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THE 7T-FULL TIGHT RIESZ ORDERS ON A(O) 

BY 

GARY DAVIS AND STEPHEN H. MCCLEARY 

Let G be a lattice-ordered group (/-group), and let t,ue G+ . We write tiru 
if t A g = 1 is equivalent to u A g = 1, and say that a tight Riesz order T on G is 
7r-full if t e T and t IT U imply ueT. We study the set ST^ of 7r-full tight Riesz 
orders on an /-permutation group (G, ft), ft a totally ordered set. In this 
description of results we assume that (G, ft) is transitive. If ft is discrete, we 
find that the /-group A (ft) of all automorphisms of ft has no 7r-full tight Riesz 
orders. Suppose now that ft is dense, and let G be A (ft) or any laterally 
complete /-subgroup of A (ft). Then G has 7r-full tight Riesz orders, all of 
which are compatible, and all maximal tight Riesz orders on G are 7r-full. The 
7r-full tight Riesz orders are precisely the sets consisting of G+ with some 
non-empty normal set of minimal prime subgroups deleted, so that any maximal 
tight Riesz order must consist of G+ with all conjugates of some minimal prime 
subgroup deleted. We obtain a one-to-one correspondence between ST^. and 
the set Sev of all ir-full /-ideals (^G) of G. Thus A(R), R the real numbers, 
has precisely four 7r-full (compatible) tight Riesz orders, two of which are 
maximal. This investigation of tight Riesz orders sheds new light on minimal 
prime subgroups of laterally complete /-groups. 

§1. Definitions. We say that g, k e G+ = {ge G | g > 1} are disjoint (written 
g Ik) if gAk = l. For any S^G, S x denotes the polar {geG: |g|-L|s| for all 
s e S}, a convex l-subgroup of G. When g,heG+ and g± = fi"1, we write grrh. 
(A IT-class is sometimes known as a filet or carrier of G.) We shall say that a 
subset X of G+ is 7r-full if xeX and XTT y imply y GX; and that a convex 
l-subgroup C of G is TT-ÎXXM if C+ is 7r-full. 

For any totally ordered set ft, the group A (ft) of order-automorphisms of ft 
becomes an /-group under the pointwise order, whereby / < g iff cof < <og for all 
o> G ft. Of special interest are ft = Z (the integers) and ft = IR (the real numbers). 
When G is an /-subgroup of A (ft), i.e. a subgroup which is also a sublattice, 
(G, ft) is called an l-permutation group. Support(g) means {œ ef t | cog^ co}, and 
when a subset 2 of ft contains support(g), we say that S supports g. 

When (G, ft) is an /-permutation group, \g\ _L |fc| iff support(g)H 
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support(k)= 0 . If every non-singleton interval of ft supports some 1 ^ / e G , 
then g 77 h if and only if the supports of g and h have the same topological 
closures (with respect to the order topology on ft). The same description of 77 
holds for A (ft) whenever ft is homogeneous, but as we shall not use this result, 
we omit the proof. However, the description is easily seen to fail for A (ft) 
when ft is M with each irrational replaced by a three point chain. 

Let W denote {ge G+ | g±r={l}}, the set of weak units of G No 77-full 
convex /-subgroup of G can meet W except for G itself. 

If W^ 0 , then W is a 7r-full normal filter on G+ , and is a tight Riesz order 
provided it is factorable. (For this and various subsequent statements, we 
assume that G contains more than one element.) 

We recall now some well known facts. Let g, heG+. Then g^Hh^^ 
(gAh)±A- [3, p. 2.5]. Hence (gAh)± = g±Uh±, where U denotes supremum in 
the lattice { g x | g e G + } ; for gxU hx = (g^H h±±)± = (g Ah)±±A- = (gA hf. Since 
also (gvfi)_L= g±Dh±, 77 is a lattice congruence on G+ , i.e. gt TT g2 and hA Trh2 

imply (gi A/ii) 77 (g2A/i2) and dually; and also they imply (gih^ TT (g2h2) be­
cause (gh) Tr(gvh). Moreover, g x ç h x implies (gAh) TT\X and (gvh) TTg, and 
in particular if W G W , (W Ah) 77h and w v h e W; for (g A/ I ) X = (g x x f lh x x ) x = 
h-Lu- = hx and (g v ft)x = gx n hx - gx. 

A tight Riesz order on an /-group G is a proper filter T of G+ (i.e. g > t e T 
implies geT and s,teT implies sAteT, and l ^ T ) which is normal (i.e. 
T8 = T for all g e G ) and factorable (i.e. T ç T2, which forces T=T2 since T is 
a filter). T is compatible if in addition inf T = 1. The collection of tight Riesz 
orders on G will be ordered by inclusion, as will the collection of convex 
/-subgroups of G 

We mention here one example of a 77-full tight Riesz order, due indepen­
dently to Davis and Fox [5] and to Ball [2]: W = {ge A+(U) \ support(g) is 
dense in U}, the set of weak units of A(U). 

A prime subgroup of G is a convex /-subgroup P of G for which gAh = 1 
implies g e P o r he P. The maximal tangents of a tight Riesz order T are the 
convex /-subgroups of G maximal with respect to not meeting T, and they 
constitute a normal set of primes. We denote the set of maximal tangents of T 
by Max(T). Reilly [16] has shown that T= G + \UMax(T) . Thus each tight 
Riesz order T is obtained by deleting from G+ a normal set of prime subgroups 
of G Conversely, deletion from G+ of a non-empty normal set of primes yields 
a normal proper filter on G+ which is a tight Riesz order provided it is 
factorable. Factorability is generally the main difficulty in producing tight Riesz 
orders, and often this difficulty is overcome by assuming that G is divisible, 
which makes factorability obvious. However, A (ft) is not always divisible. 

