (6.65).
Subcase 2.21.3.1 (Cyclic quotient) B is smooth at 0 (or empty) and (Γ, B) is

• c1 · · · cn or c1 · · · cn

We discuss these in detail in (6.65–6.70).
Subcase 2.21.3.2 (Dihedral quotient)

2

c1 · · · cn 2

Subcase 2.21.3.3 (Other quotient) The dual graph is a tree with one fork (2.20)
with three possibilities for

(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Tetrahedral) (2,3,3)
(Octahedral) (2,3,4)
(Icosahedral) (2,3,5).

Case 2.21.4 (Log canonical with B = 0)
Subcase 2.21.4.1 (Simple elliptic) There is a unique exceptional curve E; it
is smooth and of genus 1. If the self-intersection r := −(E2) is ≥ 3 then the
singularity is isomorphic to the cone over the elliptic normal curve E ⊂ Pr−1

of degree r.
Subcase 2.21.4.2 (Cusp) The dual graph is a circle of smooth rational curves

cn · · · cm+1

FF
FF

FF
FF

c1

}}}}}}}}

AA
AA

AA
AA

cm

c2 · · · cm−1.

xxxxxxxx

The cases n = 1, 2 are exceptional. For n = 2, we have two smooth rational
curves meeting at two points, and for n = 1, the unique exceptional curve is a
rational curve with a single node. We can draw the dual graphs as

c1 c2 and c1.

For example the dual graphs of the three singularities
(
z(xy − z2) = x4 + y4),(

z2 = x2(x + y2) + y7), and
(
z2 = x2(x2 + y2) + y5) are

3 4, 1 and 2.

https://doi.org/10.1017/9781009346115.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.004


70 One-Parameter Families

Subcase 2.21.4.3 (Z/2-quotient of a cusp)

2 2

2 c1 · · · cn 2.

(For n = 1, it is a Z/2-quotient of a simple elliptic singularity.)
Subcase 2.21.4.4 (Simple elliptic quotient) The dual graph is a tree with one
fork (2.20) with three possibilities for

(
det(Γ1), det(Γ2), det(Γ3)

)
:

(Z/3-quotient) (3,3,3)
(Z/4-quotient) (2,4,4)
(Z/6-quotient) (2,3,6).

Case 2.21.5 (Log canonical with B , 0)
Subcase 2.21.5.1 (Cyclic) B has two smooth branches meeting transversally at
0 and (Γ, B) is

• c1 · · · cn •

Subcase 2.21.5.2 (Dihedral)

2

• c1 · · · cn 2.

2.22 (List of slc surface singularities) The dual graphs are very similar to the
previous ones, but there are two possible changes due to the double curve of
the surface S passing through the chosen point 0 ∈ S .

In the normal case, the local picture represented by an edge is

(xy = 0) ⊂ A2, denoted by ◦ −− ◦ or • −− ◦,

where (y = 0) is an exceptional curve and (x = 0) is either an exceptional curve
or a component of B. We can now have a nonnormal variant

(xy = z = 0) ⊂ (xy = 0) ⊂ A3, denoted by ◦
d
−− ◦ or •

d
−− ◦,

where the d over the edge signifies that the two curves denoted by ◦ or • (here
(x = z = 0) and (y = z = 0)) meet at a point that is also on a double curve of
the surface (here (x = y = 0)).
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The local picture represented by • −− ◦ also has another nonnormal variant
where (as long as char , 2) we create a pinch point by identifying the points
(0, y)↔ (0,−y). The local equation is

(xy = z = 0) ⊂ (z2 = xy2) ⊂ A3, denoted by p −− ◦,

where (y = z = 0) is the double curve of the surface and (x = z = 0) an
exceptional curve.

Case 2.22.1 (Semi-plt)
Subcase 2.22.1.1 (Higher pinch points) These are obtained from the cyclic dual
graph of (2.21.3.1) by replacing • −− ◦ by p −− ◦.

The simplest one is the pinch point, whose dual graph is p −− 1. The equa-
tion of the pinch point is (x2 = zy2); it is its own semi-resolution Kollár (2013b,
sec.10.4).

As another example, start with the An singularity (xy = zn+1) and pinch it
along the line (x = z = 0). The dual graph is

p −− 2 −− · · · −− 2

with two occurring n-times. As a subring of k[x, y, z]/(xy−zn+1), the coordinate
ring is generated by (x, z, y2, xy, yz), but xy = zn+1. Thus u1 = x, u2 = z, u3 =

y2, u4 = yz gives an embedding into A4. The image is a triple point whose
equations can be written as

rank
(

un
2 u4 u3

u1 u2
2 u4

)
≤ 1.

Subcase 2.22.1.2 The dual graph is Γ1
d
−− Γ2, where the Γi are twigs such that

det(Γ1) = det(Γ2). Note that here we allow Γi = {1} and 1
d
−− 1 corresponds

to (xy = 0) ⊂ A3. Similarly 2
d
−− 2 corresponds to

(x1y − z2
1 = x2 = z2 = 0) ∪ (x2y − z2

2 = x1 = z1 = 0) ⊂ A5.

Aside It is a good exercise to check that if det(Γ1) , det(Γ2) then the canonical

class of the resulting surface is not Q-Cartier. The case 2
d
−− 1 is easy to

compute by hand. The key in general is to compute the different (11.14) on the
double curve; see Kollár (2013b, 5.18) for details. This is one of the special
cases of (11.38).
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Case 2.22.2 (Slc and KS + B Cartier)
Subcase 2.22.2.1 (Degenerate cusp) Here B = 0 and these are obtained from
the dual graph of a cusp (2.21.4.2) by replacing some of the edges ◦ −− ◦ with

◦
d
−− ◦.
The cases n = 1, 2 are again exceptional. For n = 2 we can replace either of

the edges ◦ −− ◦ with ◦
d
−− ◦. For example, (z2 = x2y2) and (z2 = x2y2 + y5)

correspond to the dual graphs

1
d
d 1 and 2 d 2.

For n = 1 the unique exceptional curve is a rational curve with a single node.
We can think of the dual graph as

c1.d

For example the singularities
(
z2 = x2(x + y2)

)
and

(
z2 = x2(x2 + y2)

)
give the

dual graphs

1d and 2.d

Subcase 2.22.2.2 These are obtained from the cyclic dual graph of (2.21.5.1)

by replacing some of the edges ◦ −− ◦ with ◦
d
−− ◦.

Case 2.22.3 (Slc and 2(KS + B) Cartier)
Subcase 2.22.3.1 Here B = 0 and these are obtained from the dual graph of
a Z/2-quotient of a cusp (2.21.4.3) by replacing some of the horizontal edges

◦ −− ◦ with ◦
d
−− ◦.

Subcase 2.22.3.2 These are obtained from the cyclic dual graph of (2.21.5.1)
by replacing at least one of • −− ◦ by p −− ◦ and replacing some of the edges

◦ −− ◦ with ◦
d
−− ◦.

Subcase 2.22.3.3 These are obtained from the dual graph of (2.21.5.2) by
replacing • −− ◦ by p −− ◦ and replacing some of the horizontal edges ◦ −− ◦

with ◦
d
−− ◦.

This completes the list of all slc surface singularities and now we turn to
describing their locally stable deformations. An slc surface can be singular
along a curve and the transversal hyperplane sections are nodes. Deformations
of nodes are described in (11.35).

The situation is much more complicated for surfaces, so we start with the
case ∆0 = 0. It would be natural to first try to understand all flat deformations
of (x ∈ X0) and then decide which of these are locally stable. However, in
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many interesting cases, flat deformations are rather complicated, but a good
description of all locally stable deformations can be obtained by relating them
to locally stable deformations of certain cyclic covers of X (11.24).

Proposition 2.23 Let k be a field and (X,D) a local, slc scheme over k with D
reduced. Assume that ω[m]

X (mD) ' OX for some m ≥ 1 that is not divisible by
char k. Let π :

(
X̃, D̃

)
→ (X,D) be a corresponding µm-cover (11.24). Let R be

a complete DVR with residue field k and set S = Spec R.
Taking µm-invariants establishes a bijection between the sets:

(2.23.1) Flat, local, slc morphisms f̃ :
(
X̃S , D̃S

)
→ S such that

(
X̃0, D̃0

)
'(

X̃, D̃
)
, plus a µm-action on

(
X̃S , D̃S

)
extending the µm-action on

(
X̃, D̃

)
.

(2.23.2) Flat, local, slc morphisms f :
(
XS ,DS

)
→ S such that

(
X0,D0

)
'

(X,D).

Note that ωX̃
(
D̃
)

is locally free, and, in many cases, this makes
(
X̃, D̃

)
much

simpler than (X,D). This reduction step is especially useful when D = 0, in
which case ωX̃ is locally free. As we saw in (2.6), then all flat deformations of
X̃ are slc. For surfaces, this leads to an almost complete description of all slc
deformations.

Aside 2.24 (Deformations of quotients) Let X̃ be a scheme and G a finite group
acting on it. The proof of (2.23) shows that G-equivariant deformations of X̃
always induce flat deformations of X := X̃/G provided the characteristic does
not divide |G|.

The converse is, however, quite subtle, and usually deformations of X are
not related to any deformation of X̃. As an example, consider the family (xy −
zn − tzm = 0) for m < n. For t = 0, the fiber is isomorphic to C2/Zn and, for
t , 0, the fiber has a singularity (analytically) isomorphic to C2/Zm. There is
no relation between the corresponding degree n cover of the central fiber and
the (local analytic) degree m cover of a general fiber. However, if G acts freely
outside a subset of codimension ≥ 3 and X̃ is S 3, then every deformation of X
arises from a deformation of X̃ (Kollár, 1995a, 12.7).

The following two examples show that the codimension ≥ 3 condition is not
enough, not even for µm-covers.
(2.24.1) Let E be an elliptic curve and S a K3 surface with a fixed point free
involution τ. Set Y = E × S and X = Y/σ where σ is the involution (−1, τ).
Note that p : Y → X is an étale double cover, h1(Y,OY ) = 1 and h1(X,OX) = 0.
Let HX be a smooth ample divisor on X and HY its pull-back to Y . Consider
the cones (2.35) and general projections
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Ca(Y,HY )

πY
��

pC // Ca(X,HX)

πX
��

A1 A1.

Since h1(X,OX) = 0, the central fiber of πX is the cone over HX by (2.36).
By contrast, the central fiber F0 of πY is not S 2 since h1(Y,OY ) , 0, again by
(2.36). Thus, although the normalization of F0 is the cone over HY , it is not
isomorphic to it.
(2.24.2) Let g : X → B be a smooth projective morphism to a smooth curve,
H an ample line bundle on X and choose m large enough. Then the direct
images g∗OX(rmH) commute with base change for every r ∈ N, hence the
cones Ca

(
Xb,OXb (mH|Xb )

)
form a flat family.

The cones Ca
(
Xb,OXb (H|Xb )

)
are µm-covers of the cones Ca

(
Xb,OXb (mH|Xb )

)
,

but they form a flat family only if g∗OX(rH) commutes with base change for
every r. That is, we get the required examples whenever H0(Xb,OXb (H|Xb )

)
jumps for special values of b. The latter is easy to arrange, even on a family of
smooth curves, as long as deg H|Xb < 2g − 2.

Proof of 2.23 Let us start with f :
(
XS ,DS

)
→ S . Since ω[m]

XS
(mDS ) is locally

free, the restriction map

ω[m]
XS

(mDS )� ω[m]
X0

(mD0) ' OX0

is surjective. Since XS is affine, the constant 1 section lifts to a nowhere zero
section s : OXS ' ω[m]

XS
(mDS ). Let f̃ :

(
X̃S , D̃S

)
→ S be the corresponding

µm-cover (11.24).
The map f̃ is also locally stable by (2.9). By (2.3), this implies that X̃0 is S 2,

hence it agrees with the µm-cover of (X0,D0).
To see the converse, let g : Y → S be any flat, affine morphism and G a

reductive group (or group scheme) acting on Y with quotient g/G : Y/G → S .
Then (g/G)∗OY/G =

(
g∗OY

)G is a direct summand of g∗OY , hence g/G is also
flat. Taking invariants commutes with base change since G is reductive. This
shows that (1)⇒ (2). �

Assumptions For the rest of this section, we work in characteristic 0, though
almost everything works in general as long as the characteristic does not divide
m in (2.25), but very little has been proved otherwise.

2.25 (Classification plan) We establish an étale-local description of all slc
deformations of surface singularities in four steps.
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(2.25.1) Classify all slc surface singularities (0, S̃ ) with ωS̃ locally free.
(2.25.2) Classify all flat deformations of these (0, S̃ ).
(2.25.3) Classify all µm-actions on these surfaces and decide which ones

correspond to our µm-covers.
(2.25.4) Describe the µm-actions on the deformation spaces of the (0, S̃ ).

The first task was already accomplished in (2.21–2.22); we have Du Val
singularities (2.21.2), simple elliptic singularities and cusps (2.21.4.1–2), and
degenerate cusps (2.22.1). We can thus proceed to the next step (2.25.2).

2.26 (Deformations of slc surface singularities with KS Cartier)
2.26.1 (Du Val singularities) It is easy to work out the miniversal deforma-
tion space from the equations and (2.27). For each of the An,Dn, En cases the
dimension of the miniversal deformation space is exactly n. For instance, for
An we get (in char 0)

(xy + zn+1 = 0) �
� //

��

(
xy + zn+1 +

∑n−1
i=0 tizi = 0

) � � //

��

A3
xyz × A

n
t

��
0 ∈ An

t An
t .

2.26.2 (Elliptic/cusp/degenerate cusp) Let (0 ∈ S ) be one of these singu-
larities and Ci the exceptional curves of the minimal (semi)resolution. Set
m = −(

∑
Ci)2 and write (0 ∈ S m) to indicate such a singularity.

If m = 1, 2, 3 then (0 ∈ S m) is (isomorphic to) a singular point on a sur-
face in A3 by Saito (1974); Laufer (1977). Their deformations are completely
described by (2.27).

If m = 4, then (0 ∈ S 4) is (isomorphic to) a singular point on a surface in A4

that is a complete intersection of two hypersurfaces. The miniversal deforma-
tion space of a complete intersection can be described in a manner similar to
(2.27); see Artin (1976); Looijenga (1984); or Hartshorne (2010).

If m = 5 then the deformations are fully described by the method of
Buchsbaum and Eisenbud (1977); see Hartshorne (2010, sec.9).

If m ≥ 3 and (0 ∈ S m) is simple elliptic, then it is (isomorphic to) the singular
point of a projective cone S̄ m ⊂ P

m over an elliptic normal curve Em ⊂ P
m−1.

By Pinkham (1974, sec.9), every deformation of (0 ∈ S m) is the restriction of a
deformation of S̄ m ⊂ P

m. In particular, any smoothing corresponds to a smooth
surface of degree m in Pm. The latter have been fully understood classically:
these are the del Pezzo surfaces embedded by | − K|. In particular, a simple
elliptic singularity (0 ∈ S m) is smoothable only for m ≤ 9 Pinkham (1974,
sec.9).
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The m = 9 case is especially interesting. Given an elliptic curve E, a degree
9 embedding E9 ↪→ P

8 is given by global sections of a line bundle L9 of degree
9 on E. Embeddings of E into P2 are given by line bundles L3 of degree 3. If
we take (E ↪→ P2) given by L3, and then embed P2 into P9 by OP2 (3), then
E is mapped to E9 iff L⊗3

3 ' L9. For a fixed L9 this gives nine choices of L3.
Thus a given E9 ↪→ P

8 is a hyperplane section of a P2 ↪→ P9 in nine different
ways. Correspondingly, the deformation space (0 ∈ S 9) has nine smoothing
components. (This was overlooked in Pinkham (1974, sec.9).) The automor-
phism group of (0 ∈ S 9) permutes these nine components. See Looijenga and
Wahl (1986, sec.6) for another description.

