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Abstract
Let (𝑆, 𝐿) be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence
of regular components of all Severi varieties of irreducible nodal curves in the linear system |𝐿 |, that is, for any
number of nodes 𝛿 = 0, . . . , 𝑝𝑎 (𝐿) − 1. This solves a classical open problem and gives a positive answer to a recent
conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
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1. Introduction

Let S be a smooth, projective complex surface and L a line bundle on S. Let 𝑝𝑎 (𝐿) = 1
2 𝐿 · (𝐿 + 𝐾𝑆) + 1

denote the arithmetic (or sectional) genus of L. For any integer 𝛿 satisfying 0 ≤ 𝛿 ≤ 𝑝𝑎 (𝐿), we denote
by 𝑉|𝐿 |, 𝛿 (𝑆) the Severi variety parametrising irreducible 𝛿-nodal curves in |𝐿 |. A heuristic count shows
that the expected dimension of 𝑉|𝐿 |, 𝛿 (𝑆) is dim(|𝐿 |) − 𝛿. Severi varieties were introduced by Severi
in [30, Anhang F], where he proved that all Severi varieties of irreducible 𝛿-nodal curves of degree d
in P2 are nonempty and smooth of the expected dimension. Severi also claimed irreducibility of such
varieties, but his proof contains a gap. The irreducibility was proved by Harris in [21].

Severi varieties on other surfaces have received much attention in recent years, especially in con-
nection with enumerative formulas computing their degrees (see [1, 2, 3, 14, 19, 22, 26, 36, 37]).
Nonemptiness, smoothness, dimension, and irreducibility for Severi varieties have been widely inves-
tigated on various rational surfaces (see, e.g., [20, 31, 33, 34, 35]), as well as K3 and abelian surfaces
(see, e.g., [5, 24, 25, 26, 27, 32, 39]). Extremely little is known on other surfaces. In particular, Severi
varieties may have unexpected behaviour: Examples are given in [7] of surfaces of general type with
reducible Severi varieties, and also with components of dimension different from the expected one.

In this paper, we consider the case of Enriques surfaces. If S is an Enriques surface, it is known (cf. [9,
Proposition 1]) that 𝑉|𝐿 |, 𝛿 (𝑆), if nonempty, is smooth and every irreducible component has dimension
either 𝑝𝑎 (𝐿) − 𝛿 − 1 or 𝑝𝑎 (𝐿) − 𝛿. Moreover, if S is general in moduli, the latter case can only occur
if L is 2-divisible in Pic(𝑆). Any component of dimension 𝑝𝑎 (𝐿) − 𝛿 − 1 is called regular, and these
components can only be nonempty for 𝛿 ≤ 𝑝𝑎 (𝐿) − 1, that is, they parametrize nodal curves of genus
at least one. The nonemptiness problem has remained open until now.

For any integer 𝑔 ≥ 2, let E𝑔 denote the moduli space of complex polarised Enriques surfaces (𝑆, 𝐿)
of (sectional) genus g, that is, S is an Enriques surface and L is an ample line bundle on S, such that
𝐿2 = 2𝑔 − 2. Thus, g is the arithmetic genus of all curves in the linear system |𝐿 |. The spaces E𝑔 have
many irreducible components. A way to determine this has recently been given in [23], after partial
results were obtained in [10] (cf. Theorem 5.7 below).

Denote by E𝑔 [2] the locus in E𝑔 parametrising pairs (𝑆, 𝐿), such that L is 2-divisible in Num(𝑆). The
main result of this paper settles the existence of regular components of all Severi varieties on general
polarised Enriques surfaces outside E𝑔 [2]:

Theorem 1.1. Let (𝑆, 𝐿) be a general element of any irreducible component of E𝑔\E𝑔 [2]. Then𝑉|𝐿 |, 𝛿 (𝑆)
is nonempty and has a regular component, of dimension 𝑔 − 1 − 𝛿, for all 0 ≤ 𝛿 < 𝑔.

By [9, Corollary 1], the theorem follows as soon as one proves the case of maximal 𝛿, that is, 𝛿 = 𝑔−1,
in which case, the parametrised curves are elliptic.

We note that Theorem 1.1 implies a conjecture due to Pandharipande and Schmitt regarding smooth
curves of genus 𝑔 ≥ 2 on Enriques surfaces (see [28, Conjecture 5.1]). Our result implies this conjecture
for curves whose classes are not 2-divisible (see [28, Proposition 2.2 and text after Conjecture 5.1]).

We shall prove Theorem 1.1 by degenerating a general Enriques surface to the union of two surfaces
R and P, birational to the symmetric square of a general elliptic curve and the projective plane,
respectively, and glued along a smooth elliptic curve T numerically anticanonical on each surface. We
need the assumption that L is not 2-divisible to ensure that the degenerations of the curves we are
interested in do not contain the curve 𝑇 = 𝑅 ∩ 𝑆 (see Lemma 3.6), which is well known to be a major
issue in the general context of degenerations.

We introduce the degenerations we need in Section 2. On such a semistable limit, we identify suitable
curves that deform to elliptic nodal curves on the general Enriques surface and with the prescribed linear
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equivalence class that are rigid, that is, they do not move in a positive dimensional family. As remarked
above, this suffices to prove the theorem. The aforementioned suitable curves consist, apart from some
(−1)-curves as components, of an irreducible nodal elliptic curve 𝐶𝑅 on R and an irreducible nodal
rational curve 𝐶𝑃 on P intersecting at one single point on T, where both 𝐶𝑅 and 𝐶𝑃 are smooth and
have a contact of high order. Such curves are members of so-called logarithmic Severi varieties on the
surfaces on which they lie. We develop all necessary tools and results on such varieties on the two types
of surfaces in question in Section 3.

The analysis of the conditions under which the limit curves actually deform to rigid nodal elliptic
curves on the general Enriques surface is performed in the crucial Section 4. This includes the most
delicate part of our proof (Propositions 4.2 and 4.3), which consists in showing that the abovementioned
curves 𝐶𝑅 and 𝐶𝑃 can be put together nicely. We end up eventually with numerical conditions to be
verified by the line bundles determined on each component of the limit surfaces. An important ingredient
next is the description of all components of moduli spaces of polarised Enriques surfaces in terms of
decompositions of the polarising line bundles into effective isotropic divisors as developed recently in
[10, 23], which we review in Section 5. The corresponding identification of suitable isotropic Cartier
divisors on the limit surfaces is done in Section 6. Finally, Section 7 is devoted to exhibiting, for each
component of the moduli spaces of polarised Enriques surfaces, a suitable isotropic decomposition
of the limit polarising line bundle, such that its restriction on each component verifies the conditions
necessary to deform the curves mentioned above.

2. Flat limits of Enriques surfaces

In this section, we will introduce the semistable degenerations of general Enriques surfaces that we will
use in our proof of Theorem 1.1.

Let E be a smooth elliptic curve. Denote by ⊕ (and �) the group operation on E and by 𝑒0 the neutral
element. Let 𝑅 := Sym2 (𝐸) and 𝜋 : 𝑅 → 𝐸 be the (Albanese) projection map sending 𝑥 + 𝑦 to 𝑥 ⊕ 𝑦.
We denote the fibre of 𝜋 over a point 𝑒 ∈ 𝐸 by

𝔣𝑒 := 𝜋−1 (𝑒) = {𝑥 + 𝑦 ∈ Sym2 (𝐸) | 𝑥 ⊕ 𝑦 = 𝑒 (equivalently, 𝑥 + 𝑦 ∼ 𝑒 + 𝑒0)},

which is the P1 defined by the linear system |𝑒 + 𝑒0 | (here, and throughout the paper, ∼ denotes linear
equivalence of divisors). We denote the algebraic equivalence class of the fibres by 𝔣. Symmetric products
of elliptic curves have been studied in detail in [4], to which we will frequently refer in this paragraph.

For each 𝑒 ∈ 𝐸 , we define the curve 𝔰𝑒 (called 𝐷𝑒 in [4]) as the image of the section 𝐸 → 𝑅 mapping
x to 𝑒 + (𝑥 � 𝑒). We let 𝔰 denote the algebraic equivalence class of these sections, which are the ones
with minimal self-intersection, namely, 1 (cf. [4]). We note that Sym2 (𝐸) is the P1-bundle on E with
invariant −1. We observe for later use that for 𝑥 ≠ 𝑦, we have

𝔰𝑥 ∩ 𝔰𝑦 = {𝑥 + 𝑦}. (1)

We also note that

𝐾𝑅 ∼ −2𝔰𝑒0 + 𝔣𝑒0 .

Let 𝜂 be any of the three nonzero 2-torsion points of E. The map 𝐸 → 𝑅 defined by 𝑒 ↦→ 𝑒 + (𝑒 ⊕ 𝜂)
realises E as an unramified double cover of its image curve 𝑇 := {𝑒 + (𝑒 ⊕ 𝜂) | 𝑒 ∈ 𝐸}, which is a
smooth elliptic curve. We have

𝑇 ∼ −𝐾𝑅 + 𝔣𝜂 − 𝔣𝑒0 ∼ 2𝔰𝑒0 − 2𝔣𝑒0 + 𝔣𝜂 ,

by [4, (2.10)]. In particular, 𝑇 � −𝐾𝑅 and 2𝑇 ∼ −2𝐾𝑅.
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Embed T as a cubic in 𝑃 := P2. Consider nine (possibly coinciding) points 𝑦1, . . . , 𝑦9 ∈ 𝑇 . Divide
the nine points into two subsets, say of i and 9 − 𝑖 points, with 0 ≤ 𝑖 ≤ 9. Let 𝑅 → 𝑅 and 𝑃 → 𝑃,
respectively, denote the blowups at the schemes on T determined by these two subsets of i and 9 − 𝑖
points, respectively. Denote by 𝔢𝑅 and 𝔢𝑃 the total exceptional divisors on 𝑅 and 𝑃, respectively, and
denote the strict transforms of 𝑇, 𝔰, 𝔣 with the same symbols. We have