Of great importance will be the radical Rad(T) = f|Max(T) of a tight Riesz 
order T. Rad(T) is an /-ideal of G Ball [2] also treats Rad(T), which he writes 
as M(T). 
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PROPOSITION 1.1. Let G be any l-group, and let TeST^. Then each maximal 
tangent of T is IT-full, and Rad(T) is rr-full 

Proof. Let M be a maximal tangent of T. Then (M+)TT, meaning {ge 
G+ | g IT m for some m e M+}, is a convex subsemigroup of G+ containing 1. (If 
h < g 7T m, then h TT (gvm).) Hence the subgroup P of G generated by (M+)7r 
is a convex /-subgroup of G which has (M+)TT as its set of positive elements 
and thus is 7r-full. Since MD T= 0 and T is 7r-full, ? H T = 0 . Hence M = P, 
so that M is 7r-full. Since the maximal tangents of T are 7r-full, their 
intersection Rad(T) is also 7r-full. 

Thus every 7r-full tight Riesz order is obtained by deleting from G+ a 
non-empty normal set of 7r-full primes; and conversely given factorability. We 
shall find conditions under which every 77-full subset of G+ is factorable. 

§2. Sectional quasi-pseudo-complementarity and minimal prime subgroups. 
We shall make crucial use of the following lattice-theoretic notion. An /-group 
G is quasi-pseudo-complemented (QPC) if W^ 0 and if for any ge G+ , there 
exists g*eG+ such that g A g * = l and g v g * e W . More generally, G is 
sectionally quasi-pseudo-complemented (SQPC) if for any 1 < g < h, there exists 
g*eG+ such that g*^h, g A g * = l , and (gvg*)7rfe. This definition is un­
changed by omission of the requirement that g*^h; for g* can be replaced by 
g*Ah, and gv(g*Ah) = (gvg*)A(gv Ji) = ((gvg*)Ah) jrh. A similar argu­
ment shows that if G is QPC, it is also SQPC; and the converse holds when 
W ^ 0 . Thus SQPC is just a generalization of QPC to the case in which G 
lacks weak units. Observe that if G is SQPC and F is any ^r-full filter, then for 
any geG+, there exists g*eG+ such that g A g * = l and gvg*eF. 

The notion of SQPC has been treated by Spirason and Strzelecki [17] for 
vector lattices, by Keimel [13] for a number of algebraic systems, by Cornish 
[4] for lattices, and by Davis and Fox [5] for /-groups. A few of our results 
(2.3, 2.4, 2.5) can be found in these sources, though for convenience we prove 
them again here. 

G is said to be laterally complete if each pairwise disjoint subset of G has a 
supremum; and to be conditionally laterally complete if each pairwise disjoint 
subset of G which is bounded above has a supremum. For any O, A (Cl) is 
laterally complete, and its /-ideal B(ft) = {geA(fl) | support(g) is bounded} is 
conditionally laterally complete. 

Rick Ball and Colin Fox have independently observed that laterally complete 
/-groups are QPC. We prove here a slightly more general result. 

PROPOSITION 2.1. If G is laterally complete (resp., conditionally laterally 
complete), then G is QPC (resp., SQPC). 

Proof. We prove first that if G is conditionally laterally complete, then G is 
SQPC. Let / i > g e G + . Let {gj be maximal with respect to being a pairwise 
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disjoint subset of G such that for each i, g i g and gt < h. Since {&} has h as 
an upper bound, supjg} exists, and we denote it by g*. Then g A g* = 1, for if 
not, then since & ± g for each i, g*g~ 1vl would be an upper bound of {gj 
strictly smaller than g*. Also (gvg*)7rh, for gvg*<h and if there existed 
keG such that k j _ (gvg*) but not k 1 h, then k/\h would violate the 
maximality of {gj. This proves the proposition for conditionally laterally 
complete /-groups. For laterally complete /-groups, the proposition is estab­
lished once it is shown that W ^ 0 , and that follows from an argument like the 
one that just produced g*. 

The minimal prime subgroups of G will play a crucial role in the study of 
STV. Since the minimal primes have {1} as their intersection, G is never a 
minimal prime subgroup of itself (since we are assuming G^{1}.) We shall 
frequently use the well known fact that in any /-group G, a prime P is minimal 
if and only if for each peP+, there exists ge G+\P such that pAg = l [3, p. 
2.13]. From this it is immediate that every minimal prime P is a union of polars, 
namely P = [J{g± \ ge G+\P}. Thus in any /-group, all minimal primes are 
7r-full. We prove now that the converse holds precisely when G is SQPC. 

LEMMA 2.2 Let C he a 7T-full convex I-subgroup of an I-group G, and let 
KgeG. Then the 7r-full convex I-subgroup D of G generated by C and g has 
D+= {fe G+ | / < / ' 77 (cvg) for some / ' e G + , ceC+}. 

Proof. Clearly the set which we claim is D + is convex and contains 1. 
Moreover, it is a semigroup, for if fi7r(c1vg) and ft^fevg), then 
(/1/2) ^ ( f i v /2 ) ^ ( ( c i v g ) v ( c 2 v g ) ) = (c 1vc 2 )vg. Therefore the subgroup D 
generated by this set is a convex /-subgroup which has precisely this set as its 
positive set D+. D+ is 7r-full because if h 77/</'77 (cvg) , then h < 
(h v f ) 77 (fvf) = f 77 (c v g); i.e. D is 77-full. 