For m ≥ 6, the deformation theory of cusps is much harder, see Gross et al.
(2015). Degenerate cusps are all smoothable; Stevens (1998).

2.27 (Deformations of hypersurface singularities) For general references, see
Artin (1976); Looijenga (1984); Arnol′d et al. (1985); Hartshorne (2010).

Let 0 ∈ X ⊂ An
x be a hypersurface singularity defined by an equation

(
f (x) =

0
)
. Choose polynomials pi that give a basis of

k[[x1, . . . , xn]]/
(

f , ∂ f
∂x1
, . . . , ∂ f

∂xn

)
. (2.27.1)

If (0 ∈ X) is an isolated singularity, then the quotient has finite length, say N.
In this case, the miniversal deformation of (0 ∈ X) is given by

X

��

� � // ( f (x) +
∑

iti pi(x) = 0
)

��

� � // An
x × A

N
t

��
0 ∈ AN

t AN
t .

In particular, the miniversal deformation space Def(X) is smooth.
If the quotient in (2.27.1) has infinite length, then it is best to think of

the resulting infinite dimensional deformation space as an inverse system
of deformations over Artinian rings whose embedding dimension goes to
infinity.

The next step (2.25.3) in the classification is to describe all µm-actions, but
it is more transparent to consider reductive commutative groups. These are of
the form G × Gr

m where G is a finite, commutative group and Gm = GL(1) the
multiplicative group of scalars, see Humphreys (1975, sec.16).

2.28 (Commutative groups acting on Du Val singularities) The action of a
reductive commutative group on An can be diagonalized. Thus let S ⊂ A3 be
a Du Val singularity that is invariant under a diagonal group action on A3. It
is easy to work through any one of the standard classification methods (for
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instance, the one in Kollár and Mori (1998, 4.24)) to obtain the following
normal forms. In each case we describe first the maximal connected group
actions and then the maximal nonconnected group actions.

Main series: Gm-actions.

An (xy + zn+1 = 0) and G2
m acts with character (1,−1, 0), (0, n + 1, 1).

Dn (x2 + y2z + zn−1 = 0) and Gm acts with character (n − 1, n − 2, 2).
E6 (x2 + y3 + z4 = 0) and Gm acts with character (6, 4, 3).
E7 (x2 + y3 + yz3 = 0) and Gm acts with character (9, 6, 4).
E8 (x2 + y3 + z5 = 0) and Gm acts with character (15, 10, 6).

Twisted versions: µr × Gm-actions.

An (x2+y2+zn+1 = 0). If n+1 is odd, thenGm acts with character (n+1, n+1, 2)
and µ2 acts with character (0, 1, 0). If n + 1 is even, then Gm acts with
character ( n+1

2 , n+1
2 , 1) and µ2 acts with character (0, 1, 0).

Dn (x2 + y2z + zn−1 = 0), Gm acts with character (n − 1, n − 2, 2) and µ2 acts
with character (1, 1, 0).

D4 (x2 +y3 +z3 = 0),Gm acts with character (3, 2, 2) and µ3 acts with character
(0, 1, 0).

E6 (x2 + y3 + z4 = 0) and Gm acts with character (6, 4, 3) and µ2 acts with
character (1, 0, 0).

Example 2.29 (Locally stable deformations of surface quotient singularities)
Let (0 ∈ S ) be a surface quotient singularity with Du Val cover (0 ∈ S̃ )→ (0 ∈
S ). By (2.23), the classification of locally stable deformations of all such (0 ∈
S ) is equivalent to classifying all cyclic group actions on Du Val singularities
(0 ∈ S̃ ) that are free outside the origin and whose action onωS̃ ⊗k(0) is faithful.
This is straightforward, though somewhat tedious, using (2.28). Alternatively,
one can use the classification of finite subgroups of GL(2) as in Brieskorn
(1967/1968).

Thus the miniversal locally stable deformation space, which we denote by
DefKSB(S ) (6.64), is the fixed point set of the corresponding cyclic group action
on Def(S̃ ), hence it is also smooth.

An-series
(
xy+zn+1 = 0

)
/ 1

m (1, (n+1)c−1, c) for any m where ((n+1)c−1,m) =

1. These are equivariantly smoothable only if m|(n + 1)c.
Dn-series

(
x2 + y2z + zn−1 = 0

)
/ 1

2k+1 (n − 1, n − 2, 2) where (2k + 1, n − 2) = 1.
These are not equivariantly smoothable, but, for instance, if 2k + 1|n− 1,
they deform to the quotient singularity A2/ 1

2k+1 (−1, 2).
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E6-series
(
x2 + y3 + z4 = 0

)
/ 1

m (6, 4, 3) for (m, 6) = 1. For m > 1 all equivariant
deformations are trivial, save for m = 5, when there is a one-parameter
family

(
x2 + y3 + z4 + λyz = 0

)
/ 1

5 (1, 4, 3).
E7-series

(
x2+y3+yz3 = 0

)
/ 1

m (9, 6, 4) for (m, 6) = 1. For m > 1 all equivariant
deformations are trivial, save for m = 5 and m = 7, when there are one-
parameter families

(
x2 + y3 + yz3 + λxz = 0

)
/ 1

5 (4, 1, 4) and
(
x2 + y3 +

yz3 + λz = 0
)
/ 1

7 (2, 6, 4).
E8-series

(
x2 + y3 + z5 = 0

)
/ 1

m (15, 10, 6) for (m, 30) = 1. For m > 1 all
equivariant deformations are trivial, save for m = 7, when there is a
one-parameter family

(
x2 + y3 + z5 + λyz = 0

)
/ 1

7 (1, 3, 6).
An-twisted

(
x2 +y2 + zn+1 = 0

)
/ 1

4m (n+1, n+1+2m, 2) for any (2m, n+1) = 1.
These are never equivariantly smoothable.

D4-twisted
(
x2 + y3 + z3 = 0

)
/ 1

18k+9 (9k + 6, 1, 6k + 4). All equivariant
deformations are trivial.

Example 2.30 (Quotients of simple elliptic and cusp singularities) Let (0 ∈ S )
be a simple elliptic, cusp or degenerate cusp singularity with minimal resolu-
tion (or semi-resolution) f : T → S and exceptional curves C =

∑
Ci. Then

ωT (C) ' f ∗ωS , which gives a canonical isomorphism ωS ⊗ k(0) ' H0(C, ωC).
Since C is either a smooth elliptic curve or a cycle of rational curves, Aut(C)
is infinite, but a finite index subgroup acts trivially on H0(C, ωC).

For cusps and for most simple elliptic singularities this leaves only µ2-
actions. The corresponding quotients are listed in (2.21.4.3), see Simonetti
(2022) for their deformations. When the elliptic curves have extra automor-
phisms, one can have µ3, µ4 and µ6-actions as in (2.21.4.4).

The following is one of the simplest degenerate cusp quotients.

Example 2.31 (Deformations of the double pinch point) Let (0 ∈ S ) be the
double pinch point singularity, defined by

(
S̄ = A2, D̄ = (xy = 0), τ =

(−1,−1)
)
. Here ωS is not locally free, but ω[2]

S is,

S ' S̃ / 1
2 (1, 1, 1), where S̃ =

(
z2 − x2y2 = 0

)
⊂ A3.

A local generator of ωS̃ is given by z−1dx ∧ dy, which is anti-invariant. Thus
ωS has index 2 and S̃ → S is the index 1 cover. Thus every locally stable
deformation of S is obtained as the µ2-quotient of an equivariant deformation
of S̃ . By (2.27) the miniversal deformation space is given by(

z2 − x2y2 + u0 + u1xy +
∑

i≥1vix2i +
∑

j≥1w jy2 j = 0
)
/ 1

2 (1, 1, 1).

When u0 = u1 = v1 = w1 = 0, we get equimultiple deformations to µ2-
quotients of cusps.
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The slc deformations of pairs (X,∆) are more complicated, even if ∆ is a
Z-divisor. One difficulty is that ωS (D) is locally free for every pair

(S ,D) :=
(
A2, (xy = 0)

)
/ 1

n (1, q)

since dx
x ∧

dy
y is invariant. Thus we would need to describe the deformations of

every such pair (S ,D) by hand. The following is one of the simplest examples,
and it already shows that the answer is likely to be subtle.

Example 2.32 (Deformations of
(
A2, (xy = 0)

)
/ 1

n (1, 1)) Flat deformations
of the quotient singularity Hn := A2/ 1

n (1, 1) are quite well understood; see
Pinkham (1974). Hn can be realized as the affine cone over the rational normal
curve Cn ⊂ P

n and all local deformations are induced by deformations of the
projective cone Cp

(
Cn

)
⊂ Pn+1. If n , 4 then the deformation space is irre-

ducible and the smooth surfaces in it are minimal ruled surfaces of degree n in
Pn+1. (For n = 4, there is another component, corresponding to the Veronese
embedding P2 ↪→ P5.)

Since (xy)−1dx ∧ dy is invariant under the group action, it descends to a 2-
form on Hn with poles along the curve Dn := (xy = 0)/ 1

n (1, 1). Thus KHn +Dn ∼

0 and the pair (Hn,Dn) is lc. Our aim is to understand which deformations of
Hn extend to a deformation of the pair (Hn,Dn).

Claim 2.32.1 Fix n≥ 7 and let π : X→A1 be a general smoothing of Hn. Then
the divisor Dn cannot be extended to a divisor DX such that π :

(
X,DX

)
→ A1

is locally stable. However, there are special smoothings π : X′ → A1 for which
such a divisor D′X exists.

Proof For m ∈ N, let Fm denote the ruled surface ProjP1
(
OP1 + OP1 (−m)

)
. Let

Em ⊂ Fm denote the section with self intersection −m and F ⊂ Fm denote a
fiber. Note that KFm ∼ −

(
2Em + (m + 2)F

)
.

For a ≥ 1 set Ama := E + (m + a)F. Then Ama is very ample with self
intersection n := m + 2a and it embeds Fm into Pn+1 as a surface of degree n.
Denote the image by S ma. A general hyperplane section of S ma is a rational
normal curve Cn ⊂ P

n. Consider the affine cones Xma := Ca
(
S ma

)
and Hn :=

Ca
(
Cn

)
. We can choose coordinates such that

Xma ⊂ A
n+2
x1,...,xn+2

and Hn = (xn+2 = 0).

The last coordinate projection gives π : Xma → A
1 which is a flat deformation

(in fact a smoothing) of Hn. By Kollár (2013b, 3.14.5),

H0(Xma,OXma (−KXma )
)

=
∑

i∈Zxi
0 · H

0(S ma,OS ma (−KS ma + iAma)
)

=
∑

i∈Zxi
0 · H

0(S ma,OS ma

(
(2 + i)Em + (m + 2 + im + ia)F

))
.
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The lowest degree terms in the sum depend on m and a. For i < −2, we get 0.
For i = −2, we have

H0(S ma,OS ma

(
(2 − m − 2a)F

))
= H0(S ma,OS ma

(
(2 − n)F

))
.

This is 0, unless n = 2, that is, when X is the quadric cone in A3. Then D2 is a
Cartier divisor H2 and so every deformation of H2 extends to a deformation of
the pair (H2,D2). Thus assume next that n ≥ 3.

For i = −1 we have the summand H0(S ma,OS ma

(
Em + (2 − a)F

))
. This is

again 0 if a ≥ 3, but for a = 1 we get a pencil |Em + F| (whose members are
pairs of intersecting lines) and for a = 2 we get a unique member Em (which
is a smooth conic in Pn+1). This shows the following.

Claim 2.32.2 For a = 1, 2 and any m ≥ 0, the anticanonical class of the 3-fold
Xma contains a (possibly reducible) quadric cone D ⊂ Xma and π :

(
Xma,D

)
→

A1 is locally stable. �

For a ≥ 3, we have to look at the next term H0(S ma,OS ma

(
2Em + (m + 2)F

))
for a nonzero section. The corresponding linear system consists of reducible
curves of the form Em + Gm where Gm ∈ |Em + (m + 2)F|. These curves have
2 nodes and arithmetic genus 1. Let B ⊂ Xma denote the cone over any such
curve. Then

(
Xma, B

)
is log canonical, but π :

(
Xma, B

)
→ A1 is not locally

stable since the restriction of B to Hn consists of n + 2 lines through the vertex.
Thus we have proved:

Claim 2.32.3 For a ≥ 3 and m ≥ 0, the anticanonical class of Xma does not
contain any divisor D for which π :

(
Xma,D

)
→ A1 is locally stable. �

Note finally that the surfaces S ma with n = m+2a form an irreducible family.
General points correspond to the largest possible value a = b(n − 1)/2c. The
surfaces with a ≤ 2 correspond to a closed subset, which is a two-dimensional
subspace of the versal deformation space of Hn.

2.3 Examples of Locally Stable Families

The aim of this section is to investigate, mostly through examples, fibers of
locally stable morphisms. If (S ,∆) is slc then, for any smooth curve C, the
projection π : (S × C,∆ × C) → C is locally stable with fiber (S ,∆). Thus, in
general we can only say that fibers of locally stable morphisms are exactly the
slc pairs.

The question becomes, however, quite interesting, if we look at special
fibers of locally stable morphisms whose general fibers are “nice,” for instance
smooth or canonical. The main point is thus to probe the difference between
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arbitrary slc pairs and those slc pairs that occur on locally stable degenerations
of smooth varieties. We focus on two main questions.

Question 2.33 Let f : X → T be a locally stable morphism over a pointed
curve (0 ∈ T ) such that Xt is smooth for t , 0.
(2.33.1) Is X0 CM (10.4)?
(2.33.2) Are the irreducible components of X0 CM?
(2.33.3) Is the normalization of X0 CM?

Question 2.34 Let f : (X,∆)→ T be a locally stable morphism over a pointed
curve (0 ∈ T ) such that Xt is smooth and ∆t is snc for t , 0.
(2.34.1) Do the supports of {∆t : t ∈ T } form a flat family of divisors?
(2.34.2) Are the sheaves OX0 (mKX0 + bm∆0c) CM?
(2.34.3) Do the sheaves {OXt (mKXt + bm∆tc) : t ∈ T } form a flat family?

A normal surface is always CM, and the (local analytic) irreducible compo-
nents of an slc surface are CM. The latter follows from the classification of slc
surfaces given in Kollár (2013b, sec.2.2). Starting with dimension 3, there are
lc singularities that are not CM. The simplest examples are cones over abelian
varieties; see (2.35). On the other hand, canonical and log terminal singularities
are CM and rational (p.xv) in characteristic 0 by (11.18).

Let us note next that the answer to (2.33.1) is positive, that is, X0 is CM.
Indeed, X is canonical by (2.15) and hence CM by (11.18). Therefore, X0 is
also CM. A more complete answer to (2.33.1), without assuming that Xt is
smooth or canonical for t , 0, is given in (2.66).

For locally stable families of pairs, the boundary provides additional sheaves
whose CM properties are important to understand; this motivates (2.34).
Unlike for (2.33), the answers to all of these are negative already for surfaces.
The first convincing examples were discovered by Hassett (2.41). As a con-
sequence, we see that we cannot think of the deformations of (S ,∆) as a flat
deformation of S and a flat deformation of ∆ that are compatible in certain
ways. In general it is imperative to view (S ,∆) as a single object. See, how-
ever, Section 2.7 for many cases where viewing (S ,∆) as a pair does work
well.

Our examples will be either locally or globally cones and we need some
basic information about them.

