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Summary

Founder-origin probability methods are used to trace specific chromosomal segments in individual
offspring. A haplotypic method was developed for calculating founder-origin probabilities in
three-generation outbred pedigrees suited to quantitative trait locus (QTL) analysis. Estimators for
expected founder-origin proportions were derived for a linkage group segment, an entire linkage group
and a complete haplotype. If the founders are truly outbred, the haplotypic method gives a close
approximation when compared with the Haley et al. (1994) method that simultaneously uses all
marker information for QTL analysis, and it is less computationally demanding. The chief limitation
of the haplotypic method is that some information in two-allele intercross marker-type configurations
is ignored. Informativeness of marker arrays is discussed in the framework of founder-origin
probabilities and proportions. The haplotypic method can be extended to more complex pedigrees
with additional generations.

1. Introduction

An offspring genome within a three-generation pedi-
gree can be viewed as a mosaic of chromosomal seg-
ments contributed by individual founders. Tracing the
founder origin for each segment in a genomic mosaic
can be used to relate allelic or haplotypic origin to
phenotypic values. Founder-origin probabilities apply
to chromosome points, inferring descent from a given
founder. In pedigrees derived from two inbred lines it
is straightforward to use markers to estimate founder-
origin probabilities along each linkage group. Tracing
founder origins becomes complex with outbred pedi-
grees for three reasons: (i) there are multiple, highly
heterozygous founders, (ii) there can be twice as many
alleles as the number of founders and (iii) marker-type
configurations are heterogeneous for each linkage
group.

For generalization to outbred pedigrees, founder-
origin probabilities or proportions is more appropri-
ate than using line-origin terminology. Estimating
founder-origin probabilities is considered concomi-
tant with mapping quantitative trait loci (QTLs)

(Martı́nez & Curnow, 1992; Haley & Knott, 1992;
Zeng, 1994). Such probabilities have been used to
analyse three-generation outbred pedigrees for QTL
mapping (Haley et al., 1994; Knott et al., 1997).
Founder-origin probabilities can be combined with
multiple regression, maximum likelihood and IBD
approaches for QTL analysis. They can also be in-
corporated into a mixed model for interval mapping
(Nagamine & Haley, 2001).

We developed a haplotype-based method for esti-
mating founder-originprobabilities, expected founder-
origin proportions and their conditional variances.
Rather than using all marker information simul-
taneously (Haley et al., 1994), the haplotypic method
uses adjacent fully informative haplotypic markers
for each individual offspring in reference to a given
founder.

2. Genetic model

(i) Founder-origin probabilities and proportions using
the haplotypic method

Founder-origin probabilities apply to chromosome
points, inferring descent from a given founder. A* Corresponding author.
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founder-origin proportion is expressed as the ratio of
a founder genome in a chromosome segment, an en-
tire chromosome or an entire haplotype for a given
individual offspring, relative to its total map length.
Founder-origin estimations have been extended to
the outbred case from a model for marker-based
introgression through backcrossing (Reyes-Valdés,
2000). A short description of this model using a two-
allele case follows.

In the classic backcross design, a recurrent parent
is crossed with a donor parent. Their F1 offspring
is crossed to the recurrent parent, generating the
first backcross (BC1). Assume that selected indi-
viduals possess the entire set of marker alleles pres-
ent in the recurrent parent together with the marker
alleles associated with the segments(s) to be intro-
gressed from the donor parent. Depending on the
target genome chosen for selection, there are two
marker-locus classes : recurrent markers (R) and
donor markers (D). The two marker-locus classes
together with the chromosome ends (E) delineate
three chromosome landmarks: chromosome ends,
recurrent markers and donor markers. These three
landmark types in turn define six intervals : end–end,
end–recurrent, end–donor, recurrent–recurrent, recur-
rent–donor and donor–donor.

Functions for calculating the probability of donor
genome at any point within any of those six intervals
for a given backcross generation are provided by
Reyes-Valdés (2000).Those formulae, adjusted forBC1

and absence of chiasma interference, are presented
in Table 1. They are represented by fT (x), where T
denotes a pair of contiguous chromosome landmarks
(R, D or E) neighbouring a chromosome position x.
If x coincides with the position of a marker of type R
orD, respectively, then we have fR(r)=0 and fD(d)=1.
For simplicity, the probability of donor genome at the
map point x is defined as g(x)=fT (x).