𝑇 ∼ 2𝔰𝑒0 − 2𝔣𝑒0 + 𝔣𝜂 − 𝔢𝑅 � −𝐾𝑅 ∼ 2𝔰𝑒0 − 𝔣𝑒0 − 𝔢𝑅 on 𝑅, (2)

2𝑇 ∼ −2𝐾𝑅 on 𝑅, (3)

𝑇 ∼ 3ℓ − 𝔢𝑃 ∼ −𝐾𝑃 on 𝑃, (4)

where ℓ is the pullback on 𝑃 of a general line in P. Define 𝑋 = 𝑅∪𝑇 𝑃 as the surface obtained by gluing
𝑅 and 𝑃 along T. Denote by D[𝑖 ] the family of such surfaces. It is easy to see that D[𝑖 ] is irreducible of
dimension 10 (when one also allows E to vary in moduli). We define D := ∪9

𝑖=0D[𝑖 ] .
Let X be a member of D. The first cotangent sheaf 𝑇1

𝑋 := 𝔢𝔵𝔱1
O𝑋

(Ω𝑋 ,O𝑋 ) of X (cf. [29, Corollary
1.1.11] or [16, Section 2]) satisfies

𝑇1
𝑋 � N𝑇 /𝑅 ⊗ N𝑇 /𝑃

by [16, Proposition 2.3], which is trivial if and only if the nine points satisfy the condition

𝑦1 + · · · + 𝑦9 ∈ |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 |. (5)

Thus, X is semistable if and only if (5) holds (cf. [16, Definition (1.13)] and [17, (0.4)]). We will denote
by D∗

[𝑖 ]
the subfamily of D[𝑖 ] consisting of semistable surfaces. It is easy to see that D∗

[𝑖 ]
is irreducible

of dimension 9. We define D∗ := ∪9
𝑖=0D∗

[𝑖 ]
.

We recall that a Cartier divisor, or a line bundle, L in Pic(𝑋), is a pair (𝐿 ′, 𝐿 ′′), such that [𝐿 ′] ∈

Pic(𝑅), [𝐿 ′′] ∈ Pic(𝑃) and 𝐿 ′ |𝑇 � 𝐿 ′′ |𝑇 . Since T is numerically equivalent to the anticanonical divisor
on both 𝑅 and 𝑃, we have

L2 = (𝐿 ′)2 + (𝐿 ′′)2 = 2𝑝𝑎 (𝐿
′) − 2 + 2𝑝𝑎 (𝐿

′′) − 2 + 2𝑑, 𝑑 := 𝐿 ′ · 𝑇 = 𝐿 ′′ · 𝑇.

The canonical divisor 𝐾𝑋 is represented by

𝐾𝑋 = (𝐾𝑅 + 𝑇, 0) = (𝔣𝜂 − 𝔣𝑒0 , 0) in Pic(𝑅) × Pic(𝑃).

In particular, by (2)–(4), we have

𝐾𝑋 � 0 and 2𝐾𝑋 ∼ 0. (6)

By [23, Lemma 3.5], the Cartier divisor 𝐾𝑋 is the only nonzero torsion element of Pic(𝑋) (the proof is
for 𝑖 = 2 but carries over to the general case).

Remark 2.1. There are exactly two elements of Pic0 (𝑅) � 𝐸 that restrict trivially on T, namely, O𝑅

and O𝑅 (𝔣𝜂 − 𝔣𝑒0) (see [23, Lemma 3.3]). Accordingly, for any [𝐿 ′] ∈ Pic(𝑅) and [𝐿 ′′] ∈ Pic(𝑃), such
that 𝐿 ′ · 𝑇 = 𝐿 ′′ · 𝑇 , there are two line bundles 𝐿

′ on 𝑅 numerically equivalent to 𝐿 ′ such that (𝐿 ′
, 𝐿 ′′)

is a line bundle on X. By (6), their difference is 𝐾𝑋 . These line bundles are numerically equivalent, and
we will denote by [𝐿 ′, 𝐿 ′′] their numerical equivalence class.

By (5), if X is semistable, it also carries the Cartier divisor 𝜉 represented by the pair

𝜉 = (𝑇,−𝑇) ∼ (2𝔰𝑒0 − 2𝔣𝑒0 + 𝔣𝜂 − 𝔢𝑅,−3ℓ + 𝔢𝑃) (7)

in Pic(𝑅) × Pic(𝑃) (see [17, (3.3)]).
The central result for our purposes is:
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Theorem 2.2. Let 𝑦1, . . . , 𝑦9 ∈ 𝑇 be general, such that 𝑋 = 𝑅 ∪𝑇 𝑃 is a member of D∗.
There is a flat family 𝜋 : 𝔛 → D over the unit disc, such that 𝔛 is smooth and, setting 𝑆𝑡 := 𝜋−1(𝑡),

we have that

◦ 𝑆0 = 𝑋 , and
◦ 𝑆𝑡 is a smooth general Enriques surface for 𝑡 ≠ 0.

Furthermore, denoting by 𝜄𝑡 : 𝑆𝑡 ⊂ 𝔛 the inclusion, there is a short exact sequence

0 �� Z · 𝜉 �� Pic(𝑋) � 𝐻2 (𝔛,Z)
𝜄∗𝑡 �� 𝐻2(𝑆𝑡 ,Z) � Pic(𝑆𝑡 ) �� 0.

Proof. This follows from [23, Proposition 3.7, Theorem 3.10 and Corollary 3.11] in the case where X
lies in D∗

[2] . Once we have the statement in this case, we can prove it in the other cases by making a
birational transformation of 𝔛 to flop any of the exceptional curves between 𝑃 and 𝑅 (see, for example
[12, Section 4.1], where the flop is called a 1-throw). �

3. Logarithmic Severi varieties

Theorem 1.1 will be proved by degenerating a general Enriques surface to a surface 𝑅 ∪𝑇 𝑃 in D∗. It
will be essential to construct curves on 𝑅 ∪𝑇 𝑃 that will deform to nodal irreducible elliptic curves on
the general Enriques surface. As we will see in Section 4, the good limit curves on 𝑅 and 𝑃 are nodal
curves with high order tangency with T at the same point on each component. These are members of
so-called logarithmic Severi varieties, parametrising nodal curves with given tangency conditions to a
fixed curve. This will be the topic of this section. We start with some general definitions and results:

Definition 3.1. Let S be a smooth projective surface, 𝑇 ⊂ 𝑆 a smooth, irreducible curve and L a line
bundle or a divisor class on S. Let g be an integer satisfying 0 ≤ 𝑔 ≤ 𝑝𝑎 (𝐿).

For any effective divisor 𝔡 = 𝑚1 𝑝1 + · · · + 𝑚𝑙 𝑝𝑙 on T, where the 𝑝𝑖 are pairwise distinct, we denote
by 𝑉𝑔,𝔡 (𝑆, 𝑇, 𝐿) the locus of curves in S, such that

◦ C is irreducible of geometric genus g and algebraically equivalent to L,
◦ denoting by 𝜈 : 𝐶 → 𝑆 the normalisation of C composed with the inclusion 𝐶 ⊂ 𝑆, there exists

𝑞𝑖 ∈ 𝜈−1(𝑝𝑖), such that 𝜈∗𝑇 contains 𝑚𝑖𝑞𝑖 , for all 𝑖 ∈ {1, . . . , 𝑙}.

For any integer m satisfying 0 < 𝑚 ≤ 𝐿 ·𝑇 , we let 𝑉𝑔,𝑚(𝑆, 𝑇, 𝐿) denote the locus of curves contained
in some 𝑉𝑔,𝑚𝑝 (𝑆, 𝑇, 𝐿) for some (nonfixed) 𝑝 ∈ 𝑇 .

We denote by 𝑉∗
𝑔,𝑚(𝑆, 𝑇, 𝐿) the open sublocus of 𝑉𝑔,𝑚(𝑆, 𝑇, 𝐿) parametrising curves that are smooth

at the intersection points with T and otherwise nodal.

In the sequel, ≡ will denote numerical equivalence of divisors. We will need:

Proposition 3.2. Let 𝑆, 𝑇, 𝐿, 𝔡, 𝑔 and m be as in Definition 3.1. Assume that 𝑇 ≡ −𝐾𝑆 .

(i) If 𝐿 ·𝑇 >
∑𝑙
𝑖=1 𝑚𝑖 , then all irreducible components of 𝑉𝑔,𝔡 (𝑆, 𝑇, 𝐿) have dimension 𝑔 − 1 + 𝐿 ·𝑇 −∑𝑙

𝑖=1 𝑚𝑖 .
(ii) All irreducible components of 𝑉𝑔,𝑚(𝑆, 𝑇, 𝐿) have dimension 𝑔 + 𝐿 · 𝑇 − 𝑚.

(iii) If 𝑚 ≤ 𝐿 · 𝑇 − 2, then the general member [𝐶] in any component of 𝑉𝑔,𝑚(𝑆, 𝑇, 𝐿) is smooth at
its intersection points with T; moreover, if we fix 𝐺 ⊂ 𝑆 any curve not having T as an irreducible
component, and Γ ⊂ 𝑆 any finite set, then for general [𝐶], the curve C is transverse to G and does
not intersect Γ.

(iv) If 𝑚 ≤ 𝐿 · 𝑇 − 3, then the general member in any component of 𝑉𝑔,𝑚(𝑆, 𝑇, 𝐿) is nodal.

Proof. The result follows from [3, Section 2], as outlined in [15, Theorem (1.4)]. �
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3.1. Families of blownup surfaces

We will also need to work in families in the following way. For 𝑆 = 𝑅 or P containing T as above
and for any nonnegative integer n, we consider the family S 〈𝑛〉 → 𝑇𝑛 with fibre Bl𝑦1 ,...,𝑦𝑛 (𝑆) over
(𝑦1, . . . , 𝑦𝑛) ∈ 𝑇𝑛, the blowup of S at 𝑦1, . . . , 𝑦𝑛 (when the points are coinciding, this has to be
interpreted as blowing up curvilinear schemes on T). To be precise, the fibres are marked, in the sense
that their (total) exceptional divisors are labelled with 1, . . . , 𝑛. Whenever we have a line bundle on a
single surface Bl𝑦1 ,...,𝑦𝑛 (𝑆), we can write it in terms of the generators of Pic(𝑆) and of the exceptional
divisors over each 𝑦𝑖 , and thus we can extend it to a relative line bundle on the whole family S 〈𝑛〉 in the
obvious way. We will therefore mostly not distinguish notationally between a relative line bundle L and
its restriction to any surface in the family.