2.35 (Cones) Let X be a projective scheme with an ample line bundle L. The
affine cone over X with conormal bundle L is

Ca(X, L) := Speck⊕m≥0H0(X, Lm).
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Away from the vertex v ∈ Ca(X, L), the cone is locally isomorphic to X × A1,
but the vertex is usually more complicated. If X is normal then so is Ca(X, L)
and its canonical class is Cartier (resp. Q-Cartier) iff OX(KX) ∼ Lm for some
m ∈ Z (resp. OX(rKX) ∼ Lm for some r,m ∈ Z with r , 0).

The following results are straightforward; see Kollár (2013b, sec.3.1).
(2.35.1) Hi+1

v (Ca(X, L),OCa(X,L)) ' ⊕m∈ZHi(X,OX(Lm)
)

for every i.
Over a field of char 0, assume that X has rational singularities.
(2.35.2) If −KX is ample then Ca(X, L) is CM and has rational singularities. If
−KX is nef (for instance, KX ≡ 0), then Ca(X, L) is CM⇔ Hi(X,OX) = 0
for 0 < i < dim X, and Ca(X, L) has rational singularities⇔ Hi(X,OX) = 0
for 0 < i ≤ dim X.

Next let (X,∆) be a projective, slc pair and L an ample line bundle on X. Let
∆Ca(X,L) denote the R-divisor corresponding to ∆ on Ca(X, L). Assume that KX +

∆ ∼Q r · L for some r ∈ R. Then
(
Ca(X, L),∆Ca(X,L)

)
is

(2.35.3) terminal iff r < −1 and (X,∆) is terminal,
(2.35.4) canonical iff r ≤ −1 and (X,∆) is canonical,
(2.35.5) klt iff r < 0 (that is, −(KX + ∆) is ample) and (X,∆) is klt,
(2.35.6) dlt iff either r < 0 and (X,∆) is dlt or (X,∆) '

(
Pn, (

∏
xi = 0)

)
and

the cone is
(
An+1, (

∏
xi = 0)

)
.

(2.35.7) lc iff r ≤ 0 (that is, −(KX + ∆) is nef) and (X,∆) is lc,
(2.35.8) slc iff r ≤ 0 and X is slc.
Aside The failure of (2.35.2) in positive characteristic has significant
consequences for the moduli problem; see Section 8.8.

2.36 (Deformation to cones II) Let X ⊂ Pn be a closed subscheme and H ⊂Pn

a hyperplane. Thinking of Pn⊂Pn+1 as the hyperplane at infinity, let Cp(X) ⊂
Pn+1 be the projective cone over X with vertex v.

If H0(Pn,OPn (r)
)
→ H0(X,OX(r)

)
is surjective for every r, then Cp(X) \ X is

the affine cone Ca(X).
Let |L| be the pencil of hyperplanes in Pn+1 that contain H ⊂ Pn. If v < Lt

then projection from v shows that Cp(X) ∩ Lt ' X.
There is a unique L0 ∈ |L| such that v ∈ L0. Then Cp(X) ∩ L0 is isomorphic

to Cp(X ∩ H) away from v. If X is pure and dim(X ∩ H) = dim X − 1, then
the two are isomorphic iff H1(X,OX(r)

)
= 0 for every r; see (2.35.1) or Kollár

(2013b, 3.10).

If all these hold then blowing up H we get a flat morphism π : BHCp(X) →
P1. There is a unique fiber of π that is isomorphic to Cp(X∩H), all other fibers
are isomorphic to X.
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Example 2.37 (Counterexample to 2.33.2) Let Q0 ⊂ P
4 be the quadric cone

(xy−uv = 0). Let |A| and |B| be the two families of planes on Q0 and H ∼ A+ B
the hyperplane class. Let S 1 ∈ |2A + H| be a general member. Note that S 1 is
smooth away from the vertex of Q0 and at the vertex it has two local analytic
components intersecting at a single point. In particular, S 1 is nonnormal and
non-CM. (The easiest way to see these is to blow up a plane B1 ∈ |B|. Then
BB1 Q0 → Q0 is a small resolution whose exceptional set E is a smooth rational
curve. The birational transform of |2A+H| is a very ample linear system whose
general member is a smooth surface that intersects E in two points. This is the
normalization of the surface S 1.)

Let B1, B2 be planes in the other family. Then X0 := S 1 + B1 + B2 ∼ 3H,
thus X0 is a (2) ∩ (3) complete intersection in P4. We can thus write X0 as the
limit of a smooth family of (2) ∩ (3) complete intersections Xt. The general Xt

is a smooth K3 surface.
On the other hand, X0 can also be viewed as a general member of a flat

family whose special fiber is A1 + A2 + B1 + B2 + H. The latter is slc by (2.35),
thus X0 is also slc. Hence {Xt : t ∈ T } is a locally stable family such that Xt is a
smooth K3 surface for t , 0. Moreover, the irreducible component S 1 ⊂ X0 is
not CM.

In this case, the source of the problem is easy to explain. At its singular
point, S 1 is analytically reducible. The local analytic branches of S 1 and the
normalization of S 1 are both smooth.

One can, however, modify this example to get analytically irreducible non-
CM examples, albeit in dimension 3. To see this, let

Y0 := C(X0) = C(S 1) + C(B1) + C(B2) ⊂ P5

be the cone over X0. It is still a (2) ∩ (3) complete intersection, thus we can
write Y0 as the limit of a smooth family of (2) ∩ (3) complete intersections Yt.
The general Yt is a smooth Fano 3-fold.

By (2.35), Y0 is slc, thus {Yt : t ∈ T } is a stable family such that Yt is a
smooth 3-fold for t , 0. Since S 1 is irreducible, the cone C(S 1) is analytically
irreducible at its vertex. It is nonnormal along a line and non-CM.

One can check that the normalization of C(S 1) is CM.

Example 2.38 (Counterexample to 2.33.3) As in (2.37), let Q0 ⊂ P
4 be the

singular quadric (xy − uv = 0). On it, take a divisor

D0 := A1 + A2 + 1
2 (B1 + · · · + B4) + 1

2 H4

where the Ai are planes in one family, the Bi are planes in the other family and
H4 is a general quartic section.
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Note that (Q0,D0) is lc (2.35) and 2D0 is the intersection of Q0 with an octic
hypersurface. We can thus write (Q0,D0) as the limit of a family (Qt,Dt) where
Qt is a smooth quadric and 2Dt a smooth octic hypersurface section of Qt.

Let us now take the double covers of Qt ramified along 2Dt (11.24). We get
a family of (2) ∩ (8) complete intersections Xt ⊂ P(15, 4). The general Xt is
smooth with ample canonical class. The special fiber is irreducible, slc, but not
normal along A1 + A2, which is the union of two planes meeting at a point.

Let π : X̄0 → Q0 denote the projection of the normalization of X0. Then

π∗OX̄0
= OQ0 + OQ0 (4H − A1 − A2).

It is easy to compute that OQ0 (4H − A1 − A2) is not CM (see, for instance,
Kollár (2013b, 3.15)), so we conclude that X̄0 is not CM.

It is also interesting to note that the preimage of A1 + A2 in X̄0 is the union of
two elliptic cones meeting at their common vertex. These are quite complicated
lc centers.

Example 2.39 (Counterexample to 2.33.2–3) Here is an example of a locally
stable family of smooth projective varieties {Yt : t ∈ T } such that
(2.39.1) the canonical class KYt is ample and Cartier for every t,
(2.39.2) Y0 is slc and CM,
(2.39.3) the irreducible components of Y0 are normal, but
(2.39.4) one of the irreducible components of Y0 is not CM.

Let Z be a smooth Fano variety of dimension n ≥ 2 such that −KZ is very
ample, for instance Z = P2. Set X := P1 ×Z and view it as embedded by | −KX |

into PN for suitable N. Let C(X) ⊂ PN+1 be the cone over X.
Let M ∈ | − KZ | be a smooth member and consider the following divisors

D0 := {(0 : 1)} × Z, D1 := {(1 : 0)} × Z, and D2 := P1 × M.

Note that D0 + D1 + D2 ∼ −KX . Let Ei ⊂ C(X) denote the cone over Di. Then
E0 + E1 + E2 is a hyperplane section of C(X) and

(
C(X), E0 + E1 + E2

)
is lc by

(2.35). For some m > 0, let Hm ⊂ C(X) be a general intersection with a degree
m hypersurface. Then (

C(X), E0 + E1 + E2 + Hm
)

is snc outside the vertex and is lc at the vertex. Set Y0 := E0 + E1 + E2 + Hm.
Since OC(X)(Y0) ∼ OC(X)(m + 1), as in (2.36), we can view Y0 as an slc limit of
a family of smooth hypersurface sections Yt ⊂ C(X).

The cone over X is CM by (2.35), hence its hyperplane section E0 + E1 +

E2 + Hm is also CM. However, E2 is not CM. To see this, note that E2 is the
cone over P1 × M and, by the Künneth formula,
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Hi(P1 × M,OP1×M) = Hi(M,OM) =

{
k if i = 0, n − 1,
0 otherwise.

Thus E2 is not CM by (2.35).

Example 2.40 (Easy counterexamples to 2.34) There are some obvious prob-
lems with all of the questions in (2.34) if the Dt contain divisors with different
coefficients. For instance, let C be a smooth curve and D′,D′′ ⊂ A1 × C =: S
two sections of the 1st projection π1. Set D := 1

2 (D′ + D′′). Then π1 :
(
S ,D

)
→

A1 is a stable family of one-dimensional pairs. For general t, the sections
D′,D′′ intersect Ct at two different points and then OCt (KCt + bDtc) ' OC(KC).
If, however, D′,D′′ intersect Ct at the same point pt ∈ Ct, then OCt (KCt +

bDtc) ' OC(KC)(pt).
Similarly, the support of Dt is 2 points for general t, but only one point for

special values of t.
One can correct for these problems in relative dimension 1 by a more care-

ful bookkeeping of the different parts of the divisor Dt. However, starting
with relative dimension 2, no correction seems possible, except when all the
coefficients are > 1

2 (2.81).

The following example is due to Hassett (unpublished).

Example 2.41 (Counterexample to 2.34.1–3) We start with the already studied
example of deformations of the cone S ⊂ P5 over the degree 4 rational normal
curve (1.42), but here we add a boundary to it. Fix r ≥ 1 and let DS be the sum
of 2r lines. Then (S , 1

r DS ) is lc and
(
KS + 1

r DS
)2

= 4.
As in (1.42), there are two different deformations of the pair (S ,DS ).

(2.41.1) First, set P := P2 and let DP be the sum of r general lines. Then
(P, 1

r DP) is lc (even canonical if r ≥ 2) and
(
KP + 1

r DP
)2

= 4. The usual
smoothing of S ⊂ P5 to the Veronese surface gives a family f : (X,DX) → P1

with general fiber (P,DP) and special fiber (S ,DS ). We can concretely realize
this as deforming (P,DP) ⊂ P5 to the cone over a general hyperplane section.
Note that for any general DS there is a choice of lines DP such that the limit is
exactly DS .

The total space (X,DX) is the cone over (P,DP) (blown up along a curve)
and X is Q-factorial. Thus by (11.18) the structure sheaf of an effective divisor
on X is CM. In particular, DS is a flat limit of DP. Since the DP is a plane curve
of degree r, we conclude that

χ(ODS ) = χ(ODP ) = −
r(r−3)

2 .
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(2.41.2) Second, set Q := P1 × P1 and let A, B denote the classes of the two
rulings. Let DQ be the sum of r lines from the A-family. Then (Q, 1

r DQ) is
canonical and

(
KQ + 1

r DQ
)2

= 4. The usual smoothing of S ⊂ P5 to P1 × P1

embedded by H := A + 2B gives a family g : (Y,DY ) → P1 with general fiber
(Q,DQ) and special fiber (S ,DS ). We can concretely realize this as deforming
(Q,DQ) ⊂ P5 to the cone over a general hyperplane section.

The total space (Y,DY ) is the cone over (Q,DQ) (blown up along a curve) and
Y is not Q-factorial. However, KQ + 1

r DQ ∼Q −H, thus KY + 1
r DY is Q-Cartier

and (Y, S + 1
r DY ) is lc by inversion of adjunction (11.17) and so is (Y, 1

r DY ).
In this case, however, DS is not a flat limit of DQ for r > 1. This follows, for

instance, from comparing their Euler characteristic:

χ(ODS ) = −
r(r−3)

2 and χ(ODQ ) = r.

(2.41.3) Because of their role in the canonical ring, we are also interested in
the sheaves O(mK + bm

r Dc).
Let HP be the hyperplane class of P ⊂ P5 (that is, OP2 (2)) and write m =

br + a where 0 ≤ a < r. Then mKP + bm
r DPc + nHP ∼ (2n − 2m − a)L, so

χ(P,OP(mKP + bm
r DPc + nHP)) =(

2n−2m−a+2
2

)
=

(
2n−2m+2

2

)
− a(2n − 2m + 1) +

(
a
2

)
.

Again by (11.18), OX(mKX + bm
r DXc) is CM, hence its restriction to the

central fiber S is OS (mKS + bm
r DS c) as in (2.75). In particular,

χ(S ,OS (mKS + bm
r DS c + nHS )) =

(
2n−2m+2

2

)
− a(2n − 2m + 1) +

(
a
2

)
.

The other deformation again behaves differently. Write m = br + a where
0 ≤ a < r. Then, for HQ ∼ A + 2B, we see that

mKQ + bm
r DQc + nHQ ∼ (n − m − a)A + (2n − 2m)B,

and therefore

χ
(
Q,O(mKQ + bm

r DQc + nHQ)
)

=
(

2n−2m+2
2

)
− a(2n − 2m + 1).

From this we conclude that the restriction of OY (mKY +bmDYc) to the central
fiber S agrees with OS (mKS + bmDS c) only if a ∈ {0, 1}, that is when m ≡
0, 1 mod r. The if part was clear from the beginning. Indeed, if a = 0 then
OY (mKY + bmDYc) = OY (mKY + mDY ) is locally free and if a = 1 then

OY (mKY + bmDYc) = OY (KY ) ⊗ OY
(
(m − 1)KY + (m − 1)DY

)
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is OY (KY ) tensored with a locally free sheaf. Both of these commute with
restrictions. In the other cases we only get an injection

OY (mKY + bmDYc)|S ↪→ OS (mKS + bmDS c)

whose quotient is a torsion sheaf of length
(

a
2

)
supported at the vertex.

In the next example, nonflatness appears in codimension 3.

Example 2.42 On P5 denote coordinates by x1, x2, x3, x′1, x
′
2, x
′
3. Set

S := (x1x′1 = x2x′2 = x3x′3 = 0) ⊂ P5.

It is a reducible K3 surface, a union of eight planes.
Pick constants a1, a2, a3 and a′1, a

′
2, a
′
3 such that aia′j , a ja′i for i , j. Set

X :=
(∑

aixix′i =
∑

a′i xix′i = 0
)
⊂ P5.

By direct computation, X is singular only at the six coordinate vertices, and it
has ordinary double points there. Furthermore, S ∼ −KX .

Set Y := X ∩
(∑

(xi + x′i ) = 0
)
⊂ P4 and C := Y ∩ S . Then Y is a smooth,

degree 4 Del Pezzo surface and C ∼ −2KY . Thus (Y, 1
2C) is a log CY pair. Let

(X0,
1
2 S 0) ⊂ P5 denote the cone over (Y, 1

2C). Deformation to the cone (2.36)
gives π :

(
X, 1

2 S
)
→ A1, whose central fiber is (X0,

1
2 S 0). The other fibers are

isomorphic to (X, 1
2 S ).

Note that S contains the pair of disjoint planes P := (x1 = x2 = x3 = 0) and
P′ := (x′1 = x′2 = x′3 = 0). Their specializations P0, P′0 meet only at the vertex.
This is a nonflat deformation of P ∪ P′.

