An embedding theorem for fields: Addendum

J.W.S. Cassels

The proof of Lemma 2 in [1] invoked elementary analytic number-theory. I have just realized that there is a proof which is entirely elementary. It is doubtless "well-known" (in the usual technical sense that it appears somewhere in the literature) and it is certainly "well-knowable" in Conway's terminology. However, as it renders the entire argument of my paper elementary, I give it here.

The lemma asserts that if

(1)
$$f(x) = f_n x^n + f_{n-1} x^{n-1} + \dots + f_0$$

is a non-constant polynomial with rational integral coefficients, then there are infinitely many primes p for which there is an integer bsatisfying

$$(2) f(b) \equiv 0 \pmod{p} \ .$$

If $f_0 = 0$ we can take b = 0 for any prime p: so we can suppose that

$$f_0 \neq 0 .$$

Suppose, if possible, that (2) has a solution only for the primes p in the finite set P (possibly empty). Let c be any integer which is divisible by all the $p \in P$. Then

(4)
$$f(f_0 c) = f_0 r$$
,

where

$$r = f_n f_0^{n-1} c^n + f_{n-1} f_0^{n-2} c^{n-1} + \dots + 1$$

Received 5 March 1976.

479

is prime to c , and, in particular, is not divisible by any $p \in P$.

Since f(X) is non-constant by hypothesis, we may certainly pick c so that $r \neq \pm 1$. Let p^* be a prime dividing r, so $p^* \notin P$. By (4) we have

 $f(b^*) \equiv 0 \pmod{p^*}$

with $b^* = f_0 c$. This contradicts the assumption that P contains all the primes p for which (2) is soluble and so proves the lemma.

Reference

 [1] J.W.S. Cassels, "An embedding theorem for fields", Bull. Austral. Math. Soc. 14 (1976), 193-198.

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, England.

480