Similarly, there is for all 𝑖 = 1, . . . , 𝑛 a relative (total) exceptional divisor 𝔢𝑖 on S 〈𝑛〉 , whose fibre
over a point (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇𝑛 is the exceptional divisor on Bl𝑦1 ,...,𝑦𝑛 (𝑆) over the point 𝑦𝑖 , which we by
abuse of notation still denote by 𝔢𝑖 .
Definition 3.3. Let L be a relative line bundle on S 〈𝑛〉 . The value of L on the ith exceptional divisor is
the number 𝐿 · 𝔢𝑖 on any fibre Bl𝑦1 ,...,𝑦𝑛 (𝑆). We say that L is positive on the ith exceptional divisor if
𝐿 · 𝔢𝑖 > 0.

We shall consider the relative Hilbert scheme

H 〈𝑛〉
𝑆,𝐿 −→ 𝑇𝑛

whose fibres are the Hilbert schemes of curves on Bl𝑦1 ,...,𝑦𝑛 (𝑆) algebraically (or equivalently numeri-
cally) equivalent to L. We have a (possibly empty) scheme

V 〈𝑛〉
𝑔,𝑚 (𝑆, 𝑇, 𝐿) −→ 𝑇𝑛

whose fibres are 𝑉𝑔,𝑚(Bl𝑦1 ,...,𝑦𝑛 (𝑆), 𝑇, 𝐿) ⊂ H 〈𝑛〉
𝑆,𝐿 (here, as usual, we denote by T, its strict transform

on the blowup). Taking the closure in H 〈𝑛〉
𝑆,𝐿 , we obtain a (possibly empty) scheme with a morphism

𝜈 〈𝑛〉
𝑔,𝑚(𝑆, 𝑇, 𝐿) : V 〈𝑛〉

𝑔,𝑚(𝑆, 𝑇, 𝐿) −→ 𝑇𝑛, (8)

whose fibres we denote by

(𝜈 〈𝑛〉
𝑔,𝑚)

−1(𝑦1, . . . , 𝑦𝑛) := 𝑉
〈𝑛〉
𝑔,𝑚

(
Bl𝑦1 ,...,𝑦𝑛 (𝑆), 𝑇, 𝐿

)
.

Note that for any (𝑦1, . . . , 𝑦𝑛) ∈ 𝑇𝑛, one has

𝑉𝑔,𝑚(Bl𝑦1 ,...,𝑦𝑛 (𝑆), 𝑇, 𝐿) ⊆ 𝑉
〈𝑛〉
𝑔,𝑚

(
Bl𝑦1 ,...,𝑦𝑛 (𝑆), 𝑇, 𝐿

)
.

3.2. Logarithmic Severi varieties on blowups of the symmetric square of an elliptic curve

Let 𝑇 ⊂ 𝑅 = Sym2(𝐸), as defined in Section 2. Let 𝑦1, . . . , 𝑦𝑛 ∈ 𝑇 , and let 𝑅 := Bl𝑦1 ,...,𝑦𝑛 (𝑅) denote
the blowup of R at 𝑦1, . . . , 𝑦𝑛, with (total) exceptional divisors 𝔢𝑖 over 𝑦𝑖 . We denote the strict transforms
of 𝔰, 𝔣 and T on 𝑅 by the same names. We also still denote by 𝜋 : 𝑅 → 𝐸 the composition of the blowup
𝑅 → 𝑅 with the Albanese morphism 𝑅 → 𝐸 (cf. beginning of Section 2). By (2)-(3), we have

𝑇 ≡ −𝐾𝑅 ≡ 2𝔰 − 𝔣 − 𝔢1 − · · · − 𝔢𝑛.

Definition 3.4. A line bundle or Cartier divisor L on 𝑅 is odd if 𝐿 · 𝔣 is odd.
Notation 3.5. We denote by Sym𝑛 (𝑇)𝑚 ⊂ Sym𝑛 (𝑇) the subscheme consisting of divisors with a point
of multiplicity ≥ 𝑚.
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Lemma 3.6. Let L be an odd line bundle or Cartier divisor on 𝑅. Let m be any integer satisfying
1 ≤ 𝑚 ≤ 𝐿 · 𝑇 . Then the following hold:

(i) No curve C in 𝑉1,𝑚(𝑅, 𝑇, 𝐿) contains T.
(ii) For any component 𝑉 ⊂ 𝑉1,𝑚(𝑅, 𝑇, 𝐿), the restriction map

𝑉 −→ Sym𝐿 ·𝑇 (𝑇)𝑚

𝐶 ↦→ 𝐶 ∩ 𝑇

is well-defined, finite and surjective. In particular,

dim(𝑉) = 𝐿 · 𝑇 − 𝑚 + 1.

(iii) For a general curve C in any component of 𝑉∗
1,𝑚(𝑅, 𝑇, 𝐿), let N be the reduced subscheme of 𝑅

supported at the nodes of C, and Z any subscheme of 𝐶 ∩ 𝑇 of degree 𝐶 · 𝑇 − 1. Then the linear
system |O𝑅 (𝐶) ⊗ J𝑁∪𝑍 | consists only of C.

Proof. Assume that we have 𝐶 = ℎ𝑇 + 𝐶 ′ in 𝑉1,𝑚(𝑅, 𝑇, 𝐿) for some ℎ > 0, with 𝐶 ′ not containing T.
We have 𝐿 · 𝔣 = 𝐶 · 𝔣 = 2ℎ + 𝐶 ′ · 𝔣, whence 𝐶 ′ · 𝔣 > 0 since L is assumed to be odd. Hence, 𝐶 ′ has
at least one component dominating E via 𝜋 : 𝑅 → 𝐸 , and therefore C cannot be a limit of an elliptic
curve. Thus, (i) follows.

It also follows that the restriction map in (ii) is everywhere defined. The fibre over a 𝑍 ∈ Sym𝐿 ·𝑇 (𝑇)
consists of all curves C in V, such that 𝐶 ∩ 𝑇 = 𝑍 . This must be finite, for otherwise, we would find a
member of the fibre passing through an additional general point 𝑝 ∈ 𝑇 , a contradiction (using again that
no curve in V contains T). Hence, the restriction morphism in (ii) is finite. We have dim(𝑉) ≥ 𝐿 ·𝑇+1−𝑚
by Proposition 3.2(ii) and semicontinuity, which equals dim

(
Sym𝐿 ·𝑇 (𝑇)𝑚

)
. The morphism is therefore

surjective, and equality holds for the dimension. This proves (ii).
Let now C be a curve in 𝑉∗

1,𝑚 (𝑅, 𝑇, 𝐿) and Z be any subscheme of 𝐶∩𝑇 of degree 𝐶 ·𝑇−1. Let 𝑅 → 𝑅

denote the blowup of 𝑅 along Z, considered as a curvilinear subscheme of T, and let 𝐶 and 𝑇 denote
the strict transforms of C and T, respectively, and 𝐿̂ := O𝑅 (𝐶). Then 𝐶 is a member of 𝑉∗

1,1 (𝑅, 𝑇, 𝐿̂).
To prove (iii), we may reduce to proving that if X is a general member of a component of 𝑉∗

1,1 (𝑅, 𝑇, 𝐿̂),
and N is the subscheme of its nodes, then the linear system |O𝑅 (𝑋) ⊗ J𝑁 | consists only of X.

Let 𝛿 = 𝑝𝑎 (𝐶) − 1. The variety 𝑉∗
1,1 (𝑅, 𝑇, 𝐿̂) is the open subset of the Severi variety of 𝛿-nodal

curves, algebraically equivalent to 𝐿̂ consisting of curves with nodes off 𝑇 . All of its components have
dimension 𝐿̂ · 𝑇 = 1 by (ii) (or Proposition 3.2(ii)), and it is smooth by standard arguments (see, e.g.
[11, Proposition 2.2]). Let W be any component of 𝑉∗

1,1 (𝑅, 𝑇, 𝐿̂). Then W is fibred over Pic0(𝐸) � 𝐸

in subvarieties 𝑊𝐿′ parametrising 𝛿-nodal curves in | 𝐿̂ ′ |, where 𝐿̂ ′ is any line bundle numerically
equivalent to 𝐿̂. By (ii), the linear equivalence classes of the curves in W vary. Thus, 𝑊𝐿′ is nonempty
for general 𝐿̂ ′, whence smooth and zero-dimensional. The tangent space to 𝑊𝐿′ at any point [𝑋] is
isomorphic to 𝐻0( 𝐿̂ ′ ⊗ J𝑁 )/C, where N is the scheme of nodes of X (see, e.g. [8, Section 1]). In
particular, for a general X in W, we have

dim
(
|O𝑅 (𝑋) ⊗ J𝑁 |

)
= ℎ0 (O𝑅 (𝑋) ⊗ J𝑁 ) − 1 = dim(𝑊𝐿′ ) = 0,

whence |O𝑅 (𝑋) ⊗ J𝑁 | consists only of X, as desired. This proves (iii). �

In view of part (iii) of the previous result, we introduce the following:

Notation 3.7. We let 𝑉∗∗
1,𝑚 (𝑅, 𝑇, 𝐿) denote the open subvariety of 𝑉∗

1,𝑚 (𝑅, 𝑇, 𝐿) parametrising curves C,
such that, for N, its scheme of nodes and for every subscheme Z of 𝐶 ∩𝑇 of degree 𝐶 · 𝑇 − 1, the linear
system |O𝑅 (𝐶) ⊗ J𝑁∪𝑍 | consists only of C.
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The main existence result of this subsection is Proposition 3.9 right below. To state it, we need a
definition:
Definition 3.8. A line bundle or Cartier divisor L on 𝑅 is said to verify condition (★) if it is of the form
𝐿 ≡ 𝛼𝔰 + 𝛽𝔣 −

∑𝑛
𝑖=1 𝛾𝑖𝔢𝑖 , such that:

(i) 𝛼 ≥ 1 and 𝛽 ≥ 0;
(ii) 𝛼 ≥ 𝛾𝑖 for 𝑖 = 1, . . . , 𝑛;

(iii) 𝛼 + 𝛽 ≥
∑𝑛
𝑖=1 𝛾𝑖;

(iv) 𝛼 + 2𝛽 ≥
∑𝑛
𝑖=1 𝛾𝑖 + 4 (equivalently, −𝐿 · 𝐾𝑅 ≥ 4).