Example 2.43 (Counterexample to 2.34.1) As in (2.39), let Z be a smooth
Fano variety of dimension n ≥ 2 such that −KZ is very ample. Set X := P1 ×Z,
but now view it as embedded by global sections of OP1 (1) ⊗ OZ(−KZ) into PN

for suitable N. Let C(X) ⊂ PN+1 be the cone over X.
Fix r ≥ 1 and let Dr be the sum of r distinct divisors of the form {point}×Z ⊂

X. Let H ⊂ X be a general hyperplane section. Then H ∼Q −
(
KX + 1

r Dr
)
,

that is, (X, 1
r Dr) is (numerically) anticanonically embedded. Thus, by (2.35),(

C(H), 1
r C(H ∩ Dr)

)
is lc and there is a locally stable family with general fiber

(X, 1
r Dr) and special fiber

(
C(H), 1

r C(H ∩ Dr)
)
.

However, C(H ∩ Dr) is not a flat deformation of Dr. Indeed, if Dri(' Z)
is any irreducible component of Dr, then C(H ∩ Dri) is a flat deformation of
Dri. Thus qiC(H ∩ Dri) is a flat deformation of Dr = qiDri. Note further that
qiC(H ∩Dri) is the normalization of C(H ∩Dr), and the normalization map is
r : 1 over the vertex of the cone. Thus
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χ
(
Dr,ODr

)
=

∑
iχ

(
Dri,ODri

)
=

∑
iχ

(
C(H ∩ Dri),OC(H∩Dri)

)
≥ χ

(
C(H ∩ Dr),OC(H∩Dr)

)
+ (r − 1).

Therefore, C(H ∩Dr) cannot be a flat deformation of Dr for r > 1. We pick up
at least r − 1 embedded points.

Example 2.44 (Counterexample to 2.34.3) Set X := Ca
(
P1 × Pn,OP1×Pn (1, a)

)
for some 0 < a < n + 1. Let D ⊂ X be the cone over a smooth divisor in
|OP1×Pn (1, n + 1 − a)|. Then (X,D) is canonical and KX + D is Cartier.

Let π : (X,D) → A1 be a general projection. Then π is locally stable and its
central fiber is the cone X0 = Ca

(
H,OP1×Pn (1, a)|H

)
where H ∈ |OP1×Pn (1, a)| is

a smooth divisor.
We claim that if 2a > n + 1 then Rm : ω[m]

X/A1

∣∣∣
X0
→ ω[m]

X0
is not sur-

jective for m � 1. Indeed, Rm is a sum, for r ≥ 0 of the restriction
maps

H0(P1 × Pn,O(r − 2m, ra − (n + 1)m)
)
→ H0(H,O(r − 2m, ra − (n + 1)m)|H

)
,

and Rm is surjective iff H1(P1 × Pn,OP1×Pn (r − 2m, ra − (n + 1)m)
)

= 0 for
every r ≥ −1. Choose r = 2m − 2. By the Künneth formula, this group
is

H1(P1,OP1 (−2)
)
⊗ H0(Pn,OPn (2a(m − 1) − m(n − 1))

)
.

This is nonzero iff 2a ≥ m
m−1 (n − 1).

The following example, related to Patakfalvi (2013), shows that the relative
dualizing sheaf does not commute with base change in general.

Example 2.45 Let S be a smooth, projective surface with KS ample and pg =

q = 0. Let C be a smooth, projective curve with KC ample. For [L] ∈ Pic◦(C)
set LX := ωS×C ⊗ π

∗
C L, where πC is the projection to C. Note that H0(S ×

C, LX) = 0 and, for m ≥ 2, h0(S × C, Lm
X ) = χ(S × C, Lm

X ) is independent of L.
Thus the cones XL := Spec⊕m≥0H0(S ×C, Lm

X
)

form a flat family over Pic◦(C).
By (2.35), KXL is Cartier iff L ' OC and Q-Cartier iff [L] ∈ Pic◦(C) is a

torsion point.

2.4 Stable Families

Next we define the notion of stable families over regular, one-dimensional
base schemes and establish the valuative criteria of separatedness and
properness.
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Definition 2.46 Let f : (X,∆) → C be a family of pairs (2.2) over a regular
one-dimensional scheme C of characteristic 0. We say that f : (X,∆) → C is
stable if f is locally stable (2.3), proper and KX/C + ∆ is f -ample.

Note that if f is locally stable then KX + ∆ is R-Cartier, so f -ampleness
makes sense. By (2.10), being stable is preserved by base change C′ → C.

More generally, whenever the notion of local stability is defined later over a
scheme S , then f : (X,∆)→ S is called stable if the conditions in the definition
are satisfied. (Thus we have to make sure that local stability implies that KX/S +

∆ makes sense and is R-Cartier.)

The relationship between locally stable morphisms and stable morphisms
parallels the connection between smooth varieties and their canonical models.

Proposition 2.47 Let f :
(
Y,∆

)
→ B be a locally stable, proper morphism

over a one-dimensional regular scheme B of characteristic 0. Assume that the
generic fibers are normal, of general type and f has a relative canonical model
f c :

(
Yc,∆c)→ B. Then f c :

(
Yc,∆c)→ B is stable.

Furthermore, taking the relative canonical model commutes with flat base
changes π : B′ → B.

Proof First, KYc + ∆c is f c-ample by definition (1.38) and
(
Yc,∆c) is lc.

Let b ∈ B be any closed point and Yb (resp. Yc
b) the fibers over b. Since

f is locally stable,
(
Y,Yb + ∆Y

)
is lc. Since any fiber is f -linearly trivial, we

conclude using Kollár (2013b, 1.28) that
(
Yc,Yc

b + ∆c) is also lc. Thus f c is
locally stable, hence stable.

In characteristic 0, being locally stable is preserved by base change (2.10),
thus the last assertion follows from (11.40). �

Remark 2.48 In most cases, the fibers of f c are not the canonical models of
the fibers of f ; see Section 1.5 and (5.10).

A significant exception is when ∆ = 0 and Yb has canonical singularities.
Then (Y,Yb) is canonical by (11.17) and so is (Yc,Yc

b) by Kollár and Mori
(1998, 3.51). Thus Yc

b also has canonical singularities by (11.17), it is thus the
canonical model of Yb.

2.49 (Separatedness and Properness) Let C be a regular scheme of dimension
1, and C◦ ⊂ C an open and dense subscheme. Let f ◦ : (X◦,∆◦) → C◦ be a
stable morphism. We aim to prove the following two properties.

Separatedness f ◦ : (X◦,∆◦) → C◦ has at most one extension to a stable
morphism f : (X,∆)→ C.
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Properness There is a finite surjection π : B→ C such that the pull back

π∗ f ◦ : (X◦ ×C B,∆◦ ×C B)→ B◦ := π−1(C◦)

extends to a stable morphism fB : (XB,∆B)→ B.

Next we show that separatedness holds in general and properness holds in
characteristic 0. In both cases, the proof relies on theorems that we state in
general forms in Section 11.3.

Proposition 2.50 (Separatedness for stable maps) Let fi :
(
Xi,∆i)→ B be two

stable morphisms over a one-dimensional, regular scheme B. Let

φ :
(
X1

k(B),∆
1
k(B)

)
'

(
X2

k(B),∆
2
k(B)

)
be an isomorphism of the generic fibers. Then φ extends to an isomorphism

Φ :
(
X1,∆1) ' (

X2,∆2).
Proof Note that φ always extends to an isomorphism over an open, dense
subset B◦ ⊂ B. We can now apply (11.40), whose assumptions are satisfied by
(2.15). �

Example 2.50.1 Regularity of B is needed here. As a simple example, let B̄ be
a smooth curve and f̄ : S̄ → B̄ a smooth, projective family of curves of genus
≥ 2. Assume that we have points b1, b2 ∈ B̄ such that the fibers Ci := f̄ −1(bi)
are isomorphic. Let B be the nodal curve obtained by identifying b1 and b2.
We can then descend the family to f : S → B using an isomorphism C1 ' C2.
The number of different choices is |Aut(C1)|. Thus the family over B̄ \ {b1, b2}

may have several stable extensions over the nodal curve B.

Remark 2.50.2 As a consequence of (2.50) we obtain that Aut(X,∆) is finite
for a stable pair (X,∆) in arbitrary characteristic, using (2.16.2). We prove a
more general form of it in (8.64).

Theorem 2.51 (Valuative-properness for stable maps) Let C be a smooth
curve over a field of characteristic 0 and C◦ ⊂ C an open and dense subset.
Let f ◦ : (X◦,∆◦)→ C◦ be a stable morphism.

Then there is a finite surjection π : B→ C such that the pull back

f ◦B := π∗ f ◦ : (X◦ ×C B,∆◦ ×C B)→ π−1(C◦)

extends to a stable morphism fB : (XB,∆B)→ B.
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Proof We begin with the case when X◦ is normal. Start with f ◦ : (X◦,∆◦) →
C◦ and extend it to a proper flat morphism f1 : (X1,∆1) → C where X1 is
normal. In general (X1,∆1) is no longer lc.

By Kollár (2013b, 10.46), there is a log resolution (p.xvi) g1 : Y1 → X1 such
that

(
g−1

1
)
∗∆1 + Ex(g1) + Y1c is an snc divisor for every c ∈ C. In general, the

fibers of f1 ◦g1 : Y1 → C are not reduced, hence g1 :
(
Y1,

(
g−1

1
)
∗∆1 +Ex(g1)

)
→

C is not locally stable.
Let B be a smooth curve and π : B→ C a finite surjection. Let X2 → X1×C B

and Y2 → Y1 ×C B denote the normalizations and g2 : Y2 → X2 the induced
morphism. Let ∆2 be the pull back of ∆1 ×C B to X2. Note that

f2 ◦ g2 :
(
Y2,

(
g−1

2
)
∗∆2 + Ex(g2)

)
→ B

is a log resolution over the points where π is étale, but Y2 need not be smooth.
However, by (2.52),

(
Y2,

(
g−1

2
)
∗∆2 + Ex(g2) + red Y2b

)
is lc for every b ∈ B.

By (2.53), one can choose π : B → C such that every fiber of f2 ◦ g2 is
reduced. With such a choice, f2 ◦ g2 is locally stable.

If the generic fiber (X◦g ,∆
◦
g) is klt, then, using (2.15) and after shrinking C◦,

we may assume that (X◦,∆◦) is klt. Pick 0 < ε � 1. Then
(
Y2,∆2 + (1 −

ε) Ex(g2)
)

is also klt and so it has a canonical model fB : (XB,∆B) → B by
(11.28.1), which is stable by (2.47).

We are almost done, except that, by construction, fB : (XB,∆B) → B is iso-
morphic to the pull-back of f ◦ : (X◦,∆◦) → C◦ only over a possibly smaller
dense open subset. However, by (2.50), this implies that this isomorphism
holds over the entire C◦.

The argument is the same if (X◦,∆◦) is lc, but we need to take the canonical
model of

(
Y2,∆2 + Ex(g2)

)
. Here we rely on (11.28.2).

Next we show how the slc case can be reduced to the lc case.
Let X̄◦ → X◦ be the normalization with conductor D̄◦ ⊂ X̄◦. As we noted in

(2.12), we get a stable morphism

f̄ ◦ : (X̄◦, ∆̄◦ + D̄◦)→ C◦. (2.51.4)

By the already completed normal case, we get B → C such that the pull-back
of (2.51.4) extends to a stable morphism

f̄B :
(
X̄B, ∆̄B + D̄B

)
→ B. (2.51.5)

Finally, (2.54) shows that (2.51.5) is the normalization of a stable morphism
fB : (XB,∆B)→ B, which is the required extension of f ◦B . �

We have used the following three lemmas during the proof.
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Lemma 2.52 Let C be a smooth curve over a field of characteristic 0, f : X →
C a flat morphism and ∆ an R-divisor on X. Assume that (X, red Xc + ∆) is lc
for every c ∈ C. Let B be a smooth curve, g : B → C a quasi-finite morphism,
gY : Y → X ×C B the normalization and ∆Y := g∗Y∆.

Then (Y, red Yb + ∆Y ) is lc for every b ∈ B.

Proof Pick c ∈ C and let bi ∈ B be its preimages. By the Hurwitz formula

KY + ∆Y +
∑

i red Ybi = g∗X(KX + ∆ + red Xc).

By assumption, (X,∆ + red Xc) is lc for every c ∈ C. Hence, by (11.23.3),
(Y,∆Y +

∑
i red Ybi ) is also lc. �

Lemma 2.53 Let f : X → T be a flat morphism from a normal scheme to a
one-dimensional regular scheme T . Let S be another one-dimensional regular
scheme and π : S → T a quasi-finite morphism. Let Y → X ×T S be the
normalization and fY : Y → S the projection. Assume that π is tamely ramified
and, for every s ∈ S , the multiplicity of every irreducible component of Xπ(s)

divides the ramification index of π at s.
Then every fiber of fY : Y → S is reduced.

Proof The claim is local, so pick points 0S ∈ S and 0T := π(0S ) ∈ T with
local parameters t ∈ OT and s ∈ OS .

We want to study how the multiplicities of the irreducible components of the
fiber over 0T change under base extension. We can focus on one such irreduc-
ible component and pass to any open subset of X that is not disjoint from the
chosen component. By Noether normalization (10.51), we can think of X as a
hypersurface X ⊂ An

T defined by an equation f ∈ OT [x1, . . . , xn]. The central
fiber X0 is defined by f̄ = 0 where f̄ is the mod t reduction of f . By focusing
at a generic point of X0, after an étale coordinate change we may assume that
f̄ = xm

1 where m is the multiplicity of X0. We can thus write f = xm
1 − t · u(x, t).

Since X is normal (hence regular) at the generic point of X0, we see that u is
not identically zero along X0.

We can write π∗t = sev(s) where e is the ramification index of π at 0S and v
is a unit at 0S . Consider now the fiber product XS := X ×T S → S . It is defined
by the equation xm

1 = se · u
(
x, sev(s)

)
· v(s). Note that XS is not normal along

(s = x1 = 0) if m, e > 1.
Constructing the normalization is especially simple if e is a multiple of m.

Write e = md and set x′1 := xs−d. Then we get Y ⊂ An
S (with coordinates

x′1, x2, . . . , xn) defined by x′1
m = u

(
x′1sd, x2, . . . , xn, sev(s)

)
· v(s), and the central

fiber Y0 is defined by the equation x′1
m = u

(
0, x2, . . . , xn, 0

)
· v(0), where the

right-hand side is not identically zero.
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If the characteristic of k(0S ) does not divide m, then the projection Y0 →

An−1
x2,...,xn

is generically étale and Y0 is smooth at its generic points. In this case,
Y is the normalization of XS (at least generically along Y0) and the central fiber
of Y → S has multiplicity 1. �

Aside 2.53.1 If p := char k(0S ) divides m, then Y0 → A
n−1
x2,...,xn

is inseparable. If
u
(
0, x2, . . . , xn, 0

)
is not a pth power over the algebraic closure of k(0S ), then

Y0 is geometrically integral, hence generically nonsingular. In this case, Y is
the normalization of XS and the central fiber of Y → S has multiplicity 1.

If u
(
0, x2, . . . , xn, 0

)
is a pth power, then Y0 is not generically reduced. In this

case, Y need not be normal and further blow-ups may be needed to reach the
normalization. The situation is rather complicated, even for families of curves.
A weaker result is in (2.60).

At the end of the proof of (2.51), we needed to construct an slc pair from its
normalization. The following is a special case of (11.41), whose assumptions
hold by (2.15).

Lemma 2.54 Let B be a smooth curve over a field of characteristic 0 and
B◦ ⊂ B a dense open subset. Let f ◦ : (X◦,∆◦)→ B◦ be a stable morphism. Let
f̄ ◦ : (X̄◦, ∆̄◦ + D̄◦)→ B◦ be the normalization with conductor D̄◦ ⊂ X̄◦.

