A SIEVE ON ANALYTIC FUNCTIONS

KEITH RAMSAY

Abstract

A sieve lemma is found, applicable to certain families of analytic functions on the unit disk, analogous to a large sieve lemma of P. X. Gallagher for sets of integers.

The following version of the large sieve is due to P. X. Gallagher [2]:
Lemma 1. Let A be a subset of $\{0, \ldots, N\}$ such that for each prime power q in a finite set \mathcal{S}, we have that A lies in at most r_{q} residue classes modulo q. Then

$$
|A| \leq \frac{\sum_{q \in S} \Lambda(q)-\log N}{\sum_{q \in S} \Lambda(q) / r_{q}-\log N}
$$

provided the denominator of the right-hand side is positive. Here $\Lambda(q)$ is von Mangoldt's function, which is $\log p$ where q is a power of p, and 0 for non-prime-powers.

Lemma 1 has various applications, several of which can be found in [3]. A careful examination of the (short) proof reveals that it uses little beyond the product formula, $\|n\|_{\infty} \Pi_{p}\|n\|_{p}=1$.

Consider Jensen's formula for a holomorphic function f in the disk $D(r)$ of radius r, where $f(0) \neq 0$ ([4], p. 15 or [1], p. 206):

$$
0=\log |f(0)|-\int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}+\sum_{z \in D(r)} \operatorname{ord}_{z} f \cdot \log \left|\frac{R}{z}\right|
$$

Such a formula yields, by reasoning parallel to that used to prove Gallagher's lemma, the following "sieve lemma":

Lemma 2. Let \mathcal{A} be a set of holomorphic functions on the disk $D(R)$, uniformly bounded in norm by X. Suppose that for points z in a finite set $S \subset D(R)$ at most r_{z} values are assumed at z by functions in \mathcal{A}. Suppose also that for any two function $f, g \in \mathcal{A}$, $f \neq g$, we have $|f(0)-g(0)|>\epsilon$. Then

$$
|\mathcal{A}| \leq \frac{\sum_{z \in S} \log \left|\frac{R}{z}\right|-\log \frac{2 X}{\epsilon}}{\sum_{z \in S} \frac{1}{r_{z}} \log \left|\frac{R}{z}\right|-\log \frac{2 X}{\epsilon}},
$$

provided that the denominator is positive.

[^0]Proof. Let f and g be two distinct elements of \mathcal{A}. Consider Jensen's formula applied to $f-g$:

$$
\begin{aligned}
0 & =\log |f(0)-g(0)|-\int_{0}^{2 \pi} \log \left|f\left(R e^{i \theta}\right)-g\left(R e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}+\sum_{z \in D(R)} \operatorname{ord}_{z}(f-g) \cdot \log \left|\frac{R}{z}\right| \\
& \geq \log (\epsilon)-\log (2 X)+\sum_{z \in S} \operatorname{ord}_{z}(f-g) \cdot \log \left|\frac{R}{z}\right|
\end{aligned}
$$

Averaging over all pairs of distinct $f, g \in \mathcal{A}$ and throwing away multiplicities gives us

$$
\begin{aligned}
0 & \geq-\log \frac{2 X}{\epsilon}+\frac{1}{|\mathcal{A}|(|\mathcal{A}|-1)} \sum_{f \neq g} \sum_{z: f(z)=g(z)} \log \left|\frac{R}{z}\right| \\
& \geq-\log \frac{2 X}{\epsilon}+\frac{1}{|\mathcal{A}|(|\mathcal{A}|-1)} \sum_{z \in S} \sum_{\substack{(z)=g(z) \\
f \neq g}} \log \left|\frac{R}{z}\right| .
\end{aligned}
$$

The inner sum may be bounded below by using the fact that the functions of \mathcal{A} have only r_{z} distinct values at z. By Cauchy-Schwarz, or some related inequality, the number of (not necessarily distinct) pairs (f, g) of elements of \mathcal{A} that are equal at z is at least $|\mathcal{A}|^{2} / r_{z}$. Hence

$$
\begin{aligned}
0 & \geq-\log \frac{2 X}{\epsilon}+\frac{1}{|\mathcal{A}|(|\mathcal{A}|-1)} \sum_{z \in \mathcal{S}} \log \left|\frac{R}{z}\right|\left(\frac{|\mathcal{A}|^{2}}{r_{z}}-|\mathcal{A}|\right) \\
& =-\log \frac{2 X}{\epsilon}+\frac{1}{|\mathcal{A}|-1} \sum_{z \in \mathcal{S}} \log \left|\frac{R}{z}\right|\left(\frac{|\mathcal{A}|}{r_{z}}-1\right) .
\end{aligned}
$$

It follows that

$$
\sum_{z \in S} \log \left|\frac{R}{z}\right|\left(\frac{|\mathcal{A}|}{r_{z}}-1\right) \leq(|\mathcal{A}|-1) \log \frac{2 X}{\epsilon}
$$

or

$$
\left[\sum_{z \in S} \frac{1}{r_{z}} \log \left|\frac{R}{z}\right|-\log \frac{2 X}{\epsilon}\right]|\mathcal{A}| \leq \sum_{z \in S} \log \left|\frac{R}{z}\right|-\log \frac{2 X}{\epsilon}
$$

from which the lemma follows immediately.

References

1. Lars Ahlfors, Complex Analysis, McGraw-Hill, 1962.
2. P. X. Gallagher, A Larger Sieve, Acta Arith. 18(1971), 77-81.
3. C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge University Press, 1976.
4. S. Lang and W. Cherry, Topics in Nevanlinna Theory, Lecture Notes in Math. 1433, Springer-Verlag, Berlin, 1990.

University of British Columbia

Vancouver, British Columbia
V6Y $1 Z 2$

[^0]: Received by the editors January 26, 1994.
 AMS subject classification: Primary: 11N35; secondary: 30D35.
 (c) Canadian Mathematical Society 1996.