LEMMA 2.3. Let G be any l-group, and let l<keG. Let C be maximal 
among the ir-full convex l-subgroups of G which do not contain k. Then C is 
prime. 

Proof. Suppose by way of contradiction that g A h = 1 for some g,heC. 
Then the 77-full convex /-subgroup generated by C and g contains k, so by 
Lemma 2.2, k<k[ 77 (c1vg), and similarly k < k 2 ^ (c 2vh), where k[eG+ 

and q G C. Hence k < (k[ A k2) ^ ((ci v g) A (C2 V h)) = (c1 A C2) V (C1 A h) v 
(gAC2)v(gAh)e C since gAh = l, a contradiction. 

COROLLARY 2.4. Lef C be a convex I-subgroup of an l-group G. Then C is 
ir-full if and only if C is the intersection of a collection of ir-full prime subgroups 
of G. 

THEOREM 2.5. Let G be an l-group. Then the following are equivalent: 
(1) Gis SQPC. 
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(2) A prime subgroup P ^ G is ir-full if and only if it is a minimal prime 
subgroup. 

(3) Every ir-full convex l-subgroup C^ G is the intersection of the minimal 
primes containing it. 

Proof. Supose that G is SQPC. Let P ^ G be a 7r-full prime, and suppose 
that M is another prime such that M a P. Pick p e P+\M and pick p* e G+ such 
that pAp*= 1 and pvp*eG+\P (possible since G+\P is a 7r-full filter.) Since 
p A p * = l , p * e M c : P — a contradiction. 

Conversely, suppose that every 7r-full prime is a minimal prime. Let 1 < g < 
h. The polar gx is a 7r-full convex /-subgroup of G. By Lemma 2.2, the 7r-full 
convex /-subgroup D of G generated by g-1 and g has as its positive elements 
precisely {feG+ | / < / ' n(cvg) for some / ' e G + , c e lg 1 ) 1 } . Then f ieD, for 
otherwise D could be enlarged to a 7r-full convex /-subgroup D ' maximal with 
respect to not containing h; and then by Lemma 2.3, D' would be prime, but 
D ' could not be a minimal prime because geD' and g^^D'. Since ZteD, 
h < h' 77 (c v g) for some h' G G+ , C G (g-1)^. Hence h = (h A h') IT (h A (C V g)) = 
(Ji A c) v (h A g) = (h A c) v g. Thus ((h A c) v g) 7r h and (h A c) A g < c A g = 1, i.e. 
h AC serves as g*. 

We have shown the equivalence of (1) and (2). By Corollary 2.4, (2) implies 
(3). Conversely, if P ^ G is a 7r-full prime, then by (3), P is the intersection of 
the minimal primes containing it, each of which must be P since P is itself 
prime. Hence P is a minimal prime. 

Let H be a convex /-subgroup of an /-group G. Let Min(H) be the set of 
minimal prime subgroups of G which contain H, and let F(H) = 
G + \ U Min(H). If H is an /-ideal of G and if Min(H)^ 0 , then F(H) is a 
normal proper filter which is a tight Riesz order provided it is factorable. We 
denote by £„ the set of 7r-full /-ideals H(£G) of G. If G is SQPC and 
He2v, then fl Min(H) = H by Theorem 2.5, and F(H) is a ir-full tight Riesz 
order provided it is factorable. 

Ball introduces a related notion in [2]. He deletes from G+ the union of 
those primes which are minimal among the primes containing H, and calls the 
remainder U(H). He shows that when H^ G, U(H) = {xe G+ | g e G+ and 
xAyeH imply y e H}. We prove now that for 7r-full convex /-subgroups H in 
SQPC /-groups, U(H) = F(H). 

LEMMA 2.6. Let H be a Tr-full convex l-subgroup of an l-group G. Then every 
P minimal among the prime subgroups of G which contain H is ir-full. Hence 
U(H) is ir-full. 

Proof. Let P be minimal among the prime subgroups of G which contain H. 
Lemma 7 of [2] says that for every peP+, there exists xeG+\P such that 
x A p e M Now let girpeP+, and pick xeG+\P such that x A p e M . Then 
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(xAg) ir (xAp), so since M is 7r-full, x A g e M ç P . Since xeG+\P, geP+. 
This shows that P + is 7r-full, i.e. P is 7r-full. Then clearly U(H) is also 7r-full. 

In view of Theorem 2.5, this lemma yields 

PROPOSITION 2.7. Let G be SQPC, and let H^ G be a IT-full convex l-
subgroup of G Then every P minimal among the prime subgroups of G which 
contain H is in fact a minimal prime subgroup of G Thus F(H) = U(H) = 
{x e G+ | y G G+ and x A y G H imply y G H}. 

PROPOSITION 2.8. Let G be QPC. Let geG+, and pick g*eG+ such that 
gAg*=l and gvg*eW. Then each minimal prime subgroup of G contains 
precisely one of the two elements g and g*. Furthermore, for any Te 5" ,̂ geT if 
and only if g*eRad(T). 

Proof. Let P be a minimal prime. Since gAg* = 1, either geP or g* G P. If 
both lie in P, then g v g* e P, so that P meets W, which is impossible since P is 
minimal and thus 7r-full. Now let Te ZF^. The maximal tangents of T are 7r-full 
by Proposition 1.1 and thus are minimal. If gGT, then g lies outside all 
maximal tangents of T, so g* lies in all of them and thus in their intersection 
Rad(T); and the converse is proved by reversing this argument. 

