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Abstract

In this paper, first, we study the existence of the positive solutions of the nonlinear elliptic equations in
unbounded domains. The existence is affected by the properties of the geometry and the topology of the
domain. We assert that if there exists a (PS)C-sequence with c belonging to a suitable interval depending
by the equation, then a ground state solution and a positive higher energy solution exist, too. Next, we
study the upper half strip with a hole. In this case, the ground state solution does not exist, however there
exists at least a positive higher energy solution.
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1. Introduction

In this paper we study the following problem:

(1.1)

— Au + u=f(x,u) in Q,

M > 0 infi ,

where Q c RN is an unbounded domain with smooth boundary d£l,f : £2 x R -+ R

is of class C1 and satisfies the following conditions:

(fl) / (x, y) = o(y) near y = 0 uniformly in JC € £2.

(f2) There exists a, > 0 such that \fy(x, y)\ < a^l + \y\p~l) for all x 6 Q, and

y e\SL, where 1 < p < (N + 2)/(N - 2) if W > 2 and 1 < p < oo if N = 1, 2.
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(f3) There exists 9 > 2 such that 0 < 6F(x, y) < f (x,y)y for all x eH and
y 6 R\{0}, where F(x, y) = fif(x, x)dz.

(f4) f(x,ty)y/t is a strictly increasing function of r > 0 for all x e £2 and
y e K\{0).

Since we will only look for positive solutions of (1.1), it is convenient to define
/ (x, u) = 0 for u < 0 and* e £2.

Associated with the problem (1.1) is the energy functional / denned by

«)=4 U\Vu\2 + u2)dx- I1 Jn Jn
F{x,u)dx.

And/ 6 Cl(£
It is well known that the solutions of (1.1) are the critical points of the energy

functional /. Moreover, standard arguments from elliptic regularity theory show that
critical points of / on //J(£2) are classical solutions of (1.1). However, when Q. is
an unbounded domain the existence of a solution becomes a difficult problem, due to
the embedding j : //0" (Q) —*• Lp (£2) which is not compact. The lack of compactness
implies that / does not satisfy the Palais-Smale condition, and the standard variational
techniques cannot be applied to this problem, so new analyses are needed to solve
such problems.

Denote by

Vu\2 + u2)dx= J f(x,u)udx\,

= inf /(«).

Looking for solutions of (1.1) is equivalent to find critical points of / constrained to
lie upon the manifold M(Q). As a consequence of Ekeland's variational principle,
there exists a sequence {uk} C M(£2) such that

/ ( H t ) - • « „ ( « ) , /'(«*)-> 0 in H~](Q).

Although aM (Q) does not guarantee the existence of a critical point u e HQ(Q) with
I (u) — aM(£2), we can analyze Palais-Smale sequences to justify whether there exist
positive solutions of (1.1) or not. New analysis is needed for solving such problems
which will be described as follows. Let

Qk = Q n fif(O); where BN
k (0) = \x e RN \ \\x \\ < k],

For v e //o'(£2*+i), it can be identified with an element of Hg(£lk) by extending v to
be zero in f2t\f2,t+i.

In the following definitions, we abbreviate Palais-Smale by (PS).
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[3] Multiplicity results for some nonlinear elliptic problems 249

DEFINITION 1.1. (1) For c e R, a sequence {uk} C H£(Q) is a (PS)c-sequence if
/ («*)-• c and 7 ' (M 4 ) -»-0 i n / / - ' ( « ) ;
(2) c € I is a (PS)-value if there exists a (P5)c-sequence;
(3) / satisfies the (PS) c-condition if every (P5)c-sequence for / contains a conver-

gent subsequence.

This paper is organized as follows. In Section 2, ®(Q.) is the set of all the positive
(P5)-values. In particular, ®(Q.) contains all the positive critical values of /. Let
S(Q) be the infimum of 0(£2), it will be shown that &(Q.) is a nonempty set, 8(Q) is
a positive number, and the optimal lower bound for ®(Q) is aM(£2) when (fl)-(f4)
are satisfied, that is, <5(£2) = aM(£2).

If u is a nontrivial solution of (1.1), then multiplying (1.1) by u and integrating by
parts shows u e M(&). For any u e //0'(£2)\{0} and t > 0, let hu{t) - I(tu). By
(flHf3), we have hu(0) = 0, hu(t) > 0 for t small, and hu(t) < 0 for t large. So
u = 0 is a local minimum but not a global minimum of /. Therefore, max,>0 hu(t)
exists and is achieved at tu > 0, we get

K(tu) = 0 = rJ|M||2wl(n) - [f(x, tuu)udx
Jn

which implies tuu e M(Q). Moreover by (f4), tu is the unique value of t > 0 such
that tuu € M(£2). This implies Af (£2) is radially homeomorphic to the unit ball in

In Section 3, we assert that if aw(J2) < aM(Qk) for some large k e M, then there
exists a ground state solution u of (1.1) with /(M) = aM(fi). And if there exists a
(PS)c-sequence with aw(S2) < c < O<M(^*) for some large k eH, then there exist at
least two positive solutions of (1.1), that is, a ground state solution u and a positive
higher energy solution.

In Section 4, we describe the (PS)-conditions and give a necessary and sufficient
conditions in Q for which / satisfies the (PS)aM(n)-condition.