Assume that f̄ ◦ extends to a stable morphism f̄ :
(
X̄, ∆̄ + D̄

)
→ B.

Then f ◦ also extends to a stable morphism f : (X,∆)→ B. �

As we noted in (2.16), it is not known whether being locally stable is
preserved by base change in positive characteristic. However, the next result
shows that this holds for all families obtained as in (2.51).

Theorem 2.55 Let h : C′ → C be a quasi-finite morphisms of regular schemes
of dimension 1 and f : X → C a proper morphism from a regular scheme X
to C whose fibers are geometrically reduced, simple normal crossing divisors.
Then X′ := X ×C C′ has canonical singularities and

⊕m≥0 f ′∗ω
⊗m
X′/C′ ' h∗⊕m≥0 f∗ω⊗m

X/C . (2.55.1)

Proof Note that (2.55.1) is just the claim that push-forward commutes with
flat base change h : C′ → C. The substantial part is the assertion that X′

has canonical singularities, hence the proj of ⊕m≥0 f ′∗ω
⊗m
X′/C′ is also the relative

canonical model of any resolution of X′.
Pick a point x ∈ X and set c = f (x). We may assume that C and C′ are the

spectra of DVRs with local parameters t and s. Thus the Henselisation of (x, X)
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can be given as a hypersurface (x1 · · · xm = t) ⊂
(
0,An

C
)
, where An

C denotes the
Henselisation of An

C at (0, 0).
If h∗t = φ(s) then (x′, X′) can be given as a hypersurface

(x1 · · · xm = φ(s)) ⊂
(
0,An

C′
)
. (2.55.2)

Thus the main claim is that the singularity defined by (2.55.2) is canonical.
If we are over a field, then (2.55.2) defines a toric singularity. We check that

although there is no torus action on the base C, we can compute the simplest
blow-ups suggested by toric geometry and everything works out as expected.

(Note that, although the pair
(
An

k , (x1 · · · xn = 0)
)

is lc, this is not a
completely toric question. We need to understand all exceptional divisors over
An

k , not just the toric ones; see Kollár (2013b, 2.11).) �

Lemma 2.56 Let T be a DVR with local parameter t, residue field k and An
T

the Henselisation of An
T at (0, 0). Let m ≤ n and e be natural numbers and φ a

regular function on An
T . Set

X := X(m, n, e, φ) =
(
x1 · · · xm = te + te+1φ(x1, . . . , xn)

)
⊂

(
0,An

T
)
, (2.56.1)

and let D be the divisor (t = 0) ⊂ X. Then the pair (X,D) is log canonical and
X is canonical.

Proof If char k = 0, this immediately follows from (2.10), so the main point
is that it also holds for any DVR.

If m = 0 or e = 0, then X is empty and we are done. Otherwise we can set
x′m := xm(1 + tφ)−1 to get the simpler equation x1 · · · xm = te. For inductive
purposes we introduce a new variable s and work with

X :=
(
x1 · · · xm − se = xm+1 · · · xm+r s − t = 0

)
⊂

(
0,An+1

T
)
,

D := (t = 0), where 0 ≤ r ≤ n − m.
(2.56.2)

The case r = 0 corresponds to (2.56.1). We use induction on m and e.
Let E be an exceptional divisor over X and v the corresponding valuation.

Assume first that v(x1) ≥ v(s). We blow up (x1 = s = 0). In the affine chart
where x′1 := x1/s, we get the new equations

x′1x2 · · · xm − se−1 = xm+1 · · · xm+r s − t = 0

defining (X′,D′). A local generator of ωX/T (D) is

1
t
·

dx2 ∧ · · · ∧ dxn

x2 · · · xm+r
, (2.56.3)

which is unchanged by pull-back.

https://doi.org/10.1017/9781009346115.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.004


2.4 Stable Families 95

Such operations reduce e, until we reach a situation where v(xi) < v(s) for
every i. If v(xi) = 0 for some i and i , m then xi is nonzero at the generic point
of centerX E. Thus we can set x′m := xixm and reduce the value of m. Thus
we may assume that v(xi) > 0 for i = 1, . . . ,m. Since

∑
v(xi) = e · v(s), we

conclude that e < m. If e ≥ 2 then we may assume that v(xe) is the smallest.
Set x′i = xi/xe for i = 1, . . . , e − 1 and s′ := s/xe. We get new equations

x′1 · · · x
′
e−1xe+1 · · · xm − (s′)e = xexm+1 · · · xm+r s′ − t = 0 (2.56.4)

defining (X′,D′) and the value of m dropped. The pull-back of (2.56.3) is

1
t
·

d(xex′2) ∧ · · · ∧ d(xex′e−1) ∧ dxe ∧ · · · ∧ dxn

(xex′2) · · · (xex′e−1)xe · · · xm+r

=
1
t
·

dx′2 ∧ · · · dx′e−1 ∧ dxe ∧ · · · ∧ dxn

x′2 · · · x
′
e−1xe · · · xm+r

,

(2.56.5)

which is again a local generator of ωX′/T (D′).
Eventually we reach the situation where e = 1. We can now eliminate s and,

after setting r + m 7→ m, rewrite the system as

X :=
(
x1 · · · xm = t

)
⊂

(
0,An

T
)
,

D := (t = 0).
(2.56.6)

Now X is regular: this case was treated in Kollár (2013b, 2.11). �

We discuss a collection of other results about extending one-parameter
families of varieties or pairs. These can be useful in many situations.

2.57 (Extending a stable family without base change) Let C be a smooth
curve over a field of characteristic 0, C◦ ⊂ C an open and dense subscheme,
and f ◦ : (X◦,∆◦) → C◦ a stable morphism. Here we consider the question of
how to extend f ◦ to a proper morphism f : X → C in a “nice” way without a
base change. For simplicity, assume that X◦ is normal.

We can take any extension of f ◦ to a proper morphism f1 : X1 → C, then
take a log resolution of (X2,∆2)→ (X1,∆1), and finally the canonical model of
(X2,∆2) using (11.28). We have proved:

Claim 2.57.1 There is a unique extension f : (X,∆) → C such that (X,∆) is lc
and KX + ∆ is f -ample. �

This model has the problem that its fibers over C \ C◦ =: {c1, . . . , cr} can
be pretty complicated. A slight twist improves the fibers considerably. Instead
of starting with the (X1,∆1), we take a log resolution

(
X2,∆2 +

∑
red X2,ci

)
of

(
X1,∆1 +

∑
red X1,ci

)
and its canonical model over C. We need to apply
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(11.28) to
(
X2,∆2 +

∑
red X2,ci − ε

∑
X2,ci

)
and use (11.28.2) to obtain the

following.

Claim 2.57.2 There is a unique extension f : (X,∆) → C such that (X,∆ +∑
red Xci ) is lc and KX + ∆ +

∑
red Xci is f -ample. By adjunction, in this case(

red Xci ,Diff ∆
)

is slc. �

A variant of this starts with any extension (X1,∆1) and then takes a dlt
modification of (X1,∆1 +

∑
red X1,ci ) as in Kollár (2013b, 1.36).

Claim 2.57.3 There is a dlt modification (Y◦,∆◦Y )→ (X◦,∆◦) and an extension
of it to g : (Y,∆Y )→ C such that (Y,∆ +

∑
red Yci ) is dlt. �

Taking a minimal model of g : (Y,∆Y +
∑

red Yci )→ C yields another useful
version.

Claim 2.57.4 There is a dlt modification (Y◦,∆◦Y )→ (X◦,∆◦) and an extension
of it to g : (X,∆X) → C such that (X,∆X +

∑
red Xci ) is dlt and KX + ∆X +∑

red Xci is f -nef. �

Finally, if we are willing to change X◦ drastically, Kollár (2013b, 10.46)
gives the following.

Claim 2.57.5 There is a log resolution (Y◦,∆◦Y )→ (X◦,∆◦) and an extension of
it to g : (Y,∆Y )→ C such that (Y,∆Y + red Yc) is snc for every c ∈ C. �

Let us also mention the following very strong variant of (2.57.5), tradition-
ally called the “semistable reduction theorem.” We do not use it, and one of
the points of our proof of (2.51) was to show that the much easier (2.52) and
(2.53) are enough for our purposes.

Theorem 2.58 (Kempf et al., 1973) Let C be a smooth curve over a field of
characteristic 0, f : X → C a flat morphism of finite type and D a divisor on
X. Then there is a smooth curve B, a finite surjection π : B → C and a log
resolution g : Y → X ×C B such that for every b ∈ B,
(2.58.1) g−1

∗ (D ×C B) + Ex(g) + Yb is an snc divisor and
(2.58.2) Yb is reduced. �

The positive or mixed characteristic analogs of (2.58) are not known, but the
following result on “semi-stable alterations” holds in general.

Theorem 2.59 (de Jong, 1996) Let T be a one-dimensional regular scheme
and f : X → T a flat morphism of finite type whose generic fiber is geomet-
rically reduced. Then there is a one-dimensional regular scheme S , a finite
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surjection π : S → T and a generically finite, separable, proper morphism
g : Y → X ×T S such that Ys is a reduced snc divisor for every s ∈ S . �

The following variant of (2.53) is an easy consequence of (2.59).

Corollary 2.60 Let f : X → T be a flat morphism of finite type from a pure
dimensional scheme to a one-dimensional regular scheme T . Then there is a
one-dimensional regular scheme S and a finite morphism π : S → T such that
every fiber of the projection of the normalization X ×T S → S is reduced. �

2.5 Cohomology of the Structure Sheaf

In studying moduli questions, it is very useful to know that certain numerical
invariants are locally constant. In this section, we study the deformation invar-
iance of (the dimension of) certain cohomology groups. The key to this is the
Du Bois property of slc pairs. The definition of Du Bois singularities is rather
complicated, but fortunately for our applications we need to know only the
following two facts.

2.61 (Properties of Du Bois singularities) Let M be a complex analytic variety.
Since constant functions are analytic, there is an injection of sheaves CM ↪→

Oan
M . Taking cohomologies we get

Hi(M,C)→ Hi(M,Oan
M
)
.

If X is projective over C and Xan is the corresponding analytic variety, then, by
the GAGA theorems of Serre (1955–1956), Hi(Xan,Oan

X
)
' Hi(X,OX).

If X is also smooth, Hodge theory tells us that

Hi(Xan,C)→ Hi(Xan,Oan
X ) ' Hi(X,OX)

is surjective. Du Bois singularities were essentially defined to preserve this
surjectivity; see Du Bois (1981) and Steenbrink (1983). (There does not seem
to be a good definition of Du Bois singularities in positive characteristic; see
however Kollár and Kovács (2020).) Thus we have the following.

Property 2.61.1 (Du Bois (1981)) Let X be a proper variety over C with
Du Bois singularities. Then the natural maps

Hi(Xan,C
)
→ Hi(Xan,Oan

X
)
' Hi(X,OX) are surjective. �
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Next we need to know which singularities are Du Bois. Over a field of
characteristic 0, rational singularities are Du Bois; see Kollár (1995b, 12.9)
and Kovács (1999), but for our applications the key result is the following.

Property 2.61.2 (Kollár and Kovács (2010, 2020)) Let (X,∆) be an slc pair over
C. Then X has Du Bois singularities. �

These are the only facts we need to know about Du Bois singularities. The
main use of (2.61.1) is through a base-change theorem, due to Du Bois and
Jarraud (1974); Du Bois (1981).

Theorem 2.62 Let S be a Noetherian scheme over a field of characteristic 0
and f : X → S a flat, proper morphism. Assume that the fiber Xs is Du Bois
for some s ∈ S . Then there is an open s ∈ S ◦ ⊂ S such that, for all i,
(2.62.1) Ri f∗OX is locally free and commutes with base change over S ◦, and
(2.62.2) s 7→ hi(Xs,OXs

)
is a locally constant function on S ◦.

Proof By Cohomology and Base Change, the theorem is equivalent to proving
that the restriction maps

φi
s : Ri f∗OX → Hi(Xs,OXs

)
(2.62.3)

are surjective for every i. By the Theorem on Formal Functions, it is enough to
prove this when S is replaced by any Artinian local scheme S n, whose closed
point is s.

Thus assume from now on that we have a flat, proper morphism fn : Xn →

S n, s ∈ S n is the only closed point, and Xs is Du Bois. Then H0(S n,Ri f∗OX
)

=

Hi(Xn,OXn

)
, hence we can identify the φi

s with the maps

ψi : Hi(Xn,OXn

)
→ Hi(Xs,OXs

)
. (2.62.4)

By the Lefschetz principle, we may assume that k(s) ' C. Then both sides of
(2.62.4) are unchanged if we replace Xn by the corresponding analytic space
Xan

n . Let CXn (resp. CXs ) denote the sheaf of locally constant functions on Xn

(resp. Xs) and jn : CXn → OXn (resp. js : CXs → OXs ) the natural inclusions.
We have a commutative diagram

Hi(Xn,CXn

) αi
//

jin
��

Hi(Xs,CXs

)
jis
��

Hi(Xn,OXn

) ψi
// Hi(Xs,OXs

)
.

Note that αi is an isomorphism since the inclusion Xs ↪→ Xn is a homeomor-
phism, and jis is surjective since Xs is Du Bois. Thus ψi is also surjective. �
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Complement 2.62.5 This proof also works if f : X → S is a flat, proper
morphism of complex analytic spaces and Xs is an algebraic space with
Du Bois singularities.

Definition 2.63 A scheme Y is said to be potentially slc or slc-type if, for every
y ∈ Y , there is an effective R-divisor ∆y on Y such that (Y,∆y) is slc at y.

Let f : X → S be a flat morphism. We say that f has potentially slc fibers
over closed points if the fiber Xs is potentially slc for every closed point s ∈ S .

One can similarly define the notion potentially klt, and so on.
In our final applications, the ∆s usually come as the restriction of a global

divisor ∆ to Xs, but we do not assume this.
If (Xs,∆s) is slc then Xs is Du Bois by (2.61.2), hence (2.62) implies the

following.

Corollary 2.64 Let S be a Noetherian scheme over a field of characteristic
0, and f : X → S a proper and flat morphism with potentially slc fibers over
closed points. Then, for all i,
(2.64.1) Ri f∗OX is locally free and compatible with base change, and
(2.64.2) if S is connected, then hi(Xs,OXs

)
is independent of s ∈ S . �

We can derive similar results for other line bundles from (2.64). A line
bundle L on X is called f -semi-ample if there is an m > 0 such that Lm is
f -generated by global sections. That is, the natural map f ∗

(
f∗(Lm)

)
→ Lm is

surjective. Equivalently, Lm is the pull-back of a relatively ample line bundle
by a suitable morphism X → Y .

Corollary 2.65 Let S be a Noetherian, connected scheme over a field of char-
acteristic 0 and f : X → S a proper and flat morphism with potentially slc
fibers over closed points. Let L be an f -semi-ample line bundle on X. Then
(2.65.1) Ri f∗

(
L−1) is locally free and compatible with base change, and

(2.65.2) hi(Xs, L−1
Xs

)
is independent of s ∈ S for all i.

Proof The question is local on S , thus we may assume that S is local with
closed point s. Chose m > 0 such that Lm is f -generated by global sections.
Since S is local, Lm is generated by global sections. By (2.13), there is a finite
morphism π : Y → X such that π∗OY = ⊕m−1

r=0 L−r and f ◦π :
(
Y, π−1∆

)
→ S also

has potentially slc fiber over s. Thus, by (2.64),

Ri( f ◦ π)∗OY = ⊕m−1
r=0 Ri f∗

(
L−r)

is locally free and compatible with arbitrary base change. Thus the same holds
for every summand. �
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Warning 2.65.4 Note that we assume that L is f -semi-ample, not only that L is
semi-ample on fibers over closed points. The Poincaré bundle on E × Ê0 → Ê0

shows that the latter is not enough, where E is an elliptic curve and Ê0 is the
localization of its dual at 0 = [OE].