Our nicest description of ST^ (Theorem 4.1) requires that G be more than 
just SQPC, but many of its conclusions hold for all SQPC /-subgroups. 

THEOREM 2.9. Let G be SQPC (e.g. conditionally laterally complete). Then 
(1) the following are equivalent for tight Riesz orders T: 

(a) TeST^ (i.e. T is IT-full.) 
(b) all maximal tangents of T are minimal prime subgroups of G. 
(c) T^W. (The equivalence of (c) holds when W ^ 0 ; but W ^ 0 does 

not guarantee that W e J J 
(2) each TeST^ is compatible. 
(3) for Tl9 T 2 e y . Max(T1)çMax(T2) iff T2^Tt. 
(4) T —> Rad(T) is an o-embedding (preserving order both ways) of ST^ into 

<£„; and Max(T)-Min(Rad(T)), so that T=F(Rad(T)) = 
{x G G+ I y e G+ and x A y G Rad(T) imply y e Rad(T)}. 

(5) for TeST^ Rad(T) = {l} if and only if T= W. 

REMARK. The integers Z serve as a counterexample to various attempts to 
strengthen these conclusions. However, Z is in a sense the only kind of 
counterexample which does so; cf. Theorem 5.1. 

Proof. Our proof that (a) implies (b) is essentially a part of the proof of 
Theorem 10 of Davis and Fox [5]. Let M be a maximal tangent of Te?F, so 
that M is prime, and pick t e T. For any m G M+ , there exists m* eG such that 
mvm*eT and thus m*^M; and such that m A m* = 1. Hence M is a minimal 
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prime. The converse follows (in any /-group at all) from the fact that minimal 
primes are 7r-full. 

It is easily seen that in any /-group, all 7r-full tight Riesz orders contain W. 
Conversely (assuming W^ 0 ) , let T^W. Let M be a maximal tangent of T. 
For any meM+, there exists m*eG such that mvm*eW, so that m*^M; 
and such that mAm*= 1. Hence M is a minimal prime. 

For (2), let Te ST^. If 1 < g e G, then there exists g*eG such that gvg*eT 
and g A g * = l , which guarantees g2i^gvg*. (If G is represented as an /-
permutation group (G, Q), then when co <o)g, a)g2>(o(g vg*).) The rest of the 
argument we borrow from Ball [2]: Since T is factorable, gvg* = txt2 for some 
tu t2e T. If g < each ri5 then g2^txt2

 = g vg*. Hence g is not a lower bound for 
T, showing that inf T = 1. 

Suppose TX^T29 TteSr^ Let MeMax(T2). Then MnTx = 0, so M ç M ' 
for some M'eMax(T1). But M' is a minimal prime, so M = M ,GMax(T1). This 
shows that TX^T2 implies Max(T2)^Max(T1), and the converse is clear. 

Now we prove (4) by Proposition 1.1. Rad(T)eiÇ7r. Suppose 7 \ ç T 2 , Tt e 
&„. Then Max(T2)çMax(T1), so that fl Max(T1)çMax(T2), i.e. Rad(Ti)ç 
Rad(T2). On the other hand, suppose te Tr\T2. Then teM for some maximal 
tangent of T2. Since M is a minimal prime, we may pick t'e G+\M such that 
t/\t' = 1. Because teT^ t lies in no maximal tangent of Tl5 so f' lies in every 
maximal tangent of T1 and thus in Rad(T!). Thus r'eRad(T1)\Rad(T2). Hence 
T —> Rad(T) is an o-embedding. 

Since all maximal tangents of T are minimal primes, Max(T)^Min(Rad(T)). 
Now let M G Min(Rad(T)). Then M n T = 0 . For if t e M H T, pick t* G G such 
that tvt*e T\M and f A f* = 1. Since teT, t lies in no maximal tangent of T, so 
t* lies in each maximal tangent of T and thus in Rad(T), which is contained in 
M. But then tvt*eM, a contradiction. Hence MHT= 0 , so that M is 
contained in and thus equal to a maximal tangent P of T. Hence 
Min(Rad(T))çMax(T). 

Lastly, (5) is a translation of the fact that in any /-group, W is obtained by 
deleting from G+ the union of any collection of minimal primes whose 
intersection is {1}. 

§3. Factorability of ir-full normal filters 

LEMMA 3.1. Let (G, II) be any I-permutation group, and let {gj be any 
pairwise disjoint set for which supjgj} exists. Then this sup is pointwise on 
U support(gj), i.e. if co Gsupport(gj) for some i, then a) sup{gj} = &>&. 

Remark. Such a sup need not be pointwise throughout ft. Let G = 
{geA(U)\3ngel+ such that VCUG[R, (o> + ng)g = cog + ng}. Let z be translation 
by +1 and pick KfeA(U) supported by the interval ( - | , +|). For i > 0 , let f 
be the (pointwise) sup of {/(z"} \nel+, and n can be divided by 2 precisely i 
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times}. Thus, for example, /0 "has a copy of / at each odd integer". Each ft e G, 
and {£} has a sup in G, namely / ' v / , where / ' is the pointwise sup of {£}. (/' vf 
"has a copy of / at each integer".) Hence sup{/j} is not pointwise on support(/). 