In the final section, the domain is the upper half strip with a hole. For simplicity,
we consider the case where / does not depend on x, so the problem is as follows:

(1.2)

—Au + u—f(u) in A,

u > 0 in A,

u e //O'(A),

where A is the upper half strip with a hole. Denote by

Ar = { ( £ , » j ) e R w - 1 x R | | f | < r } ,

Ar
a = {(£, r]) e Ar | rj > a}, where a e
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For the strip domain Ar, Chen [2] modified the results of Lions [6] and asserted
that there exists a ground state solution of (1.2) if A — Ar. Chen-Chen-Wang
[3] established its asymptotic behaviour and showed that the solution is spherically
symmetric in £ and axially symmetric in r).

For the upper half strip domain Ar
0 (an Esteban-Lions domain), Esteban-Lions [5]

asserted that there does not exist any solution of (1.2) if A is an Esteban-Lions domain.
The Esteban-Lions domain is defined as follows:

DEFINITION 1.2. Q c K* is an Esteban-Lions domain if there exists x e ^w>
||X II = 1 such that n(x) ' X > 0 , and n{x) • x ^ 0 on 9!3, where n(x) denotes the unit
outward normal to dQ at the point x.

An interesting question is whether there exists a positive higher energy solution of
(1.2) if A is an Esteban-Lions domain with a hole. The question seems to be quite
challenging and hard to give a complete answer. We had known that Pohozaev [7]
proved that the Dirichlet problem - AM + M<w+2>/ev-2) = o in a ball does not have any
nontrivial solution, but Coron [4] proved that there exists a positive solution if we take
some small ball out. W h e n / (M) = up, Benci-Cerami [1] asserted that problem (1.2),
if A is an exterior domain, admits a positive higher energy solution. We use a new
method, different from Benci-Cerami [1], to prove that if there exists a (P5)c-sequence
with c > 0 and c £ @(Am) for some m e H, then there exists at least a positive higher
energy solution of (1.2) if A is the upper half strip with a hole.

2. The (PS)-value

We will introduce some preliminaries to analyze the behaviour of Palais-Smale
sequence and study the set ©(£2) of all the positive (PS)-values.

LEMMA 2.1. / / {uk} is a (PS)c-sequence, then there exists a constant c > 0 such
that || MiH H\(jj) < c for each k, and c > 0. If c > 0, then there exist a subsequence,
still denoted by [uk}, a constant c1 > 0, such that || Mt || /y»cn> > d.

PROOF. By (f3) and if it is large, then

\ ) , uk)

/ dx
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Thus ||«t||//i(n) < c for each k. Then for large k, we have (/'(«*)> "*) = o ( l ) and

c + o(l) = . y..K,

so c > 0.
Suppose that c > 0. If lim^oo ||Ki||wi(n) = 0, then for large k, I(uk) = o(l).

Hence contradiction with the assumption that c > 0. Thus there exist a subsequence,
still denoted by {uk}, a constant d > 0, such that ||Ht|| H'(tt) -i <?• d

LEMMA 2.2. For any M 6 M(Q), there exists a constant K > 0 iwc/i //iaf I (u) >
) > 0.

PROOF. By (f 1) and (f2), for any e > 0 there exists a constant Ce > 0 such that

(2.1) I/(*,K)I<6|K| + Q| l«r

We take s = 1/2, and by the Sobolev inequality,

0 = (/'(«), «) = ||«||2H1(n) - / / ( * , «)ii<fc

2 1 ) dx

thus ||it||j/i(Q) > ( 2 A : ) ( - 1 ) ^ - 1 ) , and then by (f3),

= l:\\u\\2
HHn)- ( F{x,u)dx>\\\u\\1

HHn)-\ I f(x,u)udx

- . P

Notice that S(Q), the infimum of all positive (PS)-values, is a positive number.

This can be proved as follows. By Stuart [8], orw(£2) is a positive ( P S ^ ^ - v a l u e , so

6 (ft) is not empty and 8 (Q) < a M ( ^ ) -

For an arbitrary sequence {uk} bounded in L2(RN), we introduce the concentration

functions of \uk\
2,

<&k(t) - sup /
zeR" JB?

\uk\
2

defined for t > 0.
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LEMMA 2.3. Let [uk] be bounded in H^R") and assume that for some /b > 0,
**0b) -> 0. Then uk - • 0 rtrongZy in Lq(R.N)for all 2 < q < 2* = 2N/(N - 2). / /
in addition uk satisfies (/'(«*), uk) —> 0, then uk -> 0 strongly in Hl(W).

PROOF. We divide the proof into two steps.
Step 1. Decompose RN into unit cubes Fo = {P/}^i of length 1 with vertex at lattice
points. Continuing to bisect the cubes to obtain cubes Fm = {P/"}", of length l/2m

for each P/ \ Let m0 satisfy -JTi(\/2mo) < to. For each i, let B,m° be a ball with center
at the same as that of P,m° and of radius fo in R". Then P™° c B,m°, Rw = U~i K°^
and {P,m°}~, are nonoverlapping. Write P, = P™0. If we take q and r such that
2 < ̂  < r < 2*, we can write, using the Holder inequality and Sobolev imbedding,

t (q-2)/(r-2)

\Uk\"

r(9-2)/2(r-2)

Since limr^^CrCg — 2)/2(r — 2)) = q/2 > 1, we may choose r such that 5
(r(q - 2)/2(r - 2)) > 1.