Corollary 2.66 (Kollár and Kovács, 2010, 2020) Let S be a Noetherian, con-
nected scheme over a field of characteristic 0 and f : X → S a proper, flat
morphism of finite type. Assume that all fibers are potentially slc and Xs is CM
for some s ∈ S . Then all fibers of f are CM.

For an arbitrary flat morphisms π : X → S , the set of points x ∈ X such that
the fiber Xπ(x) is CM at x is open (10.11), but usually not closed. (Many such
examples can be constructed using Kollár (2013b, 3.9–11).) If π is proper, then
the set

{
s ∈ S : Xs is CM

}
is open in S (10.12). Thus the key point of (2.66) is

to show that, in our case, this set is also closed.
More generally, under the assumptions of (2.66), if one fiber of f is S k

(10.3.2) for some k, then all fibers of f are S k; see Kollár and Kovács (2020).

Proof We prove the projective case; see Kollár and Kovács (2020) for the
proper one.

Let L be an f -ample line bundle on X. If Xs is CM for some s ∈ S , then, by
Kollár and Mori (1998, 5.72), Hi(Xs, L−r

Xs

)
= 0 for r � 1 and i < dim Xs. Thus

by (2.65), the same vanishing holds for every s ∈ S . Hence, using Kollár and
Mori (1998, 5.72) again, we conclude that Xs is CM for every s ∈ S . �

Theorem 2.67 (Kollár and Kovács, 2010, 2020) Let S be a Noetherian
scheme over a field of characteristic 0 and f : X → S a flat morphism of
finite type with potentially slc fibers over closed points. Then ωX/S is
(2.67.1) flat over S with S 2 fibers, and
(2.67.2) compatible with base change. That is, for any g : T → S , the natural

map g∗XωX/S → ωXT /T is an isomorphism, where gX : XT := X ×S T → X
is the first projection.

We give a detailed proof of the projective case; this is sufficient for almost all
applications in this book. For the general case, we refer to Kollár and Kovács
(2020).

The existence of ωX/S is easy and, as we see in (2.68.1–3), it holds under
rather weak restrictions. Compatibility with base change is not automatic; see
Patakfalvi (2013) and (2.45) for some examples.

As we explain in (2.68.4–5), once the definition of ωX/S is set up right,
(2.67.2) and the flatness claim in (2.67.1) become easy consequences of (2.65).
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Once these hold, the fiber of ωX/S over s ∈ S is ωXs ; and the latter is S 2 as in
Kollár and Mori (1998, 5.69).

2.68 (The relative dualizing sheaf II) The best way to define the relative dual-
izing sheaf is via general duality theory as in Hartshorne (1966); Conrad (2000)
or (Stacks, 2022, tag 0DWE); see also (11.2). It is, however, worthwhile to
observe that a slight modification of the treatment in Hartshorne (1977) gives
the relative dualizing sheaf in the following cases.

Assumptions S is an arbitrary Noetherian scheme and f : X → S a projective
morphism of pure relative dimension n (2.71). (We do not assume flatness.)

2.68.1 (Weak duality for Pn
S ) Let P = Pn

S with projection g : P → S and set
ωP/S := ∧nΩP/S .

The proof of Hartshorne (1977, III.7.1 or III.Exc.8.4) shows that there is
a natural isomorphism, called the trace map, t : Rng∗ωP/S ' OS and, for any
coherent sheaf F on X, there is a natural isomorphism

g∗HomP
(
F, ωP/S

)
' HomS

(
Rng∗F,OS

)
.

Note that if S is a point then g∗HomP = HomP, thus we recover the usual
formulation of Hartshorne (1977, III.7.1).

2.68.2 (Construction of ωX/S ) Let f : X → S be a projective morphism of
pure relative dimension n. We construct ωX/S first locally over S . Once we
establish weak duality, the proof of Hartshorne (1977, III.7.2) shows that a
relative dualizing sheaf is unique up to unique isomorphism, hence the local
pieces glue together to produce ωX/S . Working locally over S , we can assume
that there is a finite morphism π : X → P = Pn

S . Set

ωX/S := HomP
(
π∗OX , ωP/S

)
.

If f is flat with CM fibers over S then π∗OX is locally free and so is π∗ωX/S .
ThusωX/S is also flat over S with CM fibers and it commutes with base change.
We discuss a local version of this in (2.68.7).

2.68.3 (Weak duality for X/S ) Let f : X → S be a projective morphism of pure
relative dimension n (2.71). Use Hartshorne (1977, Exc.III.6.10) to show that
there is a trace map t : Rn f∗ωX/S → OS , and for any coherent sheaf F on X
there is a natural isomorphism

f∗HomX
(
F, ωX/S

)
' HomS

(
Rn f∗F,OS

)
.

If F is locally free, this is equivalent to the isomorphism

f∗
(
ωX/S ⊗ F−1) ' HomS

(
Rn f∗F,OS

)
.

https://doi.org/10.1017/9781009346115.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.004


102 One-Parameter Families

(Note that M 7→ HomS (M,OS ) is a duality for locally free, coherent
OS -sheaves, but not for all coherent sheaves. In particular, the torsion in Rn f∗F
is invisible on the left-hand side f∗

(
ωX/S ⊗ F−1).)

2.68.4 (Flatness of ωX/S ) Let L be relatively ample on X/S . By (3.20), ωX/S is
flat over S iff f∗

(
ωX/S ⊗ Lm)

is locally free for m � 1. If this holds then ωX/S

is the coherent OX-sheaf associated to ⊕m≥m0 f∗
(
ωX/S ⊗ Lm)

, as a module over
the OS -algebra

∑
m≥0 f∗

(
Lm)

.
Applying weak duality with F = L−m, we see that these hold if Rn f∗

(
L−m)

is
locally free for m � 1. The latter is satisfied in two important cases.

(a) f : X → S is flat with CM fibers. Then Ri f∗
(
L−m)

= 0 for i < n and m �
1, hence Rn f∗

(
L−m)

is locally free of rank (−1)nχ
(
Xs, L−m

s
)

for m � 1.
(b) f : X → S is flat with potentially slc fibers. Then Rn f∗

(
L−m)

is locally
free for m ≥ 0 by (2.65).

2.68.5 (Base change properties of ωX/S ) Let f : X → S be a projective mor-
phism of pure relative dimension n and L relatively ample. We claim that the
following are equivalent:

(a) ωX/S commutes with base change as in (2.67.2).
(b) Rn f∗

(
L−m)

is locally free for m � 0.
By (2.68.3–4), ωX/S commutes with base change iff HomS

(
Rn f∗

(
L−m)

,OS
)

is locally free and commutes with base change for m � 0. Finally, show that a
coherent sheaf M is locally free iffHomS

(
M,OS

)
is locally free and commutes

with base change.

2.68.6 (Warning on general duality) If F is locally free, then we get

Ri f∗
(
ωX/S ⊗ F−1) × Rn−i f∗

(
F
)
→ Rn f∗ωX/S → OS ,

but this is not a perfect pairing, unless both sheaves on the left are locally free
and commute with base change.

2.68.7 (More on the CM case) Let f : X → S be a projective morphism of pure
relative dimension n. We already noted in (2.68.2) that if f is flat with CM
fibers over S , then the same holds for ωX/S . We consider what happens if f is
not everywhere CM. By (10.11), there is a largest open subset Xcm ⊂ X such
that f |Xcm is flat with CM fibers. Assume for simplicity that Xs ∩ Xcm is dense
in Xs and s ∈ S is local. Then, for every x ∈ Xs ∩ Xcm one can choose a finite
morphism π : X → P = Pn

S such that π−1(π(x)
)
⊂ Xcm. Thus π∗OX is locally

free at π(x) and so is π∗ωX/S . Thus we have proved that the restriction of ωX/S

to Xcm is flat over S with CM fibers and commutes with base change.
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This is actually true for all finite type morphisms, one just needs to find a
local analog of the projection π (see Section 10.6) and show that (2.68.2.a)
holds if π is finite; see Conrad (2000) for details.

Corollary 2.69 Let S be a connected, Noetherian scheme over a field of char-
acteristic 0 and f : X → S a proper and flat morphism with potentially slc
fibers over closed points. Let L be an f -semi-ample line bundle on X. Then
(2.69.1) Ri f∗

(
ωX/S ⊗ L

)
is locally free and compatible with base change, and

(2.69.2) hi(Xs, ωXs ⊗ Ls
)

is independent of s ∈ S for all i.
In particular, for L = OX we get that
(2.69.3) Ri f∗ωX/S is locally free and compatible with base change, and
(2.69.4) hi(Xs, ωXs

)
is independent of s ∈ S for all i.

If the fibers Xs are CM, then Hi(Xs, ωXs ⊗ Ls
)

is dual to Hn−i(Xs, L−1
s

)
, so

(2.69) follows from (2.65). If the fibers Xs are not CM, the relationship between
(2.69) and (2.65) is not so clear. See (8.16) for a more general version.

Proof Let us start with the case i = 0. By weak duality (2.68.3),

f∗
(
ωX/S ⊗ L

)
' HomS

(
Rn f∗

(
L−1),OS

)
,

where n = dim(X/S ). By (2.65), Rn f∗
(
L−1) is locally free and compatible with

base change, hence so is f∗
(
ωX/S ⊗ L

)
. Thus (2.69.1) holds for i = 0. Next we

use this and induction on n to get the i > 0 cases.
Choose M very ample on X such that Ri f∗

(
ωX/S ⊗ L ⊗M

)
= 0 for i > 0, and

this also holds after any base change. Working locally on S , as in the proof of
(2.65), let H ⊂ X be a general member of |M| such that H → S is also flat with
potentially slc fibers (2.13). The push-forward of the sequence

0→ ωX/S ⊗ L→ ωX/S ⊗ L ⊗ M → ωH/S ⊗ L→ 0

gives isomorphisms

Ri f∗
(
ωX/S ⊗ L

)
' Ri−1 f∗

(
ωH/S ⊗ L

)
for i ≥ 2.

Using induction, these imply that (2.69.1) holds for i ≥ 2.
The beginning of the push-forward is an exact sequence

0→ f∗
(
ωX/S ⊗ L

)
→ f∗

(
ωX/S ⊗ L ⊗ M

)
→ f∗

(
ωH/S ⊗ L

)
→R1 f∗

(
ωX/S ⊗ L

)
→ 0.

We already proved that the first three terms are locally free. In general, this
does not imply that the last term is locally free, but this implication holds if S
is the spectrum of an Artinian ring (2.70).
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104 One-Parameter Families

In general, pick any point s ∈ S with maximal ideal sheaf ms. Set An :=
Os,S /mn

s and Xn := Spec
(
OX/ f ∗mn

s
)
. Then H1(Xn,

(
ωX/S ⊗ L

)
|Xn

)
is a free An-

module by the above considerations, and the restriction maps

H1(Xn,
(
ωX/S ⊗ L

)
|Xn

)
⊗An k(s)→ H1(Xs, ωXs ⊗ Ls

)
are isomorphisms. By the Theorem on Formal Functions, this implies that
R1 f∗

(
ωX/S ⊗ L

)
is locally free and commutes with base change. �

2.70 Let (A,m) be a local Artinian ring. Let F be a free A-module and j : A ↪→

F an injection. We claim that j(A) is a direct summand of F. Indeed, let r ≥ 1
be the smallest natural number such that mrA = 0. Note that mr−1m = 0. If
j(A) ⊂ mF then mr−1A = 0, a contradiction. Thus j(A) is a direct summand of
F. By induction this shows that any injection between free A-modules is split.
This also implies that if 0 → M1 → · · · → Mn → 0 is an exact sequence of
A-modules and all but one of them are free, then they are all free.

2.71 (Pure dimensional morphisms) A finite type morphism f : X → S is said
to have pure relative dimension n if, for every integral scheme T and every
h : T → S , every irreducible component of X ×S T has dimension dim T + n.
We also say that f is pure dimensional if it is pure of relative dimension n for
some n. It is enough to check this property for all cases when T is the spectrum
of a DVR.

Applying the definition when T is a point shows that if f has pure rela-
tive dimension n, then every fiber of f has pure dimension n, but the converse
does not always hold. For instance, let C be a curve and π : C̄ → C the nor-
malization. If C is nodal then π does not have pure relative dimension 0 since
C̄×C C̄ contains two isolated points. However, the converse does hold in several
important cases.

Claim 2.71.1 Let f : X → S be a finite type morphism whose fibers have pure
dimension n. Then f has pure relative dimension n iff it is universally open.
Thus both properties hold if f is flat.

Proof Both properties can be checked after base change to spectra of DVRs.
In the latter case the equivalence is clear and flatness implies both. �

2.71.2 (Chevalley’s criterion) (Grothendieck, 1960, IV.14.4.1) Let f : X → S
be a finite type morphism whose fibers have pure dimension n. Assume that
S is normal (or geometrically unibranch) and X is irreducible. Then f is
universally open.

Proof By an easy limit argument, it is enough to check openness after base
change for finite type, affine morphisms S ′ → S ; see Grothendieck (1960,
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2.6 Families of Divisors I 105

IV.8.10.1). We may thus assume that S ′ ⊂ An
S for some n. The restriction of

an open morphism to the preimage of a closed subset is also open, thus it is
enough to show that the natural morphism f (n) : An

Y → A
n
S is open for every

n. If S is normal then so is An
S , thus it is enough to show that all maps as in

(2.71.2) are open.
To see openness, let U ⊂ X be an open set and x ∈ U a closed point.

We need to show that f (U) contains an open neighborhood of s := f (x). Let
x ∈ W ⊂ X be an irreducible component of a complete intersection of n Cartier
divisors such that x is an isolated point of W ∩ Xs. It is enough to prove that
f (U ∩ W) contains an open neighborhood of s. After extending W → S to
a proper morphism and Stein factorization, we are reduced to showing that
(2.71.2) holds for finite morphisms.

Since f (U) is constructible, it is open iff it is closed under generalization.
The latter holds by the going-down theorem. �

2.6 Families of Divisors I

We saw in (2.67) that for locally stable morphisms g : (X,∆)→ C, the relative
dualizing sheaf ωX/C commutes with base change. We also saw in (2.44) that
its powers ω[m]

X/C usually do not commute with base change. Here we consider
this question for a general divisor D: What does it mean to restrict a divi-
sor D on X to a fiber Xc? How are the two sheaves OX(D)|Xc and OXc

(
D|Xc

)
related?

2.72 (Comments on Serre’s conditions) For the definition of S m, see (10.3) or
(Stacks, 2022, tag 033P). The following variant will be useful for us.

Let X be a scheme, Z ⊂ X a closed subset, and F a coherent sheaf on X. We
say that F is S m along Z if (10.3.2) holds whenever x ∈ Z.

The following is the key example for us. Let T be a regular one-dimensional
scheme, f : X → T a proper morphism, and F a coherent sheaf on X, flat over
T . Assume that every fiber Ft is S m. If x ∈ X is contained in a closed fiber, then
depthx F ≥ min{m+1, codim(x,Supp F)}, but for points in the generic fiber we
can only guarantee that depthx F ≥ min{m, codim(x,Supp F)}. Thus F is not
S m+1, but it is S m+1 along closed fibers.

2.73 (One-parameter families of divisors) Let T be a regular, one-dimensional
scheme and f : X → T a flat, proper morphism. For simplicity, assume for
now that X is normal. Let D be an effective Weil divisor on X. Under what
conditions can we view D as giving a “reasonable” family of Weil divisors on
the fibers of f ?
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106 One-Parameter Families

We can view D as a subscheme of X and, if Supp D does not contain any
irreducible component of any fiber Xt, then f |D : D → T is flat, hence the
fibers D|Xt form a flat family of subschemes of the fibers Xt. The D|Xt may have
embedded points; ignoring them gives a well-defined effective Weil divisor on
the fiber Xt. We will eventually denote it by Dt, but use Ddiv

t or the more precise
D|div

Xt
if we want to emphasize its construction; see also (2.77).