Proof of Lemma 3.1. Let s = sup{g<}. Suppose co<cogi<cos. On the one 
hand, sgi1 =sup{g, \jfi}. But œ<cosgi\ so (sgi^g^vKsgJ1. Since {&} is 
pairwise disjoint, ( s g r ^ g ^ v l is also an upper bound for {gjlji'i}, a con­
tradiction. 

An o-block of an /-permutation group (G, ft) is a convex subset A of ft such 
that for any geG, either A g = A or A g H A = 0 . If (G, ft) is transitive and ft is 
discrete, ft is the disjoint union of o-blocks which are copies of the ordered set 
Z of integers. This is the kind of o-block which causes trouble, and we now 
generalize to the intransitive case. We shall say that an o-block A of (G, ft) is a 
1-block if { g e G | Ag = A}, restricted to A, is o-isomorphic to the o-group Z. 
(This does not force A to be o-isomorphic to the ordered set Z). We shall refer 
to the element corresponding to I G Z as "translation by + 1 " . Any transitive 
(G, ft) on a dense ft has no Z-blocks. 

LEMMA 3.2. Let (G, ft) be a laterally complete l-permutation group, and 
suppose teG+ has the property that there is no 1-block A of (G, ft) for which 
Af = A and t |A is translation by + 1. Then t can be factored as t=tlt2 with 
tu t2 G G+ and tx TT t TT t2. 

Proof. Let {sf} be maximal with respect to 
(a) for each i, steG and 1 < ^ < f, 
(b) st 1 Sj when i ̂  j , 
(c) for each i, {co | co < coŝ  = cot} does not support any l ^ g e G . 
We use lateral completeness to form ^ ^ s u p l ^ j ^ r (except that if {st}= 0 , 

we let t2=l.) We claim that t2 irt. Suppose by way of contradiction that there 
exists 1 < u such that u 1 t2 (and hence u ± st for all i), but not u 1 f ; and with 
no loss of generality, suppose that u < t. Replacing u by u2 A £, we may assume 
also that for any cu such that co < cow, cou is not the successor of co in the orbit 
OJG except perhaps when œu = a)t. Let A = {co | co < (ou — cot}. If A does not 
support any 1 ̂  g e G, we contradict the maximality of S. Thus we may pick 
1 < g e G with support(g) ç A. We wish to pick <o e support(g) and heG+ such 
that co<ù)h<ù)u. We can do this unless for all to e support(g) ( ç support(w)), 
cow is the successor of a) in coG and hence OJU = cot. But in that case, when 
a) G support(g), A = {p | cof~n < p < cofn for some n G Z+} would be an o-block of 
(G, ft). By hypothesis, A could not be a Z-block, so there would exist keG 
which fixed co and thus also each cotn, and moved strictly down some point v 
between some cofn and <otn+1. Then vC1 <cotn <vk <v, so that v would not be 
the successor of vr1 in vG, a contradiction. Thus we may indeed pick 
coGsupport(g) and heG+ such that co<coh<cou. Letting w = uAgAh, we 
have l<co<w, co<cow<cow, and support(w)ç A. 
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Among the pairwise disjoint subsets of G which contain w and whose 
elements have support contained in A, pick one which is maximal, and call it X. 
Use lateral completeness again to form x = supX, and let y = (JCAW) - 1 W< U. 

Then l < y < w < f , and for all i, y 1 st. Since coesupport(w), Lemma 3.1 
guarantees that cox = cow<cou, so that l < y . Any l<feG supported by 
{/x | jit < jxy = ut} ç {JJL | jut < juty = JLLM = jui} ç {JLL | fxx = /LL} H A would violate the 
maximality of X, so y satisfies condition (c). This violates the maximality of {st}. 
Therefore t2ir t. (Incidentally, this means that {st} must have been non-empty.) 

Let tx = tÎ21, so that ttt2= t and 1 < tx < f. We claim ^ 77 f. Suppose by way of 
contradiction that there exists \<u such that u 1 tx but not u 1 £, with w<£. 
Then support(w) ^{co\co<cot2 = cot}. Recall that t2 = supj^}, so that 
f2w_1^:some si9 and thus support(w) H support^) ^ 0 . Thus uAst>l. Also, 
support(w Ast) = support(w)Hsupport^)^{co\co<cot2 = cot}Dsupport^)ç{co \ 
co<cosi = cot} since sf = t2 on support(Sj) by Lemma 3.1. Letting g=uAsh we 
contradict condition (c) for sh proving the lemma. 

THEOREM 3.3. Let (g, ft) be a laterally complete I-permutation group having 
no Z-blocks. Then every ir-full subset of G+ {and in particular every 7r-full 
normal filter) is factorable. 

Remark. The hypothesis of this theorem is satisfied by any transitive later­
ally complete (G, ft) for which ft is dense. 

§4. The correspondence between ST^ and SB^ 

THEOREM 4.1. Let (G, ft) be a laterally complete l-permutation group having 
no 2-blocks. Then all the conclusions of Theorem 2.9 obtain. Moreover: 

(1) W is the smallest member of ST^, and the maximal tangents of W are 
precisely the minimal prime subgroups of G. 

(2) ST^ consists precisely of the sets G + \U{MJ, where {MJ is a non-empty 
normal set of minimal prime subgroups of G; and Rad(G+) \ | J{M})= DM-

(3) Each maximal (compatible) tight Riesz order lies in ST^, and has the form 
G+\\JgeGMg for some minimal prime subgroup M of G. 

(4) ST^ is closed under arbitrary intersection. For Tx,T2e ST^, MaxfTi H T2) = 
Max(T1)UMax(T2); and if T1 and T2 are incomparable, T1HT2 cannot have 
the form G+\\JgeGMg for any minimal prime subgroup M of G. 