00 / r sr(q-2)/2(r-2)

(/ )

Therefore, uk - • 0 strongly in L^R^) for all 2 < ̂  < 2* = 2JV/(/V - 2)
Step 2. If, in addition, uk satisfies (I'(uk), uk) -*• 0, then for large k,
fvfix, uk)ukdx + o(l). By (2.1), if* is large,
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or by Step 1,

Hence uk -> 0 strongly in/ / 1 (R"). D

LEMMA 2.4. Le/ {M*} £>e a (PS) c-sequence with c > 0. 77ien fAere exists a sequence
[tk] in R+ such that {tkuk} C M(Q), [tk] is bounded, and for large k, aM(Q) <

PROOF. Let {uk} be a (PS)c-sequence with c > 0, thus for large £, «t •£ 0, and
Mt A 0 strongly in Hl(RN), where uk is identified with an element of Hl(RN)
by extending uk to be zero on R"\£2, then by Lemma 2.3, there exist a sequence
{z*} C RN and et > 0 such that uk •£ 0 in B^2(z*), and

Hence there exist s2 > 0, £3 > 0, such that

\Dk\ = \{x€ BN
x/1(zk) | uk{x) > £ 2 } | > e3,

where |D*| denotes the Lebesgue measure of the set Dk.
For M,t ^ 0, by (f4), there exists a unique positive number tk such that tkuk e M(Q.),

then

Jn
f(x,tkuk)uk

Either rt < 1 or ^ > 1 in which case by (f3), F(x, ty)/te is a nondecreasing function
of t > 0 for all X 6 fi and y 6 R\{0}, then

'tll"tll2
w.(n) = / / ( * . huk)tkukdx >6 I F(x, tkuk)dx >6 I t9

kF(x, uk)dx.

Consequently by Lemma 2.1,

te-2 ^

JnF(x,uk)dx ~U JDkF(x,uk)dx
c2 ._, a2

in x e 5 : F(x, £2))'
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thus [tk] must be bounded.

I(tkuk)-I(uk)

= ~'*ll"*lltf'(n) ~ / F(x,tkuk)dx - -\\uk\\
2

HHa)+ I F(x,uk)dx
* Jn *• Jn

= Ut2
k -I) f f(x, uk)uk dx- I Fix, tkuk) dx+ f F(x, uk) dx + oil)

*• Jn Jn Jn

= g(tk) + o(l),

whereg(r) = ((t2-l)/2) fnf (x, uk)ukdx-fn Fix, tuk)dx+fn F(x, uk)dx. Since

git) = t / fix, uk)ukdx - f i x , tuk)ukdx

(

it follows from (f4) that g'it) > 0 if t e (0,1) and g'(r) < 0 if t e (1, oo). Thus
= max,elo,oo) g{t), g(l) = 0, and for large k,

Iitkuk) - Huk) = gitk) + oil) < gil) + oil) = oil).

Hence if A; is large, aMiQ.) < Iitkuk) < c+ oil). •

Next, we prove that an optimal lower bound for 0(£2) is aMi$l) when (fl)-(f4) are
satisfied.

THEOREM 2.5. / / (fl)-(f4) hold, then 5 (ft) = aMiQ).

PROOF. It suffices to show (5(£2) > aM(£2), since the reversed inequality is always
true. Let {uk} be a (P5)c-sequence with c > 0, and by Lemma 2.4, there exists tk e
(0, oo), such that tkuk e M(ft), {4} is bounded, and for large k, aMiQ) < litkuk) <
c + oil). Since c is arbitrary positive (P5)-value, it follows that aM(£2) < &i£l). D

3. Existence of solutions

In this section, we show that if aM(£2) < uMiQk) for some large k e N, then there
exists a ground state solution u of (1.1) with /(u) = aMiQ.), and if there exists a
(/)5)r-sequence with aw(£2) < c < aMiQk) for some large k € N, then there exist at
least two positive solutions of (1.1), that is, a ground state solution u and a positive
higher energy solution.

First, we state some properties of Palais-Smale sequences.
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[9] Multiplicity results for some nonlinear elliptic problems 255

LEMMA 3.1. Let [uk] be a (PS)-sequence for I satisfying uk —*• u weakly in HQ(Q).

Then

(1) u is a weak solution of (1.1).
(2) Ifu^tk 0, then u is a positive solution of (1.1).
(3) lf{uk) is a (PS)au(n)-sequencefor I satisfying uk -*• u weakly in H^iQ.) and u

^ 0, then Uk —> u strongly in //0' (£2).