Proposition 3.9. Let E and 𝑦1, . . . , 𝑦𝑛 ∈ 𝑇 be general. Assume that L is a line bundle on 𝑅 that is odd
(cf. Definition 3.4) and satisfies condition (★) (cf. Definition 3.8). Then, if 0 < 𝑚 ≤ 𝐿 ·𝑇 − 3, the variety
𝑉∗∗

1,𝑚 (𝑅, 𝑇, 𝐿) (cf. Definitions 3.1 and 3.7) has pure dimension 𝐿 · 𝑇 − 𝑚 + 1. Moreover, for all curves
𝐺 ⊂ 𝑅 not having T as an irreducible component, the general member of 𝑉∗∗

1,𝑚(𝑅, 𝑇, 𝐿) intersects G
transversely.
Proof. By Proposition 3.2(ii)–(iv) and Lemma 3.6(iii), we only need to prove nonemptiness of
𝑉1,𝑚 (𝑅, 𝑇, 𝐿). Following an idea in the proof of [6, Theorem 3.10], we will prove this by induction on m.
The base case 𝑚 = 1 follows from [11, Proposition 2.3], which requires all of (i)–(iv) from condition (★).

Assume that we have proved nonemptiness of 𝑉1,𝑚(𝑅, 𝑇, 𝐿) for some 1 ≤ 𝑚 ≤ 𝐿 · 𝑇 − 4. By
Lemma 3.6(ii), its general member C satisfies

𝐶 ∩ 𝑇 = 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 + 𝑝𝑙+1, 𝑙 = 𝐿 · 𝑇 − 𝑚 − 1 ≥ 3,

where 𝑝0, . . . , 𝑝𝑙+1 are pairwise distinct, general points on T. Set 𝔡 = 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 . Then
𝑉1,𝔡 (𝑅, 𝑇, 𝐿) ≠ ∅ and all its components are one-dimensional, by Proposition 3.2(i). The general
member in any component intersects T in 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 + 𝑞, where the point q varies in the family,
by Proposition 3.2(iii). Pick a component 𝑉 of its closure inside the component of the Hilbert scheme of
𝑅 containing |𝐿 |. After a finite base change, we find a smooth projective curve B, a surjective morphism
𝐵 → 𝑉 and a family

C 𝑓
��

𝑔

��

𝑅

𝐵

of stable maps of genus one, such that, setting C𝑏 := 𝑔∗𝑏 for any 𝑏 ∈ 𝐵, the curve 𝑓∗C𝑏 is a member
of 𝑉 , and such that

𝑓 ∗𝑇 = 𝑚𝑃0 + 𝑃1 + · · · + 𝑃𝑙 + 𝑄 +𝑊,

where
(I) 𝑃𝑖 and Q are sections of g, for 𝑖 ∈ {0, . . . , 𝑙},

(II) 𝑓 (𝑃𝑖) = 𝑝𝑖 , for 𝑖 ∈ {0, . . . , 𝑙},
(III) 𝑓 (𝑄) = 𝑇 ,
(IV) 𝑔∗𝑊 = 0,
(V) 𝑓∗𝑊 = 0;

the latter property follows from the fact that no member of the family contains T, by Lemma 3.6(i).
Property (III) implies that 𝑓 −1(𝑇) is connected as follows. Consider the Stein factorization C 𝑓 ′

−−→ 𝑅′ ℎ
−→ 𝑅̃

of f. Then ℎ−1 (𝑇) is of pure dimension 1. Since all irreducible components of 𝑓 ∗𝑇 except Q are contracted
by f, it follows that ℎ−1 (𝑇) = 𝑓 ′(𝑄), in particular, it is irreducible. Eventually, since 𝑓 ′ has connected
fibres, 𝑓 −1(𝑇) = ( 𝑓 ′)−1(ℎ−1 (𝑇)) is connected.
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In particular, 𝑃0 and Q are connected by an effective (possibly zero) divisor 𝑊 ′ ⊂ 𝑓 −1(𝑝0)∩C𝑏0 ⊂ 𝑊
for some 𝑏0 ∈ 𝐵. Thus,

𝑓∗C𝑏0 ∩ 𝑇 = (𝑚 + 1)𝑝0 + 𝑝1 + · · · + 𝑝𝑙 , 𝑙 ≥ 3. (9)

By the generality of the points 𝑝0, . . . , 𝑝𝑙 , they cannot be contained in any (−1)-curve on 𝑅, nor can any
two of them lie in a fibre of 𝜋 : 𝑅 → 𝐸 . Consequently, 𝑓∗C𝑏0 cannot contain any rational component.
Moreover, 𝑓∗C𝑏0 must be a reduced curve by (9). Therefore, 𝑓∗C𝑏0 = 𝐶 is an irreducible curve of
geometric genus one, hence, C𝑏0 consists of one smooth elliptic curve 𝐶, such that 𝑓 (𝐶) = 𝐶 and
otherwise chains of rational curves contracted by f and attached to 𝐶 at one single point each. Therefore,
𝑓 −1(𝑝0) ∩ 𝐶 is a single (smooth) point of 𝐶, hence, [𝐶] ∈ 𝑉1, (𝑚+1) 𝑝0+𝑝1+···+𝑝𝑙 (𝑅, 𝑇, 𝐿) by (9), which
implies [𝐶] ∈ 𝑉1,𝑚+1(𝑅, 𝑇, 𝐿). �

3.3. Logarithmic Severi varieties on blownup planes

Fix a smooth cubic curve 𝑇 ⊂ 𝑃 = P2. Let 𝑦1, . . . , 𝑦𝑛 ∈ 𝑇 , for 𝑛 ≥ 0, and consider the blowup
𝑃 := Bl𝑦1 ,...,𝑦𝑛 (𝑃) → 𝑃 at 𝑦1, . . . , 𝑦𝑛. We denote the strict transforms of the general line on P by ℓ and
by 𝔢𝑖 the (total) exceptional divisor over 𝑦𝑖 . We denote still by T the strict transform of T. Note that
𝑇 ∼ −𝐾𝑃 ∼ 3ℓ − 𝔢1 − · · · − 𝔢𝑛.

The next result parallels Lemma 3.6.
Lemma 3.10. Let L be a line bundle or Cartier divisor on 𝑃. Let m be any integer satisfying 1 ≤ 𝑚 ≤ 𝐿·𝑇 .
Then the following hold:
(i) No curve C in 𝑉0,𝑚(𝑃, 𝑇, 𝐿) contains T.

(ii) For any component 𝑉 ⊂ 𝑉0,𝑚(𝑃, 𝑇, 𝐿), the restriction map

𝑉 −→ Sym𝐿 ·𝑇 (𝑇)𝑚

𝐶 ↦→ 𝐶 ∩ 𝑇

is well-defined and finite, with image |𝐿 ⊗ O𝑇 | ∩ Sym𝐿 ·𝑇 (𝑇)𝑚, which has codimension one. In
particular,

dim(𝑉) = 𝐿 · 𝑇 − 𝑚.

Proof. Since the members of 𝑉0,𝑚 (𝑃, 𝑇, 𝐿) are limits of rational curves, none of them can contain T
as a component, which proves (i). As in the proof of Lemma 3.6(ii), the restriction map is everywhere
defined and finite. Its image lies in |𝐿 |𝑇 |∩Sym𝐿 ·𝑇 (𝑇)𝑚. Since, by Proposition 3.2(ii) and semicontinuity,
dim(𝑉) ≥ 𝐿 · 𝑇 − 𝑚, which equals dim

(
|𝐿 |𝑇 | ∩ Sym𝐿 ·𝑇 (𝑇)𝑚

)
, the latter is in fact the image. This

proves (ii). �

The next result is about the relative version 𝜈 〈𝑛〉
𝑔,𝑚 : V 〈𝑛〉

𝑔,𝑚 (𝑃, 𝑇, 𝐿) −→ 𝑇𝑛 of the logarithmic Severi
variety 𝑉0,𝑚(𝑃, 𝑇, 𝐿) considered in Lemma 3.10 above (see Section 3.1).
Lemma 3.11. (i) Assume that 𝑛 > 0 and L is a relative line bundle that is positive on the i-th exceptional
divisor. Fix a point (𝑦1, . . . , 𝑦𝑖−1, 𝑦𝑖+1, . . . , 𝑦𝑛) ∈ 𝑇𝑛−1. Let V be any component of

{(𝜈 〈𝑛〉
𝑔,𝑚)

−1(𝑦1, . . . , 𝑦𝑖−1, 𝑝, 𝑦𝑖+1, . . . , 𝑦𝑛), 𝑝 ∈ 𝑇}.

Then the restriction map

V −→ Sym𝐿 ·𝑇 (𝑇)𝑚

is finite and surjective.
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(ii) Assume, furthermore, that 𝑛 ≥ 2 and L is positive, with two different values, on the i-th
and j-th exceptional divisor, 𝑖 < 𝑗 . Fix any linear series 𝔤 of type 𝑔1

2 on T and any point
(𝑦1, . . . , 𝑦𝑖−1, 𝑦𝑖+1, . . . , 𝑦 𝑗−1, 𝑦 𝑗+1, . . . , 𝑦𝑛) ∈ 𝑇𝑛−2. Let V be any component of the subset

{(𝜈 〈𝑛〉
𝑔,𝑚)

−1(𝑦1, . . . , 𝑦𝑖−1, 𝑝, 𝑦𝑖+1, . . . , 𝑦 𝑗−1, 𝑞, 𝑦 𝑗+1, . . . , 𝑦𝑛) |𝑝 + 𝑞 ∈ 𝔤}.