The expectation E(G ) of the proportion G of donor
genome in a linkage group is defined as follows:

E(G)=
1

L

Z L

0
g(x) dx, (1)

where L is the map length of the chromosome or
chromosome segment in morgans.

The proportion G of donor genome has the fol-
lowing conditional variance (VG) given an array of
donor and recurrent markers:

VG=
1

L2

Z L

0
g(x)

Z L

0
g(yjx) dy

� �
dxxE(G)2, (2)

where g(yjx) is the probability of donor genome at
the map position y given donor genome at the map
position x. Note that g(yjx) is identical to g(y) if the
positions x and y belong to different intervals defined

by fully informative markers. Because analytical sol-
utions are not available for all situations, a numerical
method must be used to solve the integrals. To obtain
the expected proportion of donor genome at the entire
haplotype level, an average proportion is calculated
across linkage groups then weighted by the respect-
ive map length of each linkage group. More detailed
discussion has been published on donor genome
introgression (Stam & Zeven, 1981; Reyes-Valdés,
2000). Similarly, Visscher (1996) developed an ap-
proach based on selection index theory to calculate the
variance of the proportion of donor genome explained
bymarkers using regression theory in the frameworkof
the classical selection index (Hazel, 1943).

(ii) Extending the haplotypic method for founder-
origin probabilities to a three-generation outbred
pedigree

A case study of an outbred three-generation pedigree
with four founders is viewed here as a set of back-
cross experiments. Let A1, A2, A3 and A4 be the four
grandparents or founders of the pedigree. The parents
are defined as P12 and P34 with the subscripts denoting
their respective founders. The individual offspring are
O1, O2, … , On, where n is their sibship size (Fig. 1).
Consider founder A1 as the donor parent in a back-
cross experiment so that A2, A3 and A4 are collectively
viewed as the recurrent parent. Thus P12 is the F1 in
our virtual backcross and O1, O2, … , On are the first
backcross generation. Founders A2, A3 and A4 are not
assumed to be genetically identical.

Assume that a fully informative marker allele for
offspring Oi is inherited from P12 and that it is known

Table 1. Formulae to calculate the probability of
donor genome in a given position x of a chromosome
in non-recurrent parent gametes forming the first
backcross

Interval Formula

end–end fEE(x)= 1
2

end–recurrent fER(x)=d( xxrj j)
end–donor fED(x)=[1xd( xxdj j)]

recurrent–recurrent fRR(x)=
d( xxr1j j)d( xxr2j j)
[1xd( r1xr2j j)]

recurrent–donor fRD(x)=
d( rxxj j)[1xd( xxdj j)]

d( dxrj j)

donor–donor fDD(x)=1x
d( xxd1j j)d( x� d2j j)

1xd( d1xd2j j)

Absence of interference is assumed. The symbols r and d
represent the positions of a donor (D) and a recurrent (R)
marker locus, respectively, whereas d is the Haldane’s
(1919) inverse mapping function.
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whether the marker allele descended from the founder
A1. Furthermore, if A1 contributed the allele then it
is classified as a donor (D) marker. If A1 did not
contribute the allele then the marker locus is classi-
fied as a recurrent (R) marker. If chromosome ends
(E) are included as landmarks, a chromosome for
the reference individual may have, for example, an
array of marker types designated as [E D R E]. Using
the backcross model, the probability of any given x
contributed by founder A1 can be calculated for this
individual offspring Oi. The same process is con-
ducted with reference to each of the other three
founders. Note that there are only two possible in-
dependent probabilities for a given chromosome site :
let g(x, Ai) be the probability that a given genome
site x in a gamete from Pij came from founder Ai ; thus
g(x,A2)=1xg(x,A1), and g(x,A4)=1xg(x,A3).

(iii) Identification of fully informative haplotypic
markers and their definition as donor or recurrent
markers

Fully informative markers for each individual off-
spring must be identified and then defined either as
donor (D) or recurrent markers (R). Let Pij be a set

of marker alleles for a given locus of Pij and N(Pij)
its number of elements. Note that N(Pij)=2 for a
heterozygous parent and N(Pij)=1 for a homozygous
parent. The same notation will be used for other
members of the pedigree.