PROOF. (1) Take a subsequence {uk} such that uk -^ u weakly in H${Q.), a.e. in £1,

and strongly in Lq
loc{Sl) for 1 < q < 2*. Given <p e C™(Q), we get

/ Vuk • V</> ->• / VM • V0 , I uk<t> ->• / u(p,
Jn Jn Jn Jn

and by (f2), \f (x, uk) - f (x, u)\ \<p\ < a , ( |m | + \uk\<> + \u\ + |« | p ) |0 | , then by the
generalization of the Lebesgue dominated convergence theorem, we have

f f(x,
Jn

f(x,uk)4>-> f f(x,u)4>.
Jn

Hence (/'(«),</>) = l imi^0 0(/ ' («t) , 4>) = 0. Since C™(Q) is dense in H*(Q), we
have l'{u) = 0. Therefore u is a weak solution of (1.1).
(2) If u is a nonzero solution of (1.1), then u e M(Q). By elliptic regularity, any
critical point of / is a classical solution of (1.1). Let u~(x) — max(—u(x), 0). Since

0 = (/'(«), a") = / V « - V I I - + I UU~- f f(x,u)u
Jn Jn Jn

hence u > 0. By the maximum principle, u > 0 in £2.

(3) By Part (2), u e M(£2) and applying Fatou's lemma yields

= -\\u-\\2
HHn),

dM 2 - / F(x,u)dx
Jn

= - I f(x, u)udx — I F(x, u) dx
2 Jn Jn

< liminf / I -f(x, uk)uk - Fix, uk) ) dx = lim I(uk) = a

or

(3.1) /(M) = a M ( t t ) .

Set p t = ut - u to get p t -»• 0 weakly in HQ(Q), a.e. in Q, and strongly in LJ7
OC(Q)

where 1 < q < 2*, then for large k, we have

(3.2) WPkCm = W^\\2
HHn) - ll«H2

w,
w , ( n )
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Since u e H^(Q), by (fl) and (f2), for any e > 0, there exists r > 0 such that for

(3.3) f \ u \ 2 < s , f \ u \ p + l < s , [ \ F ( x , u ) \ < e .
Jn, Jn, Jn,

By the generalization of the Lebesgue dominated convergence theorem, we have

/ F(x,uk)-f f F(x,u) and / F(x,pk)->0.
Jn, Jn, Jn,

Then

(3.4) I \F(x, Pk) - F(x, uk) + F{x,u)\< E.
Jn,

Now by the Holder inequality and the fact that Uptllwun) and || uk\\ wi(n) are bounded,
we have

(3.5) ( \F(x,pk)-F(x,uk)\
Jn,

= / \f(x,tpk + (l-t)uk)\\u\ f o r s o m e O < f < l
Jn,

S C I (\pk\ + \uk\ + \pk\
P + |«t|P)|M|

Jn,

< ce.

Therefore by (3.3), (3.4), and (3.5), for large k,

(3.6) f F(x,pk) = f F(x, uk) - I F(x, u) + o(l).
Jn Jn Jn

By (3.1), (3.2), and (3.6), for large k,

Opt) = /(«*) - / ( « ) + o(l) = aM(£l) - aM{Q) + o(l) = o(l),

and it follows that

(3.7) \\Pk\\
2

m{Q) = 2 f F(x,Pk)dx.
Jn

For <p € Cr°°(n), by (f2), \f(x, uk - u)<f>\ < ax(\uk - u\ + \uk - «|")I0I. then by
the generalization of the Lebesgue dominated convergence theorem again, we have
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Jaf{x, uk - u)(j> -> 0. Since Cf(Q) is dense in //o '(^), / ( * , uk - u) - • 0 in
H~X{Q.). Similarly,/ (x, uk) -f (x, u) -» 0 in i / " 1 ^ ) . So for large k, we have

= -Apk+pk-f(x,pk) = -A(uk-u) + (uk- u) -f(x,uk - u)

= (-Auk + uk-f(x, iit)) - (- AM + u - f (x, «))

- (/ (x, uk - u) - f (x, uk) +f (x, u))

and it follows that

(3.8) \\Pk\\2
H>(n) = I f{x,Pk)Pkdx.

Jn

From (f3), (3.7), and (3.8), for large k, we have ||pt||//i(n) = o(l) , that is, uk -> u
strongly in H£(Q). D

We shall see what will happen when u is zero. Let

ak = a n sf (0), nt = n\Bjf (0).

LEMMA 3.2. L«f {M^} fee a {PS)c-sequence with c > 0. Tften

(1) //• (fl)—(f3) Ao/d, suppose that uk -^ 0 wea&/>> m HQ(£1), then there exists a
subsequence {uk} such that for Q2k, ifk is large,

I \uk\
q=o(l) for each \<q <2*.

(2) In addition to (fl)-(f3), that (f4) satisfied, suppose there exists a subsequence,
still denoted by {uk}, such that for £22*. ifk is large,

I \uk\"=o(l) for each \<q <2*.

Then we have c > aM{^lk)for all large k.
(3) / / (fl)-(f4) hold, suppose that uk -± 0 weakly in H^{Q.), then c > aM(Qk) for

all large k.

PROOF. (1) Since uk -^ 0 weakly in //o'(£2), a.e. in Q, and strongly in L
where 1 < q < 2*. Thus for each m e N, l im^oo/^ \uk\

q = 0. We can take a
subsequence [ukm] such that fQ \ukm \q < \/m. Therefore, there exists a subsequence,
still denoted by [uk], such that for £22t, if k is large, fQ \uk\

q — o{\) for each
1 < q < 2*.
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(2) Let {uk} be a (P5)c-sequence, so for large it,

- /
Jn

Hw'<n>= f fOc,
Jn

Let f € C°°([0, oo)) such that

F(x,uk)dx =

ll«*Hw'<n>= f fOc,uk)ukdx+o(l).
J

f 0 for r € [0, 1];
[1 for r e [2,oo).