Then the restriction map

V −→ Sym𝐿 ·𝑇 (𝑇)𝑚

is finite and surjective.

Proof. Assume 𝐿 ·𝔢𝑖 > 0 for some i. Varying p, we obtain a one-dimensional nontrivial family of surfaces
Bl𝑦1 ,...,𝑦𝑖−1 , 𝑝,𝑦𝑖+1 ,...,𝑦𝑛 (𝑃) and a one-dimensional nonconstant family of line bundles whose restrictions
to T yield a one-dimensional nonconstant family of line bundles. This together with Lemma 3.10(ii)
yields (i).

Finally, assume 𝐿 · 𝔢𝑖 = 𝑎𝑖 > 0 and 𝐿 · 𝔢 𝑗 = 𝑎 𝑗 > 0, with 𝑎𝑖 ≠ 𝑎 𝑗 . Varying 𝑝 + 𝑞 ∈ 𝔤, we
get a one-dimensional nontrivial family of surfaces Bl𝑦1 ,...,𝑦𝑖−1 , 𝑝,𝑦𝑖+1 ,...,𝑦 𝑗−1 ,𝑞,𝑦 𝑗+1 ,...,𝑦𝑛 (𝑃) as above
and a one-dimensional family of line bundles, all of the form 𝐿 ′ − 𝑎𝑖𝔢𝑖 − 𝑎 𝑗𝔢 𝑗 , with 𝐿 ′ fixed
(on Bl𝑦1 ,...,𝑦𝑖−1 ,𝑦𝑖+1 ,...,𝑦 𝑗−1 ,𝑦 𝑗+1 ,...,𝑦𝑛 (𝑃)) and 𝔢𝑖 and 𝔢 𝑗 varying with p and q. To prove (ii), we will prove
that the family of restrictions {

𝐿 ′ |𝑇 − 𝑎𝑖 𝑝 − 𝑎 𝑗𝑞
}
𝑝+𝑞∈𝔤

to T is nonconstant. Assume that

𝐿 ′ |𝑇 − 𝑎𝑖 𝑝 − 𝑎 𝑗𝑞 ∼ 𝐿 ′ |𝑇 − 𝑎𝑖 𝑝
′ − 𝑎 𝑗𝑞

′ for 𝑝 + 𝑞 ≠ 𝑝′ + 𝑞′ ∈ 𝔤. (10)

This yields (𝑎𝑖−𝑎 𝑗 )𝑝 ∼ (𝑎𝑖−𝑎 𝑗 )𝑝
′ and (𝑎𝑖−𝑎 𝑗 )𝑞 ∼ (𝑎𝑖−𝑎 𝑗 )𝑞

′. For fixed 𝑥 ∈ 𝑇 , there are only finitely
many points 𝑦 ∈ 𝑇 , such that (𝑎𝑖 − 𝑎 𝑗 )𝑥 ∼ (𝑎𝑖 − 𝑎 𝑗 )𝑦. For general 𝑝 + 𝑞, 𝑝′ + 𝑞′ ∈ 𝔤, condition (10) is
therefore not fulfilled. This finishes the proof of (ii). �

The main existence result of this subsection is the following:

Proposition 3.12. Let 𝑦1, . . . , 𝑦𝑛 ∈ 𝑇 be general, 𝑛 ≤ 8 and L be big and nef on 𝑃. If 0 < 𝑚 ≤ 𝐿 ·𝑇 − 3,
the variety 𝑉∗

0,𝑚 (𝑃, 𝑇, 𝐿) is nonempty of dimension 𝑇 · 𝐿 − 𝑚. Moreover, its general member intersects
any fixed curve on 𝑃 different from T transversely.

Proof. This is an application of [6, Corollary 3.11]; there are some conditions to check, so we give a
proof for completeness.

The statements about dimension and transversal intersection follow from Proposition 3.2(ii) and (iii),
respectively, once nonemptiness is proved. By Proposition 3.2(iii)–(iv), we have that 𝑉∗

0,𝑚(𝑃, 𝐿) ≠ ∅

as soon as 𝑉0,𝑚 (𝑃, 𝑇, 𝐿) ≠ ∅, because of the condition 𝑚 ≤ 𝐿 · 𝑇 − 3. We therefore have left to prove
nonemptiness of 𝑉0,𝑚(𝑃, 𝑇, 𝐿). We will prove this by induction on m, as in the proof of Proposition 3.9,
again following an idea in the proof of [6, Theorem 3.10].

Since 𝑦1 . . . , 𝑦𝑛 ∈ 𝑇 are general and 𝑛 ≤ 8, we may take 𝑦1, . . . , 𝑦𝑛 to be general points of P2 and T
a general plane cubic containing them. Hence, 𝑃 is a Del Pezzo surface, so that T is ample on it. It is
then well-known, by [20, Theorems 3–4], that 𝑉0,1(𝑃, 𝑇, 𝐿) ≠ ∅.

Assume now that we have proved nonemptiness of 𝑉0,𝑚(𝑃, 𝑇, 𝐿) for some 1 ≤ 𝑚 ≤ 𝐿 · 𝑇 − 4. By
Lemma 3.10(ii), its general member C satisfies

𝐶 ∩ 𝑇 = 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 + 𝑝𝑙+1 + 𝑝𝑙+2, 𝑙 = 𝐿 · 𝑇 − 𝑚 − 2 ≥ 2,

where 𝑝0, . . . , 𝑝𝑙+2 are distinct, and we may take 𝑝0, . . . , 𝑝𝑙+1 general on T.
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For later purposes, we observe that, since there are only finitely many divisor classes D, such that
𝐶 − 𝐷 > 0 (by which we mean that 𝐶 − 𝐷 is effective and nonzero), hence, 𝐶 · 𝑇 > 𝐷 · 𝑇 , and for
each such class, the image of the restriction morphism |𝐷 | → Sym𝐷 ·𝑇 (𝑇) has codimension one, the
generality of the points implies that

there is no effective divisor 𝐷 ≠ 𝑇 such that
𝐶 − 𝐷 > 0 and 𝐷 ∩ 𝑇 ⊂ {𝑝0, 𝑝1, . . . , 𝑝𝑙}.

(11)

Set 𝔡 = 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 . Then 𝑉0,𝔡 (𝑃, 𝑇, 𝐿) ≠ ∅, and all its components are one-dimensional, by
Proposition 3.2(i). The general member in any component intersects T in 𝑚𝑝0 + 𝑝1 + · · · + 𝑝𝑙 + 𝑞1 + 𝑞2,
where the points 𝑞1, 𝑞2 vary in the family, by Proposition 3.2(iii). Pick a component 𝑉 of its closure
inside the component of the Hilbert scheme of 𝑃 containing |𝐿 |. After a finite base change, we find a
smooth projective curve B, a surjection 𝐵 → 𝑉 and a family

C 𝑓
��

𝑔

��

𝑃

𝐵

of stable maps of genus zero, such that, setting C𝑏 := 𝑔∗𝑏 for any 𝑏 ∈ 𝐵, the curve 𝑓∗C𝑏 is a member
of 𝑉 , and such that

𝑓 ∗𝑇 = 𝑚𝑃0 + 𝑃1 + · · · + 𝑃𝑙 + 𝑄1 + 𝑄2 +𝑊,

where
(I) 𝑃𝑖 and 𝑄 𝑗 are sections of g, for 𝑖 ∈ {0, . . . , 𝑙}, 𝑗 ∈ {1, 2},

(II) 𝑓 (𝑃𝑖) = 𝑝𝑖 , for 𝑖 ∈ {0, . . . , 𝑙},
(III) 𝑓 (𝑄 𝑗 ) = 𝑇 , for 𝑗 ∈ {1, 2},
(IV) 𝑔∗𝑊 = 0,
(V) 𝑓∗𝑊 = 0;

the latter property follows from the fact that no member of 𝑉 contains T, by Lemma 3.10(i). Since T
is ample, 𝑓 ∗𝑇 is big and nef, hence, its support 𝑓 −1(𝑇) is connected as a consequence of Kawamata–
Viehweg vanishing. Therefore, 𝑃0 and 𝑄2 are connected by a chain 𝑊 ′ ⊂ 𝑊 , such that 𝑊 ′ ⊂ C𝑏0 for
some 𝑏0 ∈ 𝐵, and 𝑓 (𝑊 ′) = 𝑝0. Thus,

𝑓∗C𝑏0 ∩ 𝑇 = (𝑚 + 1)𝑝0 + 𝑝1 + · · · + 𝑝𝑙 + 𝑞1, 𝑞1 = 𝑓 (𝑄1), 𝑙 ≥ 2. (12)

Since T is ample, all components of 𝑓∗C𝑏0 intersect T. By (11) and (12), 𝑓∗C𝑏0 must be reduced and
irreducible, say 𝑓∗C𝑏0 = 𝐶, an irreducible rational curve. Since C𝑏0 has arithmetic genus 0, it consists of
a tree of smooth rational curves, with one component 𝐶, such that 𝑓 (𝐶) = 𝐶, and the other components
contracted by f. Therefore, 𝑓 −1(𝑝0) ∩𝐶 = (𝑊 ′ + 𝑃0) ∩𝐶 is a single (smooth) point of 𝐶. It follows that
[𝐶] ∈ 𝑉0, (𝑚+1) 𝑝0+𝑝1+···+𝑝𝑙 (𝑃, 𝑇, 𝐿), which implies [𝐶] ∈ 𝑉0,𝑚+1(𝑃, 𝑇, 𝐿). �

4. Deforming to rigid elliptic curves

As mentioned in the Introduction, to prove Theorem 1.1, it will suffice by [9, Corollary 1] to prove
that 𝑉|𝐿 |,𝑔−1(𝑆) has a 0-dimensional component. We will call any element of such a 0-dimensional
component a rigid nodal elliptic curve. We will prove the existence of such a curve on a general (𝑆, 𝐿)
in any component of E𝑔 \ E𝑔 [2] by degeneration, using Theorem 2.2, constructing suitable curves on
limit surfaces in D∗ that will deform to rigid curves in 𝑉|𝐿 |,𝑔−1(𝑆). In this section, we will identify
numerical conditions on limit line bundles under which deformations to such curves can be achieved.
The general strategy of proof is given in the following:
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Proposition 4.1. Let 𝑋 = 𝑅 ∪𝑇 𝑃 be a general member of a component of D∗ and 𝑌 = 𝐶 ∪𝑇 𝐷
a curve on X, with 𝐶 ⊂ 𝑅 and 𝐷 ⊂ 𝑃, having the following properties: there are distinct points
𝑥, 𝑝1, . . . , 𝑝𝑘 , 𝑞1, . . . , 𝑞𝑙 on T, for nonnegative integers 𝑘, 𝑙 and a positive integer m, such that

◦ 𝐶 = 𝐶0 + 𝐶1 + · · · + 𝐶𝑙 is nodal, with [𝐶0] ∈ 𝑉∗∗
1,𝑚 (𝑅, 𝑇, 𝐶0) and 𝐶𝑖 a (−1)-curve, 𝑖 ∈ {1, . . . , 𝑙},

◦ 𝐶0 ∩ 𝑇 = 𝑚𝑥 + 𝑝1 + · · · + 𝑝𝑘 ,
◦ 𝐶0 is odd,
◦ 𝐶𝑖 ∩ 𝑇 = {𝑞𝑖}, 𝑖 ∈ {1, . . . , 𝑙},

and

◦ 𝐷 = 𝐷0 + 𝐷1 + · · · + 𝐷𝑘 is nodal, with [𝐷0] ∈ 𝑉∗
0,𝑚 (𝑃, 𝑇, 𝐷0) and 𝐷𝑖 a (−1)-curve, 𝑖 ∈ {1, . . . , 𝑘},

◦ 𝐷0 ∩ 𝑇 = 𝑚𝑥 + 𝑞1 + · · · + 𝑞𝑙 ,
◦ 𝐷𝑖 ∩ 𝑇 = {𝑝𝑖}, 𝑖 ∈ {1, . . . , 𝑘}.

Then Y deforms to an irreducible rigid nodal elliptic curve on the general deformation S of X.

Proof. Here is a picture of what Y looks like:

We note that Y is Cartier, has an m-tacnode at x and is otherwise nodal. Moreover, an easy computation
as in [23, p. 119] shows that

dim(|𝑌 |) =
1
2
𝑌2 = 𝑝𝑎 (𝑌 ) − 1. (13)

We define

◦ 𝑁𝐶0 the scheme of nodes of 𝐶0 and 𝛾0 its degree,
◦ 𝑁𝐶 the scheme of intersection points between components of C and 𝛾 its degree,
◦ 𝑁𝐷0 the scheme of nodes of 𝐷0 and 𝛿0 its degree,
◦ 𝑁𝐷 the scheme of intersection points between components of D and 𝛿 its degree.

https://doi.org/10.1017/fms.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.47


Forum of Mathematics, Sigma 13

Then 𝑁𝐶0 ∪ 𝑁𝐶 ∪ 𝑁𝐷0 ∪ 𝑁𝐷 is the set of nodes of Y off T. Since

𝛾0 = 𝑝𝑎 (𝐶0) − 1 =
1
2

𝐶0 · (𝐶0 + 𝐾𝑅) =
1
2

(
𝐶2

0 − 𝐶0 · 𝑇
)
=

1
2

(
𝐶2

0 − 𝑚 − 𝑘
)

and, similarly,

𝛿0 = 𝑝𝑎 (𝐷0) =
1
2

(
𝐷2

0 − 𝑚 − 𝑙
)
+ 1,

we compute

𝑝𝑎 (𝑌 ) =
1
2
𝑌2 + 1 =

1
2

(
𝐶2 + 𝐷2

)
+ 1 =

1
2

(
𝐶2

0 − 𝑙 + 2𝛾 + 𝐷2
0 − 𝑘 + 2𝛿

)
+ 1 (14)

=
1
2

(
𝐶2

0 − 𝑚 − 𝑘
)
+

1
2

(
𝐷2

0 − 𝑚 − 𝑙
)
+ 𝑚 + 𝛾 + 𝛿 + 1

= 𝛾0 + (𝛿0 − 1) + 𝑚 + 𝛾 + 𝛿 + 1 = 𝛾0 + 𝛾 + 𝛿0 + 𝛿 + 𝑚.

Let 𝔛 → D be the deformation of X to a general smooth Enriques surface 𝑆𝑡 in Theorem 2.2. Then
Y deforms to a Cartier divisor 𝑌𝑡 on 𝑆𝑡 by the same theorem. By (13), we have dim(|𝑌 |) = dim(|𝑌𝑡 |).
Let 𝔇 be the sublinear system of |𝑌 | of curves with an (𝑚 − 1)-tacnode at x and passing through
𝑁𝐶0 ∪ 𝑁𝐶 ∪ 𝑁𝐷0 ∪ 𝑁𝐷 . We claim that

𝔇 consists only of 𝑌 itself.1 (15)

Granting this for the moment, (13)-(15) yields that the codimension of 𝔇 is 𝑚−1+𝛾0 +𝛾 + 𝛿0 + 𝛿. Thus,
the hypotheses of [18, Theorem 3.3, Corollary 3.12 and proof of Theorem 1.1] are fulfilled,2 and we
conclude that, under the deformation of X to 𝑆𝑡 , we may deform Y in such a way that the m-tacnode of
Y at x deforms to 𝑚 − 1 nodes and the 𝛾0 + 𝛾 + 𝛿0 + 𝛿 nodes of Y in the smooth locus of X are preserved,
whereas the nodes of` Y on T automatically smooth. Thus, Y deforms to a nodal curve 𝑌𝑡 ⊂ 𝑆𝑡 with a
total of

𝛾0 + 𝛾 + 𝛿0 + 𝛿 + 𝑚 − 1 = 𝑝𝑎 (𝑌 ) − 1 = 𝑝𝑎 (𝑌𝑡 ) − 1

nodes (using (14)). Since one easily sees that no subcurve of Y is Cartier, 𝑌𝑡 is irreducible, whence 𝑌𝑡
is nodal and elliptic, as desired. It is rigid, as Y is rigid on X.

We have left to prove (15). To this end, let 𝐴 ∪𝑇 𝐵 ∈ |𝑌 | be a curve with an (𝑚 − 1)-tacnode at x and
passing through 𝑁𝐶0 ∪ 𝑁𝐶 ∪ 𝑁𝐷0 ∪ 𝑁𝐷 , where 𝐴 ⊂ 𝑅 and 𝐵 ⊂ 𝑃. Then both A and B must intersect T
in a scheme containing (𝑚 − 1)𝑥 and, moreover, 𝑁𝐶0 ∪ 𝑁𝐶 ⊂ 𝐴 and 𝑁𝐷0 ∪ 𝑁𝐷 ⊂ 𝐵.

The fact that 𝑁𝐷 ⊂ 𝐵 implies that B must contain all (−1)-curves 𝐷1, . . . , 𝐷𝑘 . Hence, 𝐵 = 𝐵0 +𝐷1 +
· · · + 𝐷𝑘 , with 𝐵0 ∼ 𝐷0. Similarly, the fact that 𝑁𝐶 ⊂ 𝐴 implies that A must contain all (−1)-curves
𝐶1, . . . , 𝐶𝑘 . Hence, 𝐴 = 𝐴0 +𝐶1 + · · · +𝐶𝑘 , with 𝐴0 ∼ 𝐶0. Since 𝐴∪𝑇 𝐵 is Cartier, 𝐴0 must pass through
𝑝1, . . . , 𝑝𝑘 and 𝐵0 must pass through 𝑞1, . . . , 𝑞𝑙 . Thus

𝐴0 ∩ 𝑇 ⊃ (𝑚 − 1)𝑥 + 𝑝1 + · · · + 𝑝𝑘 =: 𝑍𝐶 and 𝐵0 ∩ 𝑇 ⊃ (𝑚 − 1)𝑥 + 𝑞1 + · · · + 𝑞𝑙 =: 𝑍𝐷 .

Hence, 𝐴0 ∈ |O𝑅 (𝐶0) ⊗J𝑁𝐶0∪𝑍𝐶
|. Since deg(𝑍𝐶 ) = 𝐶0 ·𝑇 − 1 and [𝐶0] ∈ 𝑉∗∗

1,𝑚(𝑅, 𝑇, 𝐶0), this implies
𝐴0 = 𝐶0 (recall Definition 3.7), whence 𝐴 = 𝐶.

1From a deformation-theoretic point of view, (15) implies that the equisingular deformation locus of Y in 𝔛 is smooth and
zero-dimensional (cf. [18, Lemma 3.4]), thus consisting only of the point [𝑌 ].

2We remark that the hypothesis in [18] that both components of X are regular is not necessary; it suffices that ℎ1 (O𝑋 ) = 0,
which is proved as in [23, Lemma 3.4].
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Similarly, 𝐵0 ∈ |O𝑃 (𝐷0) ⊗ J𝑁𝐷0∪𝑍𝐷 |, whence, if 𝐵0 ≠ 𝐷0, we would get

𝐷2
0 = 𝐵0 · 𝐷0 ≥ deg(𝑍𝐷) + 2 deg(𝑁𝐷0 ) = (𝐷0 · 𝑇 − 1) + 2𝑝𝑎 (𝐷0)

= −𝐷0 · 𝐾𝑃 − 1 + 𝐷2
0 + 𝐷0 · 𝐾𝑃 + 2 > 𝐷2

0,

a contradiction. Thus, 𝐵0 = 𝐷0, whence 𝐵 = 𝐷. This proves (15). �

The next two results form the basis for our proof of Theorem 1.1. We henceforth assume that E is a
general elliptic curve.