Let Si be the set of alleles that could have been
inherited by an offspring from parent Pij. When con-
sidering A1 as a donor parent, the process to classify a
marker locus starts with finding S1 as follows:

S1=

P12 \Ok when N(P12 \Ok)=1

Ok � P34 when [N(P34 \Ok)=1]

and [N(P12 \Ok)l1]

P12 otherwise

8>><
>>:

(3)

Next, it is determined whether an allele was con-
tributed by founder A1. Let S

�
1 be the set of alleles that

parent P12 could have inherited from founder A1 :

S�
1=

A1 \ P12 when N(A1 \ P12)=1

P12xA2 when [N(A2 \ P12)=1]

and [N(A1 \ P12)l1]

A1 otherwise

8>><
>>:

(4)

The necessary and sufficient conditions to consider a
marker locus to be fully informative on a haplotype
basis are (i) N(S1)=N(S�

1)=1, and (ii) N(P12)=2.
Once the conditions are fulfilled, S�

1=S1 will indi-
cate that the marker locus is a donor marker. On the
other hand, if S�

1lS1, the marker locus is defined as a
recurrent marker. This decision process is conducted
for every locus in every offspring with reference to
founders A1 and A3. For the latter case (A3), the sets
are:

S3=

P34 \Ok when N(P34 \Ok)=1

OkxP12 when [N(P12 \Ok)=1]

and [N(P34 \Ok)l1]

P34 otherwise

8>><
>>:

(5)

S�
3=

A3 \ P34 when N(A3 \ P34)=1

P34 � A4 when [N(A4 \ P34)=1]

and [N(A3 \ P34)l1]

A3 otherwise

8>><
>>:

(6)

When marker allele data are missing, due either to
dominance or to scoring failure, there may be several
possible set definitions for one or more members of
the pedigree. For instance, Ok can have possible set
definitions Ok1 and Ok2. In this case, a marker locus
will be considered fully informative if and only if
for both possibilities the set-based algorithm can con-
sistently identify the marker as either donor or recur-
rent. Total or partial genotypic reconstruction in
founders and parents is needed to provide set defi-
nitions.Thisgenotypic reconstructioncanbeaidedbya
program written during this research in Mathematica

Fig. 1. Schematic representation of chromosome states
in a three-generation pedigree, in which A1, the reference
founder, is viewed as a donor parent in a backcross
experiment. The parent P12 is regarded as an F1, whereas
the progeny members Oi are considered as members of
a backcross 1. In the same fashion, each founder can
be viewed, one at a time, as a donor parent and a model
for marker-based introgression applied to calculate
probabilities of founder origin in the offspring individuals.
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language (Wolfram, 1999) that generates sets of poss-
ible parentalmarker-genotype doublets with respect to
each progenymember. The genotypic reconstruction is
based onMendelian inheritance testing, selecting only
those parental genotype combinations that are con-
sistent with the whole offspring. The data analysis is
then followed by another Mathematica routine that
checks combinations of four founders, two parents
and one offspring. The routine works as follows: (i) all
possible marker-genotype possibilities are considered
for each given combination of founders, parents and
one offspring separately, and the resulting genotypes
are sent to the next step; (ii) all possible Mendelian
crosses in the mating combinations are performed,
considering all potential genotypes ; (iii) genotype
possibilitieswithMendelianinconsistenciesaresequen-
tially eliminated, thus reconstructing offspring marker
genotypes; and (iv) consistent combinations are tested
and informative loci are selected by the set-based al-
gorithm, and defined as either donor or recurrent
markers. If the consistent combinations give different
solutions, the locus under analysis is treated as
uninformative.

Genotype reconstruction and Mendelian inherit-
ance checks are necessary when missing data occur or
some dominant markers are used. However, the sole
use of dominant markers is not recommended for the
application of the haplotypic method because only
recessivemarker genotypes can be considered informa-
tive in the offspring in order to estimate founder-origin
probabilities. An exception to this situation is the
parental backcross configuration where one parent is a
heterozygote and the other is a recessive homozygote.
In this case both possible marker phenotypes in the
progeny can be used to trace founder origin.

The resulting data for each offspring haplotype
and linkage group will be an array of marker-type
configurations and positions with reference to each
founder. The following three-marker array is given as
an example:

E R D R E

0 0 0�1 0�8 0�8

� �
,

where the first row is the marker array along a
chromosome. The second row is the respective array
of positions of those marker loci in the linkage group
expressed in morgans. For each offspring there are
two such arrays and it is possible for the two arrays to
have a different set of informative markers.