Let &(*) = f (|x|/ifc). Since [^uk) is bounded in H^(Ci), for large it,

(3.9) o(l) = (/'(u4), ?*«*)

= /" (?*l V«t|2 + 2?tiitVft • VMt + Sliftdx - f f(x, uk)tfuk dx.
Jn Jn

Note that |V^t(jc)| < c/k, if it is large, /O a |«t|« = o(l) for each 1 < q < 2*, so for
large k,

(3.10) /" &inV?t • V«t = o(l),

and by (f2), / n / (JC, «i)«i c?* = o(l). Then we have

(3.11) f f(x,uk)tiukdx= f f(x, uk)ukdx + 2

Jn Jn

again by (f2),

(3.12) I f(x,Skuk)Skukdx= [ f(x,uk)Uukdx ()
Jn Jn

and

(3.13) f F(x,tkuk)dx
Jn

= f(F(x,t;kuk) - F{x, uk))dx + f F{x, uk)dx
Jn Jn

= I fix, (I- t)uk + tl;kuk){!;kuk - uk)dx + I F{x, uk)dx
Jn,j, Jn

= / F{x, uk)dx +o(l), where 0 < t < 1.
Jn

https://doi.org/10.1017/S1446788700008934 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008934


[13] Multiplicity results for some nonlinear elliptic problems 259

For large k, substituting (3.10), (3.11) into (3.9) yields

(3.14) / <*2(|V«*|2 + u2) = ||u*||2w,(n) + 0(1).
Jn

Then by (3.13) and (3.14), for large k,

(3.15) /(?*«*) f
*• Jn

- / F(x,$kuk)dx
Jn

h\»k\\2HH0) ~ f F(x,uk)dx+o(l)1 Jn

By (3.14), (3.12), for large Jfc,

(3.16) (/'(&«*),&«*) = ll?tMtlltf.(0) - f f(x,SkUk)Stukdx
Jn

Let vk = i;kuk € H<$(Qk). For vk # 0, by (3.15), (3.16) and Lemma 2.4, there exists
tk € (0, oo) such that tkvk e M{Q.k), {tk} is bounded, and for large k, aM(£lk) <
I(hvk) < I(vk) + o(l) = c + o( l ) . So we have aM(Qk) < c for all large k.
(3) It follows immediately from Step (1) and Step (2). •

Now we will prove the existence of a ground state solution and a positive higher
energy solution of (1.1).

THEOREM 3.3. Suppose (fl)—(f4) hold, there exists a ground state solution u of
(1.1) with I(u) = aM(£2) ifaM(Sl) < aM(Qk) for some large k e N.

PROOF. AS a consequence of Ekeland's variational principle, there exists a sequence
{uk} c M(£2) which weakly converges to u, such that {uk} is a (P5)aM(n)-sequence. If
aM(£l) < aM (Qk) for some large/: e N,by Lemma 3.2, replacing cbyaM(Q), u ^ 0,
andthenby Lemma 3.1, u > 0, uk —> « strongly in / / J ^ ) , and / (M) = aM(£2). D

THEOREM 3.4. / / (f l)-(f4) hold, suppose there exists a (PS)c-sequence with
aM(£l) < c < aM(£lk) for some large k 6 N, then there exists a positive higher
energy solution v of (1.1) with c > I{v) > a

PROOF. Let {vk} c HQ(Q) be a (P5)r-sequence with (XM(Q) < c < aM(Slk) for
some large k e N. Take a subsequence [vk] such that u* —*• v weakly in H^(Q), a.e.
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in £2, and strongly in Lq
loc(Q-) where 1 < q < 2*. By Lemma 3.2, v ^ 0, then by

Lemma 3.1, v is a positive solution of (1.1) with c > I(v) > aM(^l).
Suppose I(v) = aM(£l). From Theorem 3.3, I(u) = aM(Q)- Setting wk = vk — v

and following the same line of proof as in Lemma 3.1 (3), for large k, we have

I(wk) = I(vk) - I(v) + o(l) = c -

so {u)t} is a (/>5)c_aM(jj)-sequence. Since 0 < c — aM(fl) < aM(£2jt) for some large
k e N, by Lemma 3.2 (3), it follows that wk -*• u; ^ 0, a contradiction. D

4. The (PS)-conditions

Let A2 be a smooth domain in K^ and Ai be a closed subset of A2, then the relation
between a w (A 2 ) and a^CAO is given by the following theorem.

THEOREM 4.1. Let Ai C A2. If the functional I satisfies the (PS)au(Al)-condition,
thenaM(A2) < a M (A,) .

PROOF. A] C A2, so aM(A2) < a w (Ai ) . Suppose aM(A2) = aM(Ai) . As a
consequence of Ekeland's variational principle, there exists a sequence {uk} C M(A0
such that /(«*) -»• a M (Ai) , / ' (« t ) -> 0 in H~\Ai). Since / satisfies the (P5)aw(Al)-
condition, there exist a subsequence {wt}, and M e HQ(A]), satisfying « t -> u
strongly in //O'(A|). Since a w ( A t ) > 0, « ^ 0, then by Lemma 3.1, u > 0 with
/(w) = a M (Ai) , / ' («) = 0. And / («) = a w (A 2 ) = infu e M ( A 2 )/(«). It is known
that every minimizer of a w (A 2 ) is a critical point of / , therefore u solves (1.1) if
Q — A2. By Lemma 3.1, u > 0 in A2. This contradicts u e //o'(Ai). Therefore,

D

Then we can verify that the (PS)aM(n)-condition is satisfied.