(5) T-^Rad(T) is an o-isomorphism from ST^ onto SB^; its inverse is 
H-* F(H) = {xeG+\yeG+ and xAy eH imply yeH}. 

Remark. The hypotheses of this theorem are satisfied by any transitive 
laterally complete (G, ft) for which ft is dense. But even then, as we shall see 
later, G + \U g e G Mg c a n failto t>e maximal even when M is a minimal prime. 

Proof. By Theorem 3.3, each 77-full subset of G+ is factorable. Hence W is 
a (7r-full) tight Riesz order, and by Theorem 2.9 is the smallest such. By 
Theorem 2.9, the maximal tangents of W are minimal primes. Conversely, let 
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M be any minimal prime. Since M is 7r-full, MDW= 0 . Hence M is 
contained in and thus equal to a maximal tangent of W. 

Each TeST^ is simply G + \ l jMax(T) . The maximal tangents of T constitute 
a normal set of primes. By Proposition 1.1, they are 7r-full, and then by 
Theorem 2.5, they are minimal. Conversely, if {MJ is a non-empty normal set 
of minimal (hence 7r-full) primes, then T= G+\\J{Mt} is a 7r-full normal 
proper filter, and being factorable by Theorem 3.3, it is a tight Riesz order. 
Each Mj is contained in and thus equal to a maximal tangent of T, so 
Rad(T)= f)Max(T)^{~){Mi}. Suppose by way of contradiction that there 
exists l < g e n { M } \ R a d ( T ) , so that g^P for some other maximal tangent P 
of T. Pick g*eG such that g A g * = l and gvg*eW. Since g^P, we have 
g*eP and thus g* ^ T. On the other hand, g lies in each Mt, so by Proposition 
2.8, g* lies in no Mi? forcing g*eT, a contradiction. Therefore Rad(T) = 

For (3), let T be a maximal tight Riesz order (and of course, a maximal 
compatible tight Riesz order is also maximal as a tight Riesz order.) Let P be a 
maximal tangent of T, and let M be a minimal prime contained in P. Then 
G+\Ug&GMg is a tight Riesz order containing T. By the maximality of T, 
T = G + \ U g e G M 8 . 

Since the intersection of any collection of 7r-full tight Riesz orders is 
non-empty (because it contains W) and 7r-full, it is factorable. Thus ST^ is 
closed under intersection. We shall return to (4) after proving (5). 

In view of Theorem 2.9, (5) will follow once we know that every He^ 
is Rad(T) for some TeST^. By part (2) of the present theorem, 
F(H) = G+\UMin(H)GST7r and Rad(F(H)) = fl Min(H). By Theorem 2.5, 
fl Min(H) = H. 

Finally, we finish (4). Let T1? T2eïïv. By (3) of Theorem 2.9 M a x ^ H T2) 2 
Max(T1)UMax(T2). Let M e M a x ( T 1 n T2). Then M 3 R a d ( T 1 H T2) = 
Rad(Ti) PlRad(T2) by part (5). Since M is prime, M contains either Rad(Tx) or 
Rad(T2). Since M is a minimal prime, part (4) of Theorem 2.9 guarantees that 
MeMax(T1)UMax(T2). Thus M a x ^ D T2) = Max(T1)UMax(T2). Suppose 
T1C\T2= G + \ U g e G M 8 f ° r some minimal prime M. Then MeMax(T 1 PiT2) = 
Max(T1)UMax(T2), and we may suppose MeMaxiT^. Then T x ç 
G + \ U g e G M* = 7\ H T2, so T, c T2. 

PROPOSITION 4.2 Under the hypotheses of the previous theorem, let T be any 
tight Riesz order whatsoever. Then TTT is a (TT-full) tight Riesz order, and 
TTT= TVW in the partially ordered set of all tight Riesz orders. 

Proof. It is easily checked that T7r is a 7r-full normal proper filter and thus 
factorable. Since a tight Riesz order F contains W if and only if F is 7r-full, 
T T T - T V W . 

§5. 0-2-homogeneous ft. ft is said to be 0-2-homogeneous if for all 0 < 
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y, cr<T, there exists geA(12) such that Pg = a and yg = r. 12 has countable 
terminality if H has a countable coinitial subset and a countable cofinal subset. 
For any 12 enjoying these two properties, A (12) has precisely three proper 
/-ideals [10]: AA = {ge A (12) |support(g) is bounded below}, its dual Ap, and 
B = AA n A p . Obviously these /-ideals are 7r-full. The set W of weak units of 
A (12) is {ge A+(12) | support(g) is dense in 12}. Let TA = {ge A+(12) | for some 
coeft, support(g) H (-oo? &) is dense in (-oo, co)} and let Tp be the dual of TA. 
Part of the next theorem is due to Davis and Fox [5]. 

THEOREM 5.1. Let 12 be o-2-homogeneous and have countable terminality 
(e.g. 12 = U). Then A (12) has precisely four rr-full (compatible) tight Riesz orders: 
TA and Tp (which are the only two maximal tight Riesz orders on A(12), TA H Tp, 
and W. The maximal tangents of TA are precisely the minimal prime subgroups 
containing AA, so that Rad(TA) = AA; and dually for Ap. Max(TA Pi Tp) = 
Max(TA)UMax(Tp), and Rad(TA H Tp)-B. The maximal tangents of W are 
precisely the minimal prime subgroups, and Rad(W) = {l}. 