Understanding the difference between the subscheme D|Xt and the divisor
Ddiv

t is the key to dealing with many issues. As a rule of thumb, D defines a
“nice” family of divisors iff Ddiv

t = D|Xt for every t ∈ T .
It can happen that D ∩ Xt is contained in Sing Xt for some t. These are the

cases when the correspondence between Weil divisors and rank 1 reflexive
sheaves breaks down. Fortunately, this does not happen for locally stable fam-
ilies. Thus we can focus on the cases when D is a relative Mumford divisor
(p.xiv).

It is now time to drop the normality assumption and work with divisorial
subschemes (4.16.2) in one of the following general settings. (Further general-
izations will be considered in Sections 5.4 and 9.3.) We start with the absolute
version.

(1.a) X is a pure dimensional, reduced scheme and H ⊂ X a Cartier divisor.
Assume that H is S 2; equivalently, X is S 3 along H (2.72).

(1.b) There is a closed subscheme Z ⊂ X such that D|X\Z is a Cartier divisor
and codimH

(
H ∩ Z

)
≥ 2.

(1.c) D is a Mumford divisor along H, that is, Supp D does not contain any
irreducible component of H, and H is regular at generic points of H ∩ D; see
(4.16.4).

In the relative version, we assume the following.
(2.a) T is a regular, one-dimensional, irreducible scheme and f : X → T is a
flat, pure dimensional morphism whose fibers are reduced and S 2.

(2.b) There is a closed subscheme Z ⊂ X such that D|X\Z is a Cartier divisor
and codimXt

(
Xt ∩ Z

)
≥ 2 for every t ∈ T .

(2.c) D is a relative Mumford divisor (4.68).
Under these conditions, the divisorial restriction Ddiv

H (resp. Ddiv
t ) is defined as

the unique divisorial subscheme (4.16.2) on H (resp. Xt) that agrees with the
restriction of the Cartier divisor D|X\Z to H \ Z (resp. Xt \ Z).

Proposition 2.74 Notation and assumptions as in (2.73.1.a–c). The following
conditions are equivalent:
(2.74.1) OX(−D) is S 3 along H ∩ Z.
(2.74.2) OX(−D) is S 3 along H.
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(2.74.3) The restriction map rH : OX(−D)|H → OH
(
−Ddiv

H
)

is an isomorphism.
(2.74.4) The following sequence is exact:

0→ OX(−D − H)→ OX(−D)→ OH
(
−Ddiv

H
)
→ 0.

If D is effective, these are further equivalent to:
(2.74.5) OD has depth ≥ 2 at every point of H ∩ Z.
(2.74.6) OD is S 2 along H.
(2.74.7) D ∩ H = Ddiv

H (as schemes).

Proof Since we assume that X is S 3 along H, (2) and (6) hold outside Z. Thus
(1)⇔ (2) and (5)⇔ (6).

Since OX(−D) is S 2, rH is an injection and an isomorphism outside Z. Since
OH

(
−Ddiv

H
)

is S 2 by definition, it is the S 2-hull of OX(−D)|H; see (9.3.4). Thus
rH is surjective ⇔ rH is an isomorphism ⇔ OX(−D)|H is S 2. This proves (2)
⇔ (3) while (3)⇔ (4) is clear.

Since OX has depth ≥ 3 at codimension ≥ 2 points of H, the sequence

0→ OX(−D)→ OX → OD → 0,

and an easy lemma (10.28) show that (5)⇔ (1).
Let s be a local equation of H. Then s is not a zero divisor on OD and

OD∩H = OD/(s). Thus (6)⇔ (7). �

Proposition 2.75 (Relative version) Using the notation and assumptions of
(2.73.2.a–c), let 0 ∈ T be a closed point and g ∈ T the generic point.
(2.75.1) The conditions (2.74.1–7) are equivalent for H = X0.
If f is projective and L is f -ample, then these are also equivalent to:
(2.75.2) χ

(
X0, Lm

0 (−Ddiv
0 )

)
= χ

(
Xg, Lm

g (−Dg)
)

for all m ∈ Z.
If dim(X0 ∩ Z) = 0, then these are further equivalent to:
(2.75.3) χ

(
X0,OX0 (−Ddiv

0 )
)

= χ
(
Xg,OXg

(
−Dg

))
.

Proof The first claim follows from (2.74). If f is projective and OX(−D) is flat
over T , then

χ
(
Xg, Lm

g (−Dg)
)

= χ
(
X0, Lm(−D)|X0

)
.

Hence the difference of the two sides in (2) is χ
(
X0, Lm

0 ⊗ Q
)
, where Q is the

cokernel of r0 : OX(−D)|X0 → OX0

(
−Ddiv

0
)
. Thus Q = 0 iff equality holds in

(2). If dim(X0 ∩ Z) = 0 then Q has 0-dimensional support, thus

χ
(
X0, Lm

0 ⊗ Q
)

= χ(X0,Q) = H0(X0,Q),

so, in this case, (2) is equivalent to (3). �
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108 One-Parameter Families

Note that (2.75) shows that one can go rather freely between effective
divisors and their ideal sheaves when studying restrictions. Much of the results
here on ideal sheaves generalize to arbitrary sheaves; these are worked out in
Sections 5.4 and 9.3.

The conditions (2.75) are all preserved by linear equivalence. However, they
are not preserved by sums of divisors.

Example 2.76 Consider a family of smooth quadrics Q ⊂ P3 × A1 degen-
erating to the quadric cone Q0. Take four families of lines Li,Mi such that
L1

0, L
2
0,M

1
0 ,M

2
0 are four distinct lines in Q0, L1

c , L2
c are in one family of lines

on Qc and M1
c , M2

c are in the other family for c , 0. Note that(
Q, 1

2 (L1 + L2 + M1 + M2)
)
→ A1

is a locally stable family.
Each of the four families of lines Li,Mi is a flat family of Weil divisors.
For pairs of lines, flatness is more complicated. L1 + L2 is not a flat family

(the flat limit has an embedded point at the vertex), but Li + M j is a flat family
for every i, j. The union of any three of them, for instance L1 +L2 + M1 is again
a flat family, and so is L1 + L2 + M1 + M2.

Notation 2.77 Let C be a regular, one-dimensional scheme and f : X → C a
flat, pure dimensional morphism with reduced, S 2 fibers. Let ∆ be a relative
Mumford R-divisor (4.68). From now on we use ∆c to denote the divisorial
fiber (instead of ∆div

c or ∆|div
Xc

as in (2.73)).
Thus the fiber of a pair (X,∆) over c ∈ C is denoted by (Xc,∆c).
This notation is harmless forR-divisors, but there is a potential for confusion

when used for prime divisors. Then we use the longer D|Xc for the scheme-
theoretic fiber and Ddiv

c or D|div
Xc

for the divisor-theoretic fiber.

2.78 The main source of divisors D and divisorial sheaves OX(D) that satisfy
the equivalent conditions of (2.75) is (11.20).

Let (X,∆) be an slc pair. The conditions of (2.75) are local on X, we can thus
assume that KX + ∆ ∼R 0. Then

mKX + bm∆c + {m∆} ∼R 0 (2.78.1)

for any m ∈ Z. If ∆ =
∑

aiDi and {mai} ≤ ai for every i, then {m∆} ≤ ∆, hence
−mKX − bm∆c satisfies the assumptions of (11.20).

Furthermore, if B ≤ b∆c is an effective Z-divisor, then we can also work with(
mKX + bm∆c − B

)
+

(
{m∆} + B

)
∼R 0. (2.78.2)
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If a1 + a2 = 1 and the ai are irrational, then {ma1} ≤ a1 and {ma2} ≤ a2 hold
only for m = 0, but (2.78.2) can be useful, relying on (11.50).

However, the numerical conditions {mai} ≤ ai hold in many other cases;
we list some of them in (2.79). These results are generalized to reduced base
schemes in (4.33). They influence the definition of various moduli theories in
Chapters 6 and 8.

Proposition 2.79 Let f : (X,∆ =
∑

aiDi) → C be a locally stable morphism
to a smooth curve over a field of characteristic 0 and c ∈ C a closed point. Let
D be a relative Mumford Z-divisor (4.68). Then

OX(D)|Xc ' OXc (Dc) := OXc

(
Ddiv

c
)

(∗)

in any of the following cases:
(2.79.1) D is Q-Cartier.
(2.79.2) ∆ = 0 and D ∼Q mKX/C for any m ∈ Z.
(2.79.3) m∆ is a Z-divisor and D ∼Q mKX/C + m∆.
(2.79.4) m∆ is a Z-divisor and D ∼Q (m + 1)KX/C + m∆.
(2.79.5) ∆ =

∑(
1 − 1

ri

)
Di for some ri ∈ N, and D ∼Q mKX/C + bm∆c for any

m ∈ Z.
(2.79.6) ∆ =

∑
ciDi, D ∼Q mKX/C + bm∆c and 1 − 1

m ≤ ci ≤ 1 for every i.
(2.79.7) The set {m ∈ N : (∗) holds for D ∼Q mKX/C +

∑
bmaicDi} has positive

density.
(2.79.8) In (1–6) we may replaced D by D − B for any effective relative

Mumford Z-divisor B ≤ b∆c.

Proof Let D be a Weil divisor on X as in (2.73.2–4). Assume that there is an
effective R-divisor ∆′ ≤ ∆ and an R-Cartier R-divisor L such that D ∼R ∆′ + L.
Then OX(−D) satisfies the equivalent conditions of (2.75) by (11.20).

For (1) we can use ∆′ = L = 0, in cases (1–3) we can take ∆′ = 0 and
L := −m

(
KX/C +∆

)
, and in case (4) we use ∆′ = ∆ and L := −(m+1)

(
KX/C +∆

)
.

For (5–6) we employ ∆′ = m∆−bm∆c and L := −m
(
KX/C +∆

)
. The assump-

tions on the coefficients of ∆ ensure that ∆′ ≤ ∆. (Note that if m∆ − bm∆c ≤ ∆

for every m then in fact every coefficient of ∆ is of the form 1 − 1
r for some

r ∈ N.) Claim (7) follows from (11.50).
Finally, if B ≤ b∆c then {m∆} + B ≤ ∆, giving (8). �

These results are close to being optimal. For instance, under the assumptions
of (2.79.3), if n is different from m and m + 1 then the two sheaves(

ω[n]
X/C(mD)

)∣∣∣
Xc

and ω[n]
Xc

(
mD|Xc

)
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are frequently different, see (2.41.3). In general, as shown by (2.44), even
the two sheaves

(
ω[m]

X/C
)∣∣∣

Xc
and ω[m]

Xc
can be different if ∆ , 0. However,

a considerable generalization of the cases (2.79.5–6) is proved in Section
2.7.

2.7 Boundary with Coefficients > 1
2

Consider a locally stable morphism f : (X,∆ =
∑

aiDi)→ C to a smooth curve
C. It is very tempting to think of each fiber

(
Xc,∆c

)
as a compound object(

Xc,Di
c : i ∈ I, ai : i ∈ I

)
consisting of the scheme Xc, the divisors Di

c, and their
coefficients ai. Two issues muddy up this simple picture.
• Different Di

c may have an irreducible component Ec in common. The def-
inition of a pair treats Ec as a divisor with coefficient

∑
i∈I coeffEc Di

c. The
individual Di

c do not seem to be part of the data any more.
• Should we just ignore the embedded points of Xc ∩ Di?

One could hope that the first is just a matter of bookkeeping, but this does
not seem to be the case, as shown by the examples (2.76) and (2.41). In both
cases the coefficients in ∆ were ≤ 1

2 .
The aim of this section is to show that these examples were optimal; these

complications do not occur if the coefficients in ∆ are all > 1
2 . We start with

the case when the coefficients are 1.
Given a locally stable map f : (X,∆) → C, usually the lc centers of

the fibers (Xc,∆c) do not form a flat family. Indeed, there are many cases
when the generic fiber is smooth, but a special fiber is not klt. However,
as we show next, the specialization of an lc center on the generic fiber
becomes a union of lc centers on a special fiber. Set theoretically, this follows
from adjunction (11.17) and (11.12.4), but now we prove this even scheme
theoretically.

Theorem 2.80 Let C be a smooth curve over a field of characteristic 0,
f : (X,∆) → C a locally stable morphism and Z ⊂ X any union of lc cen-
ters of (X,∆). Then f |Z : Z → C is flat with reduced fibers and the fiber Zc is a
union of lc centers of (Xc,∆c) for every c ∈ C.

Proof Z is reduced and every irreducible component of Z dominates C by
(2.15). Thus f |Z : Z → C is flat. We can write its fibers as Zc = Xc ∩ Z. Since
Xc + Z is a union of lc centers of (X, Xc + ∆), it is seminormal (11.12.2), so
Xc ∩ Z is reduced by (11.12.3). The last claim follows from (11.10.3). �

When the coefficients are in ( 1
2 , 1], we start with a simple result.
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2.81 (Restriction and rounding down) Let f : (X,∆ =
∑

i∈I aiDi) → C be a
locally stable family over a one-dimensional, regular scheme.

By (2.3),
(
Xc,∆c

)
is slc, hence every component of ∆c appears with

coefficient ≤ 1. For a divisor A ⊂ Xc,

1 ≥ coeffA ∆c =
∑

i∈Iai · coeffA Di
c.

Since the coeffA Di
c are natural numbers, we get the following properties.

(2.81.1) If ai >
1
2 , then every irreducible component of Di

c has multiplicity 1.
(2.81.2) If ai+a j > 1 and i , j, then the divisors Di

c and D j
c have no irreducible

components in common.
Next let Θ =

∑
j b jB j be an R-divisor on X. If every irreducible compo-

nent of B j
c has multiplicity 1, and the different restrictions have no irreducible

components in common, then combining (1–2) we get:

Claim 2.81.3 Assume that Supp Θ ⊂ Supp
(
∆>1/2) (11.1). Then coeff(Θ|H) ⊂

coeff Θ and bΘ|Hc = bΘc|H . �

Applying this to Θ = m∆ gives the following.

Corollary 2.81.4. If coeff ∆ ⊂ ( 1
2 , 1] then bm∆cc = bm∆cc for every m. �

The next result of Kollár (2014) solves the embedded point question when
all the occurring coefficients are > 1

2 . Examples (2.41 and 2.42) show that the
strict inequality is necessary.

Theorem 2.82 Let f : (X,∆ =
∑

i∈I aiDi) → C be a locally stable morphism
to a smooth curve over a field of characteristic 0. Let J ⊂ I be any subset such
that a j >

1
2 for every j ∈ J. Set DJ := ∪ j∈J D j. Then

(2.82.1) f |DJ : DJ → C is flat with reduced fibers,
(2.82.2) DJ is S 2 along every closed fiber, and
(2.82.3) OX(−DJ) is S 3 along every closed fiber.

Proof Note that each Di is a log center of (X,∆) (11.11) and mld(Di, X,∆) =

1 − ai by (11.8). Thus mld(DJ , X,∆) < 1
2 .

Let Xc be any fiber of f . Then (X, Xc + ∆) is slc and

mld(Di, X, Xc + ∆) = mld(Di, X,∆) < 1
2 ,

since none of the Di is contained in Xc. Each irreducible component of Xc is
a log canonical center of (X, Xc + ∆) (11.10), thus mld(Xc, X, Xc + ∆) = 0.
Therefore, mld(DJ , X, Xc + ∆) + mld(Xc, X, Xc + ∆) < 1

2 .
We can apply (11.12.3) to (X, Xc + ∆) with W = DJ and Z = Xc to conclude

that Xc ∩ DJ is reduced. This proves (1) which implies (2–3) by (2.75). �
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For the plurigenera, we have the following generalization of (2.79.5–6).