THEOREM 4.2. / / (f 1 )-(f4) hold, then I satisfies the {PS)aMinycondition if and only

ifaM(Q) < H i n d ^

PROOF. (1) Suppose c*M(£2) < l i m t _ o o a w ( ^ t ) , then aw(f i ) < aM(fi t ) for some
large k e M. Let {uk} be a (PS)ajf(n)-sequence satisfying uk -^ u weakly in //o'(£2).
By Lemma 3.2, M # 0, then by Lemma 3.1, uk -> u strongly in HQ(£1). We conclude
that / satisfies the (PS^^-condi t ion .

(2) We argue indirectly. Suppose arM(£2) = limt_>(X)aM(^t), then aM(Q) =
aM(Qk) for all k e N. We claim that / does not satisfy the (f\S)aM(n)-condition in Q.
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In fact, suppose on the contrary, / satisfies the (PS)aM(n)-condition in fi. Then we
claim that /1//0>(nt) satisfies the (PS)aM(n)-condition in £2k for all k e N. In fact, let
{«„} C H*(nk) c H^(Si) satisfy I(un) -> aM(&k), / '(«„) -* Oin H~l(ak). Since /
satisfies the (PS)aM(n)-condition in Q, there exist a subsequence {«„}, and u e / / o ' (^)
satisfying un -> M strongly in / /o (^) - that is, uk -* u strongly in / / o ' ( ^ ) . Therefore
7|Woi(nt) satisfies the (P5)aw(nt)-condition. By Theorem 4.1, aM(Q) < aM(£lk). This
is a contradiction. •

5. Upper half strip with a hole

In this section, the domain is the upper half strip with a hole. For simplicity, we
consider the case where / does not depend on x, so the problem is as follows:

(5.1)

—Au + u=f(u) in A,

u > 0 in A,

u € //O'(A),

where A = Ar
0\D, D c B"((0, rj0)) C Ar

0, and r)0 is sufficiently large, p is sufficiently
small, and they are suitably chosen. Let

= {(?, r,) 6 R"-1 x R | HI < r, \r, - IJO| < * } ,

THEOREM 5.1. (1) aM(A) = aM(Ar).
(2) The functional I does not satisfy the (PS)au(AyCondition, and the only possible

solutions of (5.1) are higher energy solutions.

PROOF. (1) Let w e H^(Ar) be the positive solution of (5.1) if A = Ar with
I(w) — aM(Ar). Take {(0, r)n)} C A, rn —> oo such that QrA1!") C A. Consider the
cut-off function \jr e C^°([0, oo)) such that

( l for r e [0,1];
0 < f < 1, V (̂0 = 1

~ (0 for r e [2, oo).

Let wn(£, r)) = rjr(2\n - r)n\/rn)w{%, r) - nn). Then wn e //O'(A). Since for large k,

^ n - r,n) -

- r]n)\2 + li
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and by (f2), for large k,

I \F(wM,r)))-F{w(^r)-r]n))\

I

<cl (Mf,»j-i?.)l2 + M^i?-»?»)l'+1)

= o(l), for some 0 < / < 1,

l/(wn(£, r]))wn{%, r)) -f(w(^, r\ - r)n))w(t;, r\ - r\n)\

A

f
J A'

then we have

= Uwn\\2
HHA) - f

^ JA
(5.2) I(wn) = Uwn\\2

HHA) - f F(wn)
^ JA

(5.3) (I'(wn), wn) = \\wn\\2
HHA) - I f (wn)wn

Jn

For wn e //O'(A), wn # 0, by (5.2), (5.3), and Lemma 2.4, there exists tn e (0, oo)
such that tnwn e M(A), [tn] is bounded, and a^(A) < I{tnwn) < I(wn) + o(l) =
«w(^ r ) + o(l) for large n. Hence we obtain a w (A) = aM(Ar).

(2) By Part 1 and Theorem 4.1, / does not satisfy the (/>5)aM(A)-condition. If u is
a ground state solution of (5.1), by putting u = 0 in A r \A, we see that u could be
regarded as an element of //o '(Ar); then by the strong maximum principle, u would
be a positive solution in Ar, a contradiction. Therefore the only possible solutions of
(5.1) are positive higher energy solutions. D

Using the same argument as in the proof of Theorem 5.1, we obtain

PROPOSITION 5.2. (1) Let E be a closed subset of Ar. If for any s > 0 there
exists (0, T}) e E such that Qs{r)) C E, then aMCL) = aM(Ar). As a more concrete
example, E can be a upper half strip Ar

0, a upper half strip with a hole A or the union
ofAr

0 with a bounded set.
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(2) lim,,_ooarM(j2,,(>))) = aM(Ar
Q) =aM(Ar) = aM(Ar

a),for every a e

263

From Theorem 5.1 and Proposition 5.2, we know that there doesn't exist any (PS)C-
sequence with a w (A) < c < aM(Ak) for any k e N, so we cannot use Theorem 3.4
to get the existence of any higher energy solution of (5.1). Hence we take a new
approach to obtain a higher energy solution of (5.1).