Proof. X^ has precisely four members, and the characterization F(H) = 
{x e G+ | y e G* and x A y e H imply y e H} leads easily to the four 7r-full tight 
Riesz orders TA, Tp, TA H Tp, and W. The rest follows from Theorem 4.1. 

For 12 as in the theorem, let M be a minimal prime of A (12) which does not 
contain B. (Such primes exist since the intersection of all minimal primes is 
{1}.) Then A+(12)\Ug e A(a)Mg has radical {1}, so A + ( n ) \ U g e A ( a ) M 8 is the 
smallest 7r-full tight Riesz order W. Thus A+(12)\Ug e A ( n ) M8 can fail to be 
maximal even when M is a minimal prime. 

COROLLARY 5.2. Let 12 be as in the theorem. Let M and P be minimal prime 
subgroups of A(12), with P^B but MiB. Then U ^ ^ ^ U g ^ M 8 . 

Proof. P ^ J B - R a d ( T A n T p ) = Rad(TA)riRad(Tp), so P contains either 

Rad(TA) = AA or Rad(Tp) = Ap, say the former. Hence (\JgGMa)P
g)+ = 

A+(12)\TAc=A+(n)\W=Ug eA(n)M 8 bY t h e a b o v e remarks. 

It would be interesting to know whether all minimal primes P containing AA 

are conjugate. We have been unable to decide this. 

EXAMPLE 5.3. Let G = {ge A(R) \ (<o + l)g = a>g + 1, VweIR}. Then W = 
{g e G I support(g) is dense in U} is the only 7r-full (compatible) tight Riesz 
order on G. 

REMARK. The same statement (and proof) apply to any "full and periodically 
o-primitive" /-permutation group; see [14] for definition and results. For the 
example as it stands, it was observed by Ball [2] that W is a tight Riesz order. 

Proof. G is laterally complete [15, Theorem 19], and (G, 12) has no proper 
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o-blocks and thus no Z-blocks. Moreover, G is /-simple [11], so «2^ contains 
only {1}. 

EXAMPLE 5.3. Let G = {ge A(U) \ 3ng eZ+ such that VcoetR, (<o + ng)g = 
a)g + ng}. Then W = {ge G | support(g) is dense in R} is the only 7r-full (com­
patible) tight Riesz order on G. 

Outline of proof. G is SPQC, on Theorem 2.9 applies. Since G is /-simple 
[12], G has at most one 7r-full tight Riesz order. Despite the fact that G is not 
laterally complete, it can be seen directly that W is factorable. Thus W is a 
77-full compatible tight Riesz order. A similar compatible tight Riesz order for 
G (not 7T-full) was found by Glass [8, Example 3]. 

Now we drop the hypothesis of countable terminality. The /-ideal structure 
of A (ft) becomes vastly more complicated (Ball, [1]). First we prove a lemma 
due to Andrew Glass and Charles Holland [7, 314, proof omitted]. 

LEMMA 5.4. Let ft be o-2-homogeneous. Then all l-ideals of A(Q) are ir-full. 

Proof. Let H be an /-ideal of A (ft), let heH+, and grrh. Since every 
non-singleton interval of ft supports some l ^ / e A ( f t ) , support(g) and sup­
por t^ ) have the same topological closures. Let coGsupport(g)Hsupport(h), 
and let ft denote the Dedekind completion of ft. Let ô)0 = ù). For n > l , let 
côn be the smallest f e f t such that r^ajn_1 and f is fixed by g if n is odd 
(resp. fixed by h if n is even). (Thus o)1 = sup{o)gl \ieZ+}.) Let P((o) = 
sup{con | n e Z+} e ft. Begin again at <o and define â(co) dually. Then the 
ft-interval A(o>) = (â(co), j3(o>)) is o-2-homogeneous and has countable termi­
nality, and â(co) and /3(<o) are fixed by both g and h. Let g denote the 
restriction of g to A(co), and h the restriction of H. Since girh, support(Zi) is 
bounded neither above nor below in A(o>). By the proof of Theorem 6 in [10], g 
is exceeded by the supremum of some two conjugates of h. Splicing together 
the various A(co)'s, and bearing in mind that g TT h, we see that g is exceeded by 
the supremum of some two conjugates of h. Hence g G H, proving the lemma. 

PROPOSITION 5.5. Let ft be o-2-homogeneous. Then ST,n is o-isomorphic to the 
set of all l-ideals (^A(ft)) of A (ft). 

For o-2-homogeneous ft, Ball [1] has discovered a great deal about the 
/-ideal structure of A (ft), and this information can be translated into information 
about ST^. Every normal subgroup of A (ft) is in fact an /-ideal, so SB^ includes 
all normal subgroups ^A(ft) . Tp is maximal if and only if ft has a countable 
cofinal subset; and dually. (This was established by Davis and Fox in [5] and 
[6].) If ft has coinitial and cofinal subsets of cardinality no greater than X0, 
each 7r-full tight Riesz order can be enlarged to a maximal (7r-full) tight Riesz 
order. For other information see [1]. 
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§6. ^ for arbitrary A (ft) 
Even when A (ft) has Z-blocks, there is a one-to-one correspondence be­

tween ^ ( A ( f t ) ) and «SPW(A(ft) | ft, ft), where A(ft) | f t is the /-homomorphic 
image of A (ft) obtained by restriction to a certain subset ft of ft. We need to 
delete enough of ft so that the action of A (ft) on the remainder ft has no 
Z-blocks. Let ft0 = ft; when i is not a limit ordinal, let ftf be ft^ with the 
Z-blocks of A (ft) | ftj_i deleted; and when i is a limit ordinal, let ftt be f]j<ci fty. 
Eventually ftf = fti+1 for some i, this ftt we denote by ft. By induction, each flt 