Proposition 4.2. Let 𝑅′ (respectively, 𝑃′) be a blowup of R (respectively, P) at 𝑠 ≥ 0 (respectively,
𝑡 ≥ 1) general points of T. Assume 𝐿 ′ (respectively, 𝐿 ′′) is a line bundle (or Cartier divisor) on 𝑅′

(respectively, 𝑃′) and k is an integer, such that the following conditions are satisfied:

(i) 𝑠 + 𝑡 − 5 ≤ 𝑘 ≤ min{3, 𝑠, 𝑡 − 1},
(ii) 𝐿 ′ · 𝑇 = 𝐿 ′′ · 𝑇 ,

(iii) 𝐿 ′ ≡ 𝐿 ′
0 + 𝐶1 + · · · + 𝐶𝑘 , where the 𝐶𝑖 are disjoint (−1)-curves and 𝐿 ′

0 satisfies condition (★) and
is odd,

(iv) 𝐿 ′′ ∼ 𝐿 ′′
0 + 𝐷1 + · · · + 𝐷𝑘 , where the 𝐷𝑖 are disjoint (−1)-curves and 𝐿 ′′

0 is big and nef,
(v) there are 𝑡 − 𝑘 additional (−1)-curves on 𝑃′, mutually disjoint and disjoint from 𝐷1, . . . , 𝐷𝑘 , such

that 𝐿 ′′ is positive on at least one of them.

Then there are blowups 𝑅 → 𝑅′ and 𝑃 → 𝑃′ at distinct points of T, such that 𝑅 ∪𝑇 𝑃 is general in a
component of D∗ and, denoting by 𝐿̃ ′ and 𝐿̃ ′′ the pullbacks of 𝐿 ′ and 𝐿 ′′ to 𝑅 and 𝑃, respectively, there
is a line bundle 𝐿̃ ∈ [𝐿̃ ′, 𝐿̃ ′′] (cf. Remark 2.1), such that (𝑅 ∪𝑇 𝑃, 𝐿̃) deforms to a smooth polarised
Enriques surface (𝑆, 𝐿) with S containing an irreducible, rigid nodal elliptic curve in |𝐿 |.

Proof. Set 𝑚 := 𝐿 ′
0 · 𝑇 − 3 = 𝐿 ′′

0 · 𝑇 − 3 (equality follows from assumptions (ii)–(iv)). By condition
(iv) in (★), we have 𝑚 > 0. The line bundle 𝐿 ′

0 satisfies the conditions of Proposition 3.9. Hence,
𝑉∗∗

1,𝑚 (𝑅
′, 𝑇, 𝐿 ′

0) ≠ ∅ and its general member intersects 𝐶1, . . . , 𝐶𝑘 transversely. Let 𝐶0 be such a general
member; we have 𝐿 ′ ≡ 𝐶0 + 𝐶1 + · · · + 𝐶𝑘 by assumption (iii).

The surface 𝑅′ is a blowup of R at s general points 𝑦1, . . . , 𝑦𝑠 of T, where 𝑘 ≤ 𝑠 ≤ 4 by assumption (i).
Denoting the exceptional divisor over 𝑦𝑖 by 𝔢𝑖 , the surface 𝑅′ contains precisely s additional (−1)-curves
𝔢′𝑖 , 𝑖 = 1, . . . , 𝑠, such that 𝔢𝑖 · 𝔢′𝑖 = 1 and each 𝔢𝑖 + 𝔢′𝑖 is a fibre of the projection 𝑅′ → 𝐸 . Set 𝑦′𝑖 := 𝔢′𝑖 ∩𝑇 .
Since 𝐶1, . . . , 𝐶𝑘 are disjoint (−1)-curves by assumption (iii), we have, after renumbering, that 𝐶𝑖 = 𝔢𝑖
or 𝔢′𝑖 . We will in the following, for simplicity, assume that 𝐶𝑖 = 𝔢𝑖; the other cases can be treated in the
same way by substituting 𝑦𝑖 with 𝑦′𝑖 at the appropriate places. Thus, we have

𝐶0 ∩ 𝑇 = 𝑚𝑝 + 𝑝1 + 𝑝2 + 𝑝3, for 𝑝, 𝑝1, 𝑝2, 𝑝3 ∈ 𝑇,

𝐶𝑖 ∩ 𝑇 = 𝑦𝑖 , 𝑖 ∈ {1, . . . , 𝑘}.

By Lemma 3.6(ii), the points 𝑝, 𝑝1, 𝑝2, 𝑝3 are general on T (even for fixed 𝑦1, . . . , 𝑦𝑘 ). The points
𝑦1, . . . , 𝑦𝑘 are general on T by the assumption that 𝑅′ is a blowup of R at general points on T.

The surface 𝑃′ is a blowup of P2 at t general points on T, where 𝑘 < 𝑡 ≤ 5 by assumption (i). The line
bundle 𝐿 ′′

0 is big and nef by assumption (iv), whence, by Proposition 3.12, we have 𝑉∗
0,𝑚 (𝑃

′, 𝑇, 𝐿 ′′
0 ) ≠ ∅

and its general member intersects 𝐷1, . . . , 𝐷𝑘 transversely. Let 𝐷0 be such a general member; we have
𝐿 ′′ ∼ 𝐷0 + 𝐷1 + · · · + 𝐷𝑘 by assumption (iv).

By assumption (iv)–(v), 𝐷1, . . . , 𝐷𝑘 are disjoint (−1)-curves belonging to a set of t disjoint (−1)-
curves, which we may therefore take as an exceptional set for a blowdown 𝑃′ → P2 centred at points
that we denote by 𝑥1, . . . , 𝑥𝑡 ∈ 𝑇 . Furthermore, there is an exceptional curve, different from 𝐷1, . . . , 𝐷𝑘 ,
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call it 𝐷𝑘+1, such that 𝐷𝑘+1 · 𝐿 ′′
0 > 0. We have

𝐷0 ∩ 𝑇 = 𝑚𝑞 + 𝑞1 + 𝑞2 + 𝑞3, for 𝑞, 𝑞1, 𝑞2, 𝑞3 ∈ 𝑇,

𝐷𝑖 ∩ 𝑇 = 𝑥𝑖 , 𝑖 ∈ {1, . . . , 𝑘}.

Since 𝐷𝑘+1 · 𝐿 ′′
0 > 0, we can apply Lemma 3.11(i), which ensures that, even for fixed 𝑥1, . . . , 𝑥𝑘 , by

moving 𝑥𝑘+1, the intersection 𝐷0∩𝑇 is a general element in Sym𝐿′′
0 ·𝑇 (𝑇)𝑚. Hence, the points 𝑞, 𝑞1, 𝑞2, 𝑞3

are general on T. The points 𝑥1, . . . , 𝑥𝑘 are general on T by the assumption that 𝑃′ is a blowup of P at
general points on T.

Since the points 𝑝, 𝑝1, 𝑝2, 𝑝3, 𝑦1, . . . , 𝑦𝑘 are general on T, and likewise the points
𝑞, 𝑞1, 𝑞2, 𝑞3, 𝑥1, . . . , 𝑥𝑘 , we may assume that our choices of 𝐶0 and 𝐷0 come with the identifications

𝑝 = 𝑞

𝑥𝑖 = 𝑝𝑖 , 𝑦𝑖 = 𝑞𝑖 for 1 ≤ 𝑖 ≤ 𝑘 (recall that 𝑘 ≤ 3),
𝑝𝑖 = 𝑞𝑖 for 𝑘 + 1 ≤ 𝑖 ≤ 3 (if 𝑘 = 3, this condition is empty),

so that we can glue 𝑅′ and 𝑃′ along T in such a way that (𝐶0 + 𝐶1 + · · · + 𝐶𝑘 , 𝐷0 + 𝐷1 + · · · + 𝐷𝑘 ) is
Cartier on 𝑅′ ∪𝑇 𝑃′. The following picture shows the case 𝑘 = 2:

By assumption (i), we have that 𝑠 + 𝑡 ≤ 𝑘 + 5 ≤ 8. The set of points

𝑦1, . . . , 𝑦𝑠 , 𝑥1, . . . , 𝑥𝑡 , (𝑝𝑘+1 = 𝑞𝑘+1), . . . , (𝑝3 = 𝑞3)

is therefore a set of 𝑠+ 𝑡 +3− 𝑘 ≤ 8 general points on T. Pick now points 𝑤1, . . . , 𝑤𝑘+6−𝑠−𝑡 on T, general
under the condition that

𝑦1 + · · · + 𝑦𝑠 + 𝑥1 + · · · + 𝑥𝑡 + 𝑝𝑘+1 + · · · + 𝑝3 + 𝑤1 + · · · + 𝑤𝑘+6−𝑠−𝑡 ∈ |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 |.

Note that, in this way, we get a general divisor of |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 |. Then blowup either 𝑅′ or 𝑃′ at the
points

(𝑝𝑘+1 = 𝑞𝑘+1), . . . , (𝑝3 = 𝑞3), 𝑤1, . . . , 𝑤𝑘+6−𝑠−𝑡

to obtain 𝑅 ∪𝑇 𝑃, which is a general member of a component of D∗, containing the inverse image Y of
the curve (𝐶0 +𝐶1 + · · · +𝐶𝑘 ) ∪𝑇 (𝐷0 +𝐷1 + · · · +𝐷𝑘 ), which satisfies the conditions of Proposition 4.1.
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The result therefore follows by Proposition 4.1 (the following picture shows the inverse image of the
curve in the previous image in the case 𝑘 = 2: an additional (−1)-curve appears over 𝑝3 = 𝑞3).