For a given marker locus, let AiAj indicate that
an offspring inherited one allele from founder Ai and
the other allele from Aj. If male and female haplotypes
are considered simultaneously, one or more founder-
origin combinations can be regarded as possible,
e.g. fA1A3,A1A4g. However, the haplotypic method
ignores marker information indicating the sets of

possible founder-origin combinations fA1A3,A2A4g
and fA1A4,A2A3g. This will happen when the marker
locus has a parental two-allele intercross configur-
ation and the offspring is heterozygous, making the
haplotypic method approximate rather than exact.
Thus, the haplotypic method is not suitable for a
classical intercross between two inbred lines, because
F2 heterozygotes are considered to be uninformative.
It is best suited to outbred pedigrees with a high
proportion of informative multiple-allele codominant
markers.

(iv) Estimation of founder-origin probabilities from
fully informative haplotypic markers

Once the arrays of donor and recurrent markers have
been defined for each individual offspring, the prob-
abilities of donor genome can be estimated for any
given point of a linkage map with reference to each
founder (Table 1). A unit probability would indicate
that the gamete contributing to the given individual
carried donor genome at the point x, which means
that such a point is located within a genomic segment
descending from the reference founder. Conversely, a
probability value of 0 indicates that the chromosomal
segment including point x was not contributed by the
reference founder.

Using the haplotypic method, probabilities are cal-
culated from fully informative, flanking haplotypic
markers or a single haplotypic marker when searching
beyond markers at the linkage group end. The haplo-
typic method can be extended to estimating the pro-
portion of donor genome in a chromosome segment
or an entire chromosome (1). Conditional variances
can also be estimated for these proportions (2).

When combining probability information from two
haplotypes or individuals, e.g. calculating multiple
founder-origin or IBD probabilities, the process be-
comes multipoint if different sets of adjacent informa-
tive markers are used for each haplotype.

(v) Use of founder-origin probabilities in
QTL mapping

General agreement is expected between the haplo-
type-based method and the simultaneous use of all
marker information for QTL analysis (Haley et al.,
1994; Knott et al., 1997) if there are few markers in
two-allele intercross configuration. Founder-origin
probabilities are calculated at regular intervals along
a linkage group in the case of regression-based QTL
analysis. These estimates are then used as independent
variables with phenotypic values as the dependent
variable in regression analyses. If we assume that one
founder is fixed for a QTL allele that is different from
those QTL alleles in the three remaining founders, a
simple linear regression can be performed along the
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linkage group on the founder-origin probability, fol-
lowing Martinez & Curnow (1992). A significant peak
for the test statistic indicates a putative QTL and the
regression coefficient provides an estimate of additive
or haplotypic effect. A threshold for the test statistic
can be obtained by the permutation test (Churchill &
Doerge, 1994) and confidence intervals for map pos-
itions can be obtained by bootstrap (Visscher et al.,
1996).

Anotherpossible configuration for founders is given,
in terms of QTL genotypes as: A1: Q1Q1, A2: Q2Q2,

A3: Q1Q1, A4: Q2Q2. In this case, multiple regression
is applied to probabilities of haplotypic combinations.
Founder-origin probabilities can be multiplied to ob-
tain the probabilities of haplotype combinations if
only fully informativehaplotypicmarkersareused.The
variable combinations needed to obtain approximate
coefficients to estimate additive (a) and dominance (h)
effects are as follows:

a: g(x,A1)g(x,A3)xg(x,A2)g(x,A4), (7)

h: g(x,A1)g(x,A4)+g(x,A2)g(x,A3): (8)

When more than two QTL alleles may be segregating
in the mapping population, a model for maternal,
paternal and maternalrpaternal effects can be fitted
(Knott et al., 1997). In this case, approximate prob-
abilities of founder-origin combinations are generated
by simple multiplication of haplotypic founder-origin
probabilities.