Theorem 2.83 (Kollár, 2018a) Let C be a smooth curve over a field of char-
acteristic 0 and f : (X,∆)→ C a locally stable morphism with normal generic
fiber. Assume that coeff ∆ ⊂ ( 1

2 , 1]. Then, for every c ∈ C and m ∈ Z,

ω[m]
X/C

(
bm∆c

)
|Xc ' ω

[m]
Xc

(
bm∆cc

)
. (2.83.1)

Complement 2.83.2 If coeff ∆ ⊂ [ 1
2 , 1] then (2.83.1) still holds, but needs a

more careful case analysis, see Kollár (2018a). Note also that bm∆cc = bm∆cc

if coeff ∆ ⊂ ( 1
2 , 1] by (2.81.3), but they may be different if some coefficients

equal 1
2 and m is odd.

Method of proof If mKX + bm∆c is Q-Cartier, then this follows from (2.79.1).
Thus we aim to construct a birational modification X′ → X such that mKX′ +

bm∆′c is Q-Cartier, and then descend from X′ to X.
More generally, let g : Y → X be a proper morphism of normal varieties,

F a coherent sheaf on Y , H ⊂ X a Cartier divisor, and HY := g∗H. Assum-
ing that F is S m along HY , we would like to understand when g∗F is S m

along H. If (the local equation of) HY is not a zero divisor on F, then the
sequence

0→ F(−HY )→ F → F|HY → 0 (2.83.3)

is exact. By push-forward we get the exact sequence

0→ g∗F(−HY )→ g∗F → g∗
(
F|HY

)
→ R1g∗F(−HY ), (2.83.4)

and R1g∗F(−HY ) ' OX(−H) ⊗ R1g∗F. Thus, by (10.28), g∗F is S m along H if
R1g∗F = 0, and g∗

(
F|HY

)
is S m−1 along H. (In many cases, for instance if g is

an isomorphism outside HY , these conditions are also necessary.)
We choose F = OX′

(
mKX′ + bm∆′c

)
. Then we need that

(5.a) R1g∗OX′
(
mKX′ + bm∆′c

)
= 0,

(5.b) g∗
(
OX′

(
mKX′ + bm∆′c

)
|HY

)
is S 2 along H, and

(5.c) g∗OX′
(
mKX′ + bm∆′c

)
' OX

(
mKX + bm∆c

)
.

For us, (5.c) will be easy to satisfy. Using a Kodaira-type vanishing theorem,
(5.a) needs some semipositivity condition on (m − 1)KX′ + bm∆′c. By contrast,
(11.61) suggests that (5.b) needs some negativity condition on mKX′ + bm∆′c.

The next result grew out of trying to satisfy the assumptions of both the
relative Kodaira-type vanishing theorem and (11.61). The proof of (2.83) is
then given in (2.85).
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Proposition 2.84 Let (X, S + ∆) be an lc pair where S is Q-Cartier. Let B be
a Weil Z-divisor that is Mumford along S (4.68) and Θ an effective R-divisor
such that
(2.84.1) B ∼R −Θ,
(2.84.2) Supp Θ ≤ Supp

(
∆(>1/2)), and

(2.84.3) bΘc ≤ b∆c.
Then OX(B) is S 3 along S .

Proof Assume first that bΘc= 0. A suitable cyclic cover, as in (11.25), reduces
us to the case when S is Cartier. We assume this from now on.

(X,∆) is also an lc pair and none of its lc centers are contained in S by
(11.10.7). If B is Q-Cartier then OX(B) is S 3 along S by (11.20), applied with
∆′ = 0.

If B is not Q-Cartier, we use (11.32) to obtain π : (X′, S ′ + ∆′)→ (X, S + ∆).
Note that B′ is Q-Cartier by (11.32.1), (X′, S ′ + ∆′) is lc and none of the lc

centers of (X′, S ′+∆′−εΘ′) are contained in Ex(π). In particular, S ′ is smooth
at the generic points of all exceptional divisors of πS := π|S ′ : S ′ → S . Thus
B′ is also Mumford along S ′, hence, as we proved at the beginning, OX′ (B′) is
S 3 along S ′. Thus the sequence

0→ OX′ (B′ − S ′)→OX′ (B′)→ OS ′
(
B′|S ′

)
→ 0 (2.84.4)

is exact by (2.74). Since R1π∗OX′ (B′) = 0 by (11.32.5), pushing (2.84.4)
forward and using (11.32.4) gives an exact sequence

0→ OX(B − S )→OX(B)→ (πS )∗OS ′
(
B′|S ′

)
→ 0. (2.84.5)

Again by (2.74), OX(B) is S 3 along S iff (πS )∗OS ′
(
B′|S ′

)
is S 2. The latter is

equivalent to

(πS )∗OS ′
(
B′|S ′

) ?
= OS

(
B|S

)
. (2.84.6)

Now we apply (11.61) with −N := B′|S ′+Θ′|S ′ , which is numerically πS -trivial.
This gives that

(πS )∗OS ′
(
B′|S ′ + bΘ′|S ′c

)
= OS

(
B|S

)
. (2.84.7)

We are done if bΘ′|S ′c = 0. This is where assumption (2) enters, in a seemingly
innocent way. Indeed, (2.81.3) guarantees that bΘ′|S ′c = bΘ′c|S ′ = 0 and bΘ′c =

0 by our assumption (3).
The proof is similar if bΘc , 0, see Kollár (2018a, prop.28). �

2.85 (Proof of 2.83) We may assume that X is affine and KX + ∆ ∼R 0. Pick a
fiber Xc and let x ∈ Xc be a point of codimension 1. Then either Xc and X are
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both smooth at x or Xc has a node and x < Supp ∆. Thus mKX + bm∆c is Cartier
at x, hence a general divisor B ∼ mKX + bm∆c is Mumford along Xc.

We apply (2.84) to B with Θ := m∆ − bm∆c. Thus

B ∼ mKX + bm∆c = m(KX + ∆) − Θ ∼R −Θ.

By assumption Θ ≤ d∆(>1/2)e = Supp ∆. So the assumptions of (2.84) are
satisfied and OX

(
mKX + bm∆c

)
' OX(B) is S 3 along Xc. By (2.75) this implies

(2.83). �

2.8 Local Stability in Codimension ≥ 3

In this section, we prove (2.7). If KX + D + ∆ is R-Cartier, then (11.17) implies
that f is locally stable. The R-divisor case is reduced to the Q-divisor case
using (11.47). So from now on we may assume that ∆ is a Q-divisor. We need
to show that KX + D + ∆ is Q-Cartier.

We discuss three, increasingly general cases. The last one, treated in
(2.88.5), implies (2.7).

2.86 Using the notation of (2.7), assume also that (Xc,DiffXc ∆) is slc. (This
holds for flat families of stable pairs.)

After localizing at a generic point of Zc, we may assume that Zc = {x} is a
point. Thus there is an m > 0 such that m(KX + D + ∆) is a Cartier divisor on
X \ {x}, whose restriction to Xc \ {x} extends to a Cartier divisor on Xc. Since
codimXc {x} ≥ 3, (2.91) implies that m(KX + D + ∆) is a Cartier divisor.

2.87 Here we assume (2.7.2) and apply (11.42) to
(
X̄c,Diff X̄c

∆
)
→ Xc. The

conclusion is that there is an slc pair (X′c,∆
′
c) and a finite morphism τ : X′c →

Xc, that is an isomorphism over Xc \ Zc.
If Xc is S 2, then X′c ' Xc, so (Xc,DiffXc ∆) is slc, as in (2.86).
If Xc is not S 2, then, after localizing, we may assume that τ is an isomor-

phism, except at a point x ∈ Xc. Since τ−1(x) ⊂ X′c is finite, m(KX′c + DiffX′c ∆)
is trivial in a neighborhood of τ−1(x) for some m > 0. Thus m(KXc + DiffXc ∆)
is trivial in a punctured neighborhood of x.

As before, m(KX + D + ∆) is in the kernel of Picloc(x, X)→ Picloc(x, Xc), but
(2.91) guarantees its triviality only if depthx Xc ≥ 2.

If depthx Xc = 1, then typically the kernel of Picloc(x, X) → Picloc(x, Xc) is
a positive dimensional vector space; see Bhatt and de Jong (2014, 1.14) and
Kollár (2016a, thm.7) for precise statements. Thus the kernel is p-torsion in
char p > 0, but torsion free in char 0.
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It is better to discuss this case in the more general setting of the following
conjecture, where Xc is replaced by D.

Conjecture 2.88 Let (X,D + ∆) be a demi-normal pair, where D is a reduced,
Q-Cartier divisor that is demi-normal in codimension 1, whose normalization(
D̄,DiffD̄ ∆

)
is lc. Let W ⊂ X be a closed subset such that codimD(W ∩D) ≥ 3

and
(
X \W, (D + ∆)X\W

)
is slc. Then the following are equivalent:

(2.88.1)
(
X,D + ∆

)
is slc in a neighborhood of D.

(2.88.2)
(
D,DiffD ∆

)
is slc.

(2.88.3)
(
D̄,DiffD̄ ∆

)
is lc.

The main difference between (2.7) and (2.88) is that in the latter we do not
assume that KX + D + ∆ is R-Cartier on X \ D.

Known implications Note that (1) ⇒ (2) ⇒ (3) follow from (11.17). If KX +

D + ∆ is R-Cartier, then (3) ⇒ (1) also follows from (11.17). The arguments
of (2.87) show that (3)⇒ (2) if D is S 2.

Thus it remains to show that if (3) holds, then KX + D + ∆ is R-Cartier. As
here, the R-divisor case is reduced to the Q-divisor case using (11.47), so from
now on we assume that ∆ is a Q-divisor.

Special case 2.88.5 Assume that KX + D + ∆ is R-Cartier on X \ D. Applying
(5.41) gives a small, birational morphism f : Y → X such that DY := f −1(D)→
D is birational, f

(
Ex( f )

)
⊂ D, and it has codimension ≥ 3. There are two ways

to get a contradiction from this.
First, note that the relative canonical divisor of DY/D̄ is ample and is

supported on the exceptional divisor of DY → D. This cannot happen by (2.90).
Second, we use reduction to char p as in Bhatt and de Jong (2014) or Kollár

and Mori (1998, p.14). In char p > 0, Bhatt and de Jong (2014, 1.14) shows
that KXp + Dp + ∆p is Q-Cartier. By itself, this does not imply that KX + D + ∆

is Q-Cartier.
However, if KX + D + ∆ is not Q-Cartier, then f : Y → X is not an isomor-

phism. So fp : Yp → Xp is also not an isomorphism. By (2.89) this implies that
KXp + Dp + ∆p is not Q-Cartier, a contradiction. �

Special case 2.88.6 Assume that we are in a situation where the conclusion of
(5.41) holds and X is a variety over a field of char 0.

As before, (5.41) gives a small, birational morphism f : Y → X such that
f
(
Ex( f )

)
∩ D has codimension ≥ 3. The relative canonical divisor of DY/D̄ is

ample and is supported on the exceptional divisor of DY → D. This gives a
contradiction using (2.90). �
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Lemma 2.89 Let π : Y → X be a proper birational morphism of normal
schemes. Assume that Z := Ex(π) ⊂ Y has codimension ≥ 2. Let MY be a
π-ample line bundle on Y and MX a line bundle on X such that MY |Y\Z '

π∗MX |Y\Z . Then π is an isomorphism.

Proof Since Z has codimension ≥ 2, the assumed isomorphism extends to
MY ' π

∗MX . If π contracts any curve C, then 0 < (C · MY ) = (C · π∗MX) = 0
gives a contradiction. �

We have used the following two theorems. The methods of the proofs would
take us in other directions, so we give only some comments and references.

Proposition 2.90 (Kollár, 2013a, Prop.22) Let f : Y → X be a projective,
birational morphism of varieties over a field of char 0. Let D ⊂ X be a
Cartier divisor. Assume that f −1(D) → D is birational and there is a non-
zero (but not necessarily effective) Q-Cartier divisor E on f −1(D) such that
dim f (Supp E) ≤ dim D − 3. Then Ex( f ) has codimension 1 in Y.

Outline of proof The argument is topological over C. Since the claim is
algebraic, it would be very good to find a proof that works for arbitrary
schemes.

We may assume that x := f (Supp E) is a point. Let V denote an open neigh-
borhood of f −1(x) ⊂ f −1(D) that retracts to f −1(x). The assumptions imply
that, for n := dim D, the cup product pairing

H2(V, ∂V,Q) × H2n−2(V,Q)→ H2n(V, ∂V,Q) (2.90.1)

is nonzero. If Ex( f ) has codimension ≥ 2, then f is small over a small defor-
mation of D. This can be used to compute that (2.90.1) is zero, giving a
contradiction. �

We have the following Grothendieck–Lefschetz-type theorem, where, for a
pointed scheme (x, X), we set Picloc(x, X) := Pic

(
SpecX Ox,X \ {x}

)
.

Theorem 2.91 Let (x ∈ X) be an excellent, local scheme of pure dimension
≥ 4 such that depthx OX ≥ 3. Let x ∈ D ⊂ X be a Cartier divisor. Then we
have an injective restriction map

rX
D : Picloc(x, X) ↪→ Picloc(x,D). (2.91.1)

The original version (Grothendieck, 1968, XI.3.16), applies if depthx OX ≥

4. The current form was conjectured in Kollár (2013a) and proved there in the
lc case. After Bhatt and de Jong (2014) and Kollár (2016a), the most general
version is (Stacks, 2022, tag 0F2B).
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The next results are very useful when dealing with Cartier divisors.

2.92 (Flat maps and Cartier divisors) Let p : X → Y be a morphism and D
an effective Cartier divisor on Y . Under mild conditions p∗D is an effective
Cartier divisor on Y . The converse also holds for flat morphisms.

Claim 2.92.1 Let (R,mR) → (S ,mS ) be a flat extension of local rings and
IR ⊂ R an ideal. Then IR is principal iff IRS is principal.

Proof One direction is clear. Conversely, assume that IRS is principal, thus
IRS/mS IRS ' S/mS . Let r1, . . . , rn be generators of IR. They also generate IRS ,
hence at least one of them, say r1, is not contained in mS IRS . Thus (r1) ⊂ IR is
a sub-ideal such that r1S = IRS . Since (R,mR)→ (S ,mS ) is faithfully flat, this
implies that (r1) = IR. �

Pushing forward Cartier divisors is more problematic. For example, consider
the natural map P1

Q(i) → P
1
Q. The points (1:1) and (i:1) are linearly equivalent,

but their scheme-theoretic images have different degrees.
It is better to work with line bundles. Let π : X → Y be a finite, flat morphism

of degree d. Let L be a line bundle on X. There are two natural ways of getting a
line bundle on Y: the determinant of π∗L and the norm, denoted by normX/Y (L)
as in Stacks (2022, tag 0BCX). The two are related by

det(π∗L) ' (normX/Y L) ⊗Y det(π∗OX).

The norm gives a group homomorphism normX/Y : Pic(X)→ Pic(Y) and there
is a natural isomorphism normX/Y (π∗M) ' Md for any line bundle M on Y .

Lemma 2.93 (Grothendieck, 1968, XIII.2.1) Let (x ∈ X) be a Noetherian,
local scheme and x ∈ D ⊂ X the support of a Cartier divisor. Assume that
X \ Z is connected for every closed subset Z of dimension ≤ i + 1. Then D \ Z
is connected for every closed subset Z of dimension ≤ i. �
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