is a fixed block of A (ft), i.e. ftiA(ft) = fti. In particular, ft is a fixed block of 
A (ft). The action A (ft) | ft is an /-homomorphic image of A (ft). A word of 
warning: A (ft) | ft need not be all of A (ft). Also, it may happen that ft= 0 , 
and in this case we establish the convention that A(ft) | f t = {l}, so that 
2v(A(to)\ ft) = 0 . When S^A(Ù), we denote by Ex(S) the expansion {fe 
A (ft): /1 ft G S}; and of course Ex+ denotes the set of positive elements of Ex. 
In the following theorem, the conclusions of Theorem 2.9 all obtain, but here 
we get also a different and more interesting description of ^.(A(ft)). 

THEOREM 6.1. Let ft be any totally ordered set. Then an o-iso-
morphism between ST^(A(ft)) and i?w(A(ft) | ft) is given by T -> Rad(T | ft), the 
inverse map being H —> Ex+(FMa) | â(H)). (In particular, A (ft) has a ir-full 
tight Riesz order if and only if A(ft) | f t^{l}.) When T+*H, Max(T) = 
{Ex(M)|MEMax(FA ( a ) |n(H))}, and Rad(T) = Ex(H). 

Remark. When ft is homogeneous and discrete, this theorem guarantees 
that A (ft) has no 7r-full tight Riesz orders (and its proof guarantees that no 
7r-full proper filter on A+(ft) is factorable.) However, A (ft) has other tight 
Riesz orders; indeed, unless ft is o-isomorphic to Z, A (ft) has compatible tight 
Riesz orders (Glass, [9]). Whether or not ft is homogeneous, some additional 
information about ST^. can be obtained from Theorem 2.9, though we shall not 
bother to record it here. 

Proof. Suppose first that ft ^ 0 . A (ft) | ft is laterally complete because the 
pointwise supremum of any pairwise disjoint subset of A(ft)|ft is again 
in A(ft) |f t . By construction, A(ft) | f t has no Z-blocks. Hence Theorem 
4.1 applies to (A(ft)|ft, ft), in particular the correspondence between 
^ ( A ( f t ) | f t ) and iPw(A(ft) | ft). For any SeST^ (A(ft)|ft), we clearly have 
Ex(S)e 3^.(A(ft)). To establish the desired o-isomorphism, it remains to show 
that every TG^"7r(A(ft)) arises in this way. 

Let Te ST^, and let te T. Let t' be any element of A+(ft) which agrees with t 
on ft. We must show that t' e T Writing t = t^iU e T) and letting s = tx A t2, we 
have seT such that s 2 < t. We let v be that element of A (ft) which agrees with 
s except on subsets S of ft which are maximal with respect to " 2 Ç ft\ft and 2 
is convex in ft" and satisfies 2s = 2 ; and on any such 2, r is translation by +1 
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on any Z-block A ç S for which s \ A^ 1A, and fixes all other points of 2 . Then 
r 7T s; for if not, there would exist 1 ̂  g G A (H) supported by a set consisting of 
some X of the above sort with its Z-blocks deleted, and it is easily seen by 
induction (cf. the definition of Ù) that this cannot happen. Since rirs, re T, so 
r=rlr2(rieT). On each Z-block A for which r is translation by +1 , either 
rt = 1A or r2=

: 1A. Hence rlAr2 fixes all points in such A's, and thus fixes all 
points in 2's of the above form; and r1 A r 2 < s on the rest of ft. B u t r 1 A r 2 e T , 
and rjAr2< t ' (since for any 2 maximal with respect to the above conditions 
but for which S S T ^ S , we have 2s > 2 since 2 is an o-block of A (ft), and thus 
2(/i A r 2 ) < 2 s < 2 s 2 < 2 f = 2 0 - Therefore f 'eT, as claimed. 

This shows that if any re T is changed arbitrarily off ft (subject to remaining 
positive), then it remains in T. Hence T = Ex+(T|ft). Then since l<i^T, 
la i T | ft. It follows easily that T | ft e #"„(A(ft) | ft). Thus indeed T = Ex+(S) 
for some S e ^.(A(ft) | ft). This establishes the o-isomorphism when ft^0. 
When ft= 0 (so that £6^(A(Ù) | ft)= 0 by convention), the argument in the 
preceding paragraph shows that any Te^7T(A(ft)) would contain l a , so that 
yw(A(n)) = 0 . 

Concerning maximal tangents, observe that if M is a maximal tangent of 
T e 5^(A(ft)), then since changing an element of T off ft (to another positive 
element) leaves us in T, E x ( M | f t ) < T = 0 , so M = Ex(M|ft) . The rest we 
leave to the reader. 

The original draft of this paper, by the first author, was written independently of the work of Ball 
[2]. The contributions of the second author were made while visiting La Trobe University, and he 
wishes to express gratitude for the support and warm hospitality he received there. 

There is some overlap with our work here and Bigard's work on 7r-full subgroups (which he calls 
z-subgroups) of an /-group. These results can be found in Lecture Notes in Mathematics, Springer 
Verlag, Volume 608, by A. Bigard, K. Keimel and S. Wolfenstein. 

The referee points out that Lemma 3.1 is probably well-known. However, we know of no 
reference to it in any of the work on ordered permutation groups. 
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