THEOREM 53. If (fl)-(f4) hold, suppose there exists a (PS)c-sequence with c > 0
and c £ 0 (A m ) for some m e N, then there exists a positive higher energy solution
of (5.1).

PROOF. Let {uk} be a (PS)^-sequence with c > 0 and c <£. 0 (A m ) for some m e N.
Take a subsequence [uk] such that Uk —*• u weakly in //O'(A), a.e. in A, and strongly
in L/OC(A), where 1 < q < 2*. Moreover, / ' («) = 0 and / («) < c. We claim that
u ^ 0. Suppose u = 0, as in the proof of Lemma 3.2, there exists a subsequence {uk}
such that for (M^o). if k is large,

(5.4) f \uk\" = o(l) for each 1 < q < 2*.

Let £ : K" -> [0, 1] be a C°°-function which satisfies

Let wk = %uk, wk 6 //^(Am). Then we want to show that {wk} is a (PS^-sequence in

It suffices to show that

(5.5)

and

(5.6) lim sup

By a direct computation,

(5.7) | ( / ' (u>*) ,0)- ( / ' («*) .

- \)uk<t>

L
L
I,

(JC) -

{f (uk) -
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1/2

1/2

2a.

1/2"

Since A m f | ^ + 1 ( O , rj0) C A*., if k is large, (5.6) follows from (5.7) and (5.4),
provided that

(5.8) 0 as it -^ oo.

Now we prove (5.8). Let £* : RN -> [0, 1] be a C£°-function which satisfies
0 < %k < 1, | V ^ | < 1, and

J l for x €Bt"_,(0, »|o);

lO for X ^ Bf (0, rj0).

Since {^«t} is bounded in HQ(A), if k is large,

(5.9) o(l) = (/'(«*),,

./A*

- I f{x,uk)i;kuk.

By (5.4), we conclude that the last three integrals of (5.9) tend to zero as k —>• oo and
consequently

< / > | V M , | 2 < f
•'A^i ^At

oo.

Observe that

I(wk) - I(uk) = \

(F{wk) - F{uk)).

Thus (5.5) follows from several estimates which are similar to the above. Hence
c e 0 (A m ) , this is contrary to the hypothesis, so there exists a positive higher energy
solution w. •
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Next, we will use a mini-max structure to obtain a positive higher energy solution
of (5.1).

From Theorem 5.1 and Proposition 5.2, we have lim^_).0OaM((27)('?)) = « M ( A ) ,

then for any e4 > 0, there exists fj = r)(et) sufficiently large such that

rJ = aM(A) < ctuiQijif})) < au(A) + e4, for every a e R.

So we can choose r)0 = 9f\/2 and D c B^((0, rj0)) C Q^/\{r]0) c AJ-, and then
choose z_ € M(Qj(rj)) and z+ € M(A!J-) such that max(/(z_), 7(z+)) < aw(A)+£4-
Set

T = {y e C([0, 1], M(A)) | y(0) = Z- and y(l) = z+}, n = inf max /(y(0)).

We will show that there exists a (P5)M-sequence with /u, > aM(A), provided that z+
and z_ are suitably chosen. Let <p be a C°° function which satisfies 0 < <p < 1,
|V^)| < 2/fj, <p = 0 on (2 /̂2(̂ 0) and ip = 1 on <2̂ (»?o)- Straightforward calculation,
gives the following lemma:

LEMMA 5.4. For any s5 e (0, aM(A)/2), there exists 8 = 8(e5) > 0 such that if
u e M(A) and I(u) < C*M(A) + 8 then I(tvu(pu) < aM(A) + e5, where tvu > 0 and
tvu<pu e M(A).

With Lemma 5.4, we want to show that /x > aM(A).

LEMMA 5.5. [i > a^(A) + 8, where 8 is the number defined in Lemma 5.4.

PROOF. Suppose /x < OCM(A) + 8. From the definition of /n, there exists &y0 e V
such that max0e[o,i] I(YO(6)) < aM(A) + 8. Let y(6) — t9Yom(pyo(6), it follows from
Lemma 5.4 that y € V and

(5.10) max I(y(0)) < o«(A) + s5 < -aM(A).
«e[0,l] 2

By the definition of (p,y(6) = y+(6>) + y_(6»), where y+{6) e A^-andy_(6>) e Q^fj)-
We claim that

(5.11) there exists a 6>0 e (0, 1) such that y+(90) e M(A) and y_(0o) e M(A).

Assuming (5.11) for now, we obtain 7(y(6»0)) = /(y+(0o)) + /(y_(0o)) > aw (A) +
aM(A) = 2au(A), which contradicts (5.10).

It remains to show (5.11) to complete the proof. Since y+(0) — 0 and y+(l) = z+,
there exists a 0, e (0,1) such that /'(y+(0i))y+(0i) > 0. This together with y (00 e
M(A) implies that 7'(y_(0O)y-(^O < 0. Let

(5.12) 02 = sup{0 | 7'(y_(0)y_(0) < Oor y_(0) 6
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Since y_(l) = 0 and y_(0) = z_, it follows that 02 € (0, 1). Using / e C1 and
/'(K-(02))y-(6>2) = 0. Since y(02) e Af (A), it follows that /'(y+(fc))y+(fli) = 0.

