An embedding theorem for fields: Addendum

J.W.S. Cassels

The proof of Lemma 2 in [1] invoked elementary analytic number-theory. I have just realized that there is a proof which is entirely elementary. It is doubtless "well-known" (in the usual technical sense that it appears somewhere in the literature) and it is certainly "well-knowable" in Conway's terminology. However, as it renders the entire argument of my paper elementary, I give it here.

The lemma asserts that if

$$
\begin{equation*}
f(X)=f_{n} X^{n}+f_{n-1} x^{n-1}+\ldots+f_{0} \tag{I}
\end{equation*}
$$

is a non-constant polynomial with rational integral coefficients, then there are infinitely many primes p for which there is an integer b satisfying

$$
\begin{equation*}
f(b) \equiv 0(\bmod p) \tag{2}
\end{equation*}
$$

If $f_{0}=0$ we can take $b=0$ for any prime p : so we can suppose that

$$
\begin{equation*}
f_{0} \neq 0 \tag{3}
\end{equation*}
$$

Suppose, if possible, that (2) has a solution only for the primes p in the finite set P (possibly empty). Let c be any integer which is divisible by all the $p \in P$. Then

$$
\begin{equation*}
f\left(f_{0}^{c}\right)=f_{0} r, \tag{4}
\end{equation*}
$$

where

$$
r=f_{n} f_{0}^{n-1} c^{n}+f_{n-1} f_{0}^{n-2} c^{n-1}+\ldots+1
$$

Received 5 March 1976.
is prime to c, and, in particular, is not divisible by any $p \in P$.
Since $f(X)$ is non-constant by hypothesis, we may certainly pick c so that $r \neq \pm 1$. Let p^{*} be a prime dividing r, so $p^{*} \vDash P$. By (4) we have

$$
f\left(b^{*}\right) \equiv 0\left(\bmod p^{*}\right)
$$

with $b^{*}=f_{0} c$. This contradicts the assumption that P contains all the primes p for which (2) is soluble and so proves the lemma.

Reference

[1] J.W.S. Cassels, "An embedding theorem for fields", BuZZ. Austral. Math. Soc. 14 (1976), 193-198.

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge,

Cambridge,
England.