(vi) Informativeness of a marker array

The marker information content in linkage maps is
important for relating haplotypic origin to phenotypic
values. Knott et al. (1997) define an informativeness
statistic (Y) for average map point information based
on the offspring of a three-generation outbred pedi-
gree. This statistic can be extended to other types
of mapping populations. With reference to founders
A1 and A2, average informativeness or Y, at map
position x, is expressed as follows (Knott et al., 1997) :

Y=
1

n

Xn

i=1

4[gi(x,A1)x0�5]2: (9)

Each term in the summation is :

4[gi(x,A1)x0�5]2=4[gi(x,A1)
2xgi(x,A1)+0�25]

=[0�25xgi(x,A1)(1xgi(x,A1))]=0�25:

The value of 0.25 shown within brackets is the vari-
ance of a Bernoulli random variable that equals 1
when the given haplotype carries genome fromA1 with
a probability of 0.5 at the chromosome point x, and

equals 0 otherwise. Therefore, the 0.25 value is the
maximum conditional variance of A1 founder genome
at a given genome location. This value describes the
situation for unmarked chromosomes. The product
g(1xg) is the variance of a Bernoulli variable with
parameter g, which in this case is the probability of A1

calculated with marker information. Thus, the infor-
mativeness statistic of Knott et al. (1997) measures
the reduction in conditional variance due to the use of
markers to calculate aprobability of founderorigin in a
given map location.

Within the framework of the polygenic model for
QTL analysis (Knott et al., 1997), the informativeness
of an individual haplotypic marker array, at the
linkage group level, can be calculated in an analogous
way:

H=
VTxVG

VT

, (10)

where VG is the conditional variance of a founder-
origin proportion (2) and VT is the total variance of
the proportion of founder origin in a linkage group
calculated with the same function (2) in the case of an
unmarked chromosome (end–end). Since VTxVG is
the variance explained by the genetic markers, the
expectation E[H ] is equivalent to the parameter R2

used by Visscher (1996) for the proportion of the
variance in genetic composition of backcross genera-
tions explained by markers. The procedure to calcu-
late E[H ] differs from the calculation of R2, where a
linear relationship between marker indices and the
proportion of non-recurrent genome is established in
the framework of selection indices (Visscher, 1996).
Here variance calculations are based on numerical
integration to obtain E[H ].

As an example, the optimummarker distribution of
two marker loci for QTL analysis under the polygenic
model (Knott et al., 1997) was analysed by maximiz-
ing the expected index E[H ]. It was calculated as the
sum of the products of the probability of each phase
(coupling and repulsion) by the respective index H.
The expectation E[H ] was calculated for different
combinations of marker positions. The best marker
array was two marker loci symmetrically located
around the centre of the linkage map, with 45 cM of
distance for a linkage group of 100 cM so that the
markers are at 27.5 and 72.5 cM. These positions are
identical to the values reported by Visscher (1996) for
the optimum marker location in backcross breeding.

The indexH is bounded by the limits 0 and 1, where
a value of 0 shows absence of marker information as
in the case of an unmarked chromosome. A value of 1
shows the maximum possible to be attained. As the
marker saturation increases, H approaches 1. Exten-
sion of this measure to haplotypic pairs rather than
haplotypes themselves requires the use of the variances
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of founder-origin combinations, not founder-origin
variances for single haplotypes.

3. Concluding remarks

The haplotype-based method is effective for approxi-
mating founder-origin probabilities in the case of a
three-generation outbred pedigree with multiple allele
marker loci. The haplotypic method can be used to
calculate expectations of founder-origin proportions
for chromosome segments, entire linkage groups and
an entire haplotype in addition to their conditional
variances.Multiplication of haplotypic founder-origin
probabilities provides approximate probabilities of
haplotype combinations. The haplotypic method is
less computationally demanding than the all-marker
based approach, with the loss of information directly
related to the proportion of two-allele intercross
marker-type configurations.

The haplotypic method for founder-origin prob-
abilities can be extended to more complex inbred or
outbred pedigrees. The general type of pedigree that
can be extended using the haplotypic method is the
so-called zero-loop pedigree (Cannings et al., 1978),
which is a tree of individuals and marriages. If one of
the parents of an individual offspring is also a foun-
der itself then the founder-origin probability for the
haplotype coming from that founder is equal to 1.
If the founder is a grandparent, then the haplotypic
method as described in this study applies because
eachoffspring is treated as afirst-generationbackcross.
If the founder is a great-grandparent, the offspring
member must be treated as a second-generation back-
cross using multi-generation backcross equations, or
recurrently using first-generation backcross formulae.
However, efficient allele or haplotype tracing from
offspring to founders requires codominant, multiple-
allele markers.
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