To complete the proof of (5.11), we need to show that y_ (#2) 7̂  0 and y+ (02) ^ 0.
We argue indirectly. If y_(02) = 0, then either y_(0) = 0 for all 6 e (62, 1) or there
exists a 03 e (02, 1) such that /'(y-(03))y_(03) > 0. This contradicts (5.12). Suppose
y+{92) = 0. Then there exists a 6>4 e (02, 1) such that V(y+(6A))y+(0A) > 0. This
together withy (04) e A/(A) yields/'(y_(04))y_(04) < 0, which again violates (5.12).
Thus the proof is complete. D

Then we will show the existence of a Palais-Smale sequence with the (PS)-value \i.

LEMMA 5.6. There exists a (PS)^-sequence, where /x is the number defined in
Lemma 5.4.

PROOF. Suppose there does not exist a (P5)M-sequence. Then there exist b > 0 and
e > 0 such that || I'(u) \\ > b for all u with \i — e < / (M) < \i + s. We may assume
without loss of generality that b < 1 and e < (l/2)(/z — aw(A) — (5/4)), where 8
is the number defined in Lemma 5.4. Let Yi = [u e M(A) | ||/'(«)ll < b/2 and
I(u) < 3^/2} and Y2 = [u e Af (A) | ||/'(«)ll > b and /(«) < 3/x/2}. Choose

(5.13) e e (0, £,), where e, = min(£, fc2/2, fc/4).

LetK3 = {M e M(A) | / («) < /L t -eo r / (« ) > / x + e } and K, = {" e M(A) | / x - e <
/(«) < H + e). For u 6 Af (A), set g,(ii) - ||« - K3||/(ll« - >3II + II" - nil) and
g2(«) = II" - n 11/(11" - Fill + II" - >2ll)- Let X(M) be a pseudo-gradient vector
field for / on M(A) and

(5.14) W(u) = -gl(u)g2(u)h(\\X(u)\\)X(u),

where h(s) = 1 if s e [0, 1] and A(j) = 1/s if s > 1.
Consider the Cauchy problem:

(5.15) - 1 = ^ ( 1 / ) , r?(0,«) = ".
af

The basic existence-uniqueness theorem for ordinary differential equations implies
that, for each u e M(A), (5.15) has a unique solution r)(t, u) which is defined for t
in a maximal interval [0, T(u)). Moreover, since || W(M)|| < 1 and M(A) is a closed
subset of //O'(A), so T(u) - +oo. Since

^-I(r}(t, ii)) = - / '
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Define I" = {u e M ( A ) | / ( M ) < a}. Since I(r)(t, «)) is a non-increasing function
of t, hence

(5.16) /?(1, /**-') C /"-*.

We claim that

(5.17) ni\, Yt) C /""-«.

Indeed, if there exists u e Y4 such that JJ(1, M) £ /M~£, then, for all / e [0, 1],
r?(r, u) e y4. Consequently gi(??(f, «)) = 1 and g2(*](t, u)) = 1. If for some
r 6 (0,1), ||X(ij(r, «))|| < 1, then h(\\X(r,(t, «))||) = 1 and

(5.18) T 7 W ' M)) - - lat

On the other hand, if for some t e (0, 1), ||X(»j(f, «))|| > 1, then by the definition of
pseudo-gradient vector field,

(5.19) ^-K( )) | | / ' ( ( ) ) | | 2 | | X ( a ) ) ! ! ' i | | / ' ( ( ) ) | |
t

))!! ||/(»?(r, «))|| .

Since r)(t, u) e y4 for all t e [0, 1], by (5.18) and (5.19), we have

f1 d
(5.20) 2e > Hn(Q, «)) - /(r?(l, «)) = - / x 7 ^ ^ " ) ) J / > - m 1 1 ^ / 2 ' * )•

Jo « '
Since (5.20) is contrary to (5.13), we conclude that (5.17) must hold. Combining
(5.16) and (5.17), we have

(5.21) »/(l, /M+£) C /M-£.

By the definition of/x, there exists a y € F such that maxfle[Oji] I(y(9)) < /x + s. Let
= rj(l, y(6>)). It follows from (5.21) that

(5.22) max /(/(<?)) <fi-e.
9€[0,l]

Since g^u) = 0 if u e I"~\ it follows from (5.14) and (5.15) that »;(1, M) = u if
u € 7/i~?. In particular, max(/(z+), /(z_)) < a M ( n ) + (5/4) implies yi(0) = y(0),
y,(l) = y( l ) and consequently yx e F. But then (5.22) is contrary to the definition
of ix. The proof is complete. •

We are now ready to prove the existence of a positive higher energy solution of (5.1).

THEOREM 5.7. Assume that (fl)—(f4) hold. If (x <£ ®(Am) for some m e N, then
there exists a positive higher energy solution of (5.1).

PROOF. By Lemma 5.5 and Lemma 5.6, there exists a (P5)M-sequence with
ix > aM(A), then by Theorem 5.3, we obtain a positive higher energy function
of (5.1). •
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