�

Proposition 4.3. Let 𝑅 (respectively, 𝑃) be a blowup of R (respectively, P) at 4 (respectively, 5) general
points of T. Assume 𝐿 ′ (respectively, 𝐿 ′′) is a line bundle (or Cartier divisor) on 𝑅 (respectively, 𝑃),
such that the following conditions are satisfied:
(i) 𝐿 ′ · 𝑇 = 𝐿 ′′ · 𝑇 ,

(ii) 𝐿 ′ ≡ 𝐿 ′
0 + 𝐶1 + 𝐶2 + 𝐶3, where the 𝐶𝑖 are disjoint (−1)-curves and 𝐿 ′

0 satisfies condition (★) and
is odd,

(iii) 𝐿 ′′ ∼ 𝐿 ′′
0 + 𝐷1 + 𝐷2 + 𝐷3, where the 𝐷𝑖 are disjoint (−1)-curves and 𝐿 ′′

0 is big and nef,
(iv) there are two additional (−1)-curves 𝐷4, 𝐷5 on 𝑃, mutually disjoint and disjoint from 𝐷1, 𝐷2, 𝐷3,

satisfying 𝐿 ′′ · 𝐷4 ≠ 𝐿 ′′ · 𝐷5.
Then there exist 𝑅 (respectively, 𝑃) a blowup of R (respectively, P) at 4 (respectively, 5) points of T

and a line bundle 𝐿
′ on 𝑅 (respectively, 𝐿

′′ on 𝑃), such that:
(a) the pair (𝑅, 𝐿

′
) (respectively, (𝑃, 𝐿

′′
)) is a deformation of (𝑅, 𝐿 ′) (respectively, (𝑃, 𝐿 ′′)),

(b) the surface 𝑅 ∪𝑇 𝑃 is a general member of D∗
[4] and (𝐿

′
, 𝐿

′′
) is a line bundle on it,

(c) (𝑅 ∪𝑇 𝑃, (𝐿
′
, 𝐿

′′
)) deforms to a smooth polarised Enriques surface (𝑆, 𝐿), such that |𝐿 | contains

an irreducible, rigid nodal elliptic curve.
Proof. We argue as in the beginning of the previous proof with 𝑘 = 3, 𝑠 = 4 and 𝑡 = 5, noting that 𝐿 ′′

is positive on at least one of the two curves 𝐷4, 𝐷5. We find, as before, a Cartier divisor in a surface

𝑌 := 𝐶 ∪𝑇 𝐷 ⊂ 𝑅 ∪𝑇 𝑃 =: 𝑋, 𝑅 = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑦4 (𝑅), 𝑃 = Bl𝑦5 ,...,𝑦9 (𝑃), (16)

for general 𝑦𝑖 ∈ 𝑇 , 𝑖 ∈ {1, . . . , 9}, such that, denoting by 𝔢𝑖 the exceptional divisor over 𝑦𝑖 , one has

𝐶 = 𝐶0 + 𝔢1 + 𝔢2 + 𝔢3, 𝐷 = 𝐷0 + 𝔢5 + 𝔢6 + 𝔢7,

with 𝐶 ≡ 𝐿 ′ and 𝐷 ∼ 𝐿 ′′ both nodal, 𝐶0 ∈ 𝑉∗∗
1,𝑚(𝑅, 𝑇, 𝐿 ′

0), 𝐷0 ∈ 𝑉∗
0,𝑚(𝑃, 𝑇, 𝐿 ′′

0 ), and we set 𝐶𝑖 = 𝔢𝑖 for
𝑖 ∈ {1, 2, 3} and 𝐷𝑖 = 𝔢𝑖+4 for 𝑖 ∈ {1, 2, 3, 4, 5}. Moreover, setting 𝑚 := 𝐶0 · 𝑇 − 3 = 𝐷0 · 𝑇 − 3, there is
a point 𝑥 ∈ 𝑇 , such that

𝐶0 ∩ 𝑇 = 𝑚𝑥 + 𝑦5 + 𝑦6 + 𝑦7, 𝐷0 ∩ 𝑇 = 𝑚𝑥 + 𝑦1 + 𝑦2 + 𝑦3.

As in the previous proof, the points 𝑥, 𝑦𝑖 are general on T.
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The problem now is that we cannot a priori guarantee that
∑9
𝑖=1 𝑦𝑖 ∈ |N𝑇 /𝑅 ⊗N𝑇 /𝑃 | to ensure that X

is a member of D∗ and therefore conclude, as in the previous proof; we only know that X is a member
of D. We will prove that we can create such a member of D∗ without losing the ‘nice’ properties of Y.

Note first that condition (iv) says that 𝐿 ′′ · 𝔢8 ≠ 𝐿 ′′ · 𝔢9. If 𝐿 ′′ · 𝔢𝑖 = 0 for 𝑖 = 8 or 9, we may contract
𝔢𝑖 and reduce to the case studied in the previous proposition. We will therefore assume that

𝐿 ′′ · 𝔢8 > 0, 𝐿 ′′ · 𝔢9 > 0 and 𝐿 ′′ · 𝔢8 ≠ 𝐿 ′′ · 𝔢9. (17)

Fix now, general 𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦6, 𝑦7 ∈ 𝑇 . Varying (𝑥4, 𝑥8, 𝑥9) in 𝑇3, we obtain a 3-dimensional
family of surfaces of the form

Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) ∪𝑇 Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃)

together with a family of line bundles (𝐿 ′, 𝐿 ′′). There exists a relative Hilbert scheme H of effective
Cartier divisors 𝐶 ′ ∪𝑇 𝐷 ′ on these surfaces, such that on each surface the line bundle (𝐶 ′, 𝐷 ′) is in the
numerical equivalence class [𝐿 ′, 𝐿 ′′], cf. Remark 2.1 (considering 𝐿 ′ and 𝐿 ′′ as relative line bundles,
see section 3.1). By our assumptions, we have a nonempty subscheme W of H with a dominating
morphism W → 𝑇3 whose fibre over a point (𝑥4, 𝑥8, 𝑥9) consists of pairs (𝑋 ′, 𝑌 ′), such that

◦ 𝑋 ′ = 𝑅′ ∪𝑇 𝑃′ with 𝑅′ = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) and 𝑃′ = Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃),
◦ 𝑌 ′ = 𝐶 ′ ∪𝑇 𝐷 ′, where

𝐶 ′ = 𝐶 ′
0 + 𝔢1 + 𝔢2 + 𝔢3 ≡ 𝐿 ′

𝐷 ′ = 𝐷 ′
0 + 𝔢5 + 𝔢6 + 𝔢7 ∼ 𝐿 ′′,

with 𝐶 ′
0 ∈ 𝑉∗∗

1,𝑚 (𝑅
′, 𝑇, 𝐿 ′

0), 𝐷 ′
0 ∈ 𝑉∗

0,𝑚 (𝑃
′, 𝑇, 𝐿 ′′

0 ) intersecting all 𝔢𝑖 transversely,
𝐶 ′

0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦5 + 𝑦6 + 𝑦7,

𝐷 ′
0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦1 + 𝑦2 + 𝑦3,

for a point 𝑥 ′ ∈ 𝑇 \ {𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦6, 𝑦7}.

We once and for all substitute W with a dominating component containing [(𝑋,𝑌 )] and will henceforth
assumeW is irreducible. Taking the closure inH, we obtain a closed scheme with a surjective morphism

𝑔 : W → 𝑇3.

If [(𝑋 ′, 𝑌 ′)] ∈ W , then 𝑌 ′ looks like 𝐶 ′ ∪𝑇 𝐷 ′ as above, except that 𝐶 ′
0 ∈ 𝑉1,𝑚 (𝑅

′, 𝑇, 𝐿 ′
0) and

𝐷 ′
0 ∈ 𝑉0,𝑚 (𝑃

′, 𝑇, 𝐿 ′′
0 ), the intersection with the 𝔢𝑖s need not be transversal and 𝑥 ′ may coincide with one

of the points 𝑦𝑖s (this follows from Lemmas 3.6(i) and 3.10(i)). In any event, (𝑋 ′, 𝑌 ′) comes equipped
with a point 𝑥 ′ ∈ 𝑇 , which is the only point of intersection between the nonexceptional members of
𝑌 ′. We will call this the tacnodal point of [(𝑋 ′, 𝑌 ′)] (although it may be a worse singularity of 𝑌 ′ for
special pairs). We therefore have a natural map

𝑝 : W → 𝑇

sending a pair to its tacnodal point. For 𝑥 ′ ∈ 𝑇 , we set W 𝑥′ := 𝑝−1 (𝑥 ′); this is the locus of pairs
[(𝑋 ′, 𝑌 ′)] of W with tacnodal point 𝑥 ′.

Claim 4.4. The map g is finite and dim(W) = 3.

Proof of claim. Since g is surjective, we only need to prove that g is finite. Fix any 𝑋 ′ = 𝑅′ ∪𝑇 𝑃′ as
above, with 𝑅′ = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) and 𝑃′ = Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃), and assume [(𝑋 ′, 𝑌 ′)] ∈ W . Let 𝐶0 ⊂ 𝑅′

and 𝐷0 ⊂ 𝑃′ be the nonexceptional irreducible components of 𝑌 ′, elliptic and rational, respectively.
They intersect only at the tacnodal point 𝑥 ′ ∈ 𝑇 , and otherwise, they intersect T in fixed points, as
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the (−1)-curves are fixed on each component of 𝑋 ′. Therefore, by Lemma 3.10(ii), there are finitely
many possibilities for the point 𝑥 ′ and the curve 𝐷0, and consequently, finitely many possibilities for
the intersection 𝐶0 ∩𝑇 . As 𝐶0 is odd by assumption (ii), there are, by Lemma 3.6(ii), only finitely many
possibilities for 𝐶0 as well. This proves that g is finite. �

Let
(
𝑇3)∗ denote the two-dimensional subset of triples (𝑥4, 𝑥8, 𝑥9) ∈ 𝑇3, such that

𝑦1 + 𝑦2 + 𝑦3 + 𝑥4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑥8 + 𝑥9 ∈ |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 |, (18)

and let W∗
= 𝑔−1 (

(
𝑇3)∗). This is the locus of pairs [(𝑋 ′, 𝑌 ′)] of W , such that 𝑋 ′ is semistable. For

𝑥 ′ ∈ 𝑇 , we set W∗

𝑥′ := W∗
∩W 𝑥′ .

We write 𝑔1 : W → 𝑇 and 𝑔2 : W → 𝑇 × 𝑇 for the composition of g with the projections onto the
first factor and onto the product of the second and third factors, respectively. In other words, 𝑔1 maps a
pair (𝑋 ′ = 𝑅′ ∪𝑇 𝑃′, 𝑌 ′) as above to 𝑥4, whereas 𝑔2 maps it to (𝑥8, 𝑥9).

Claim 4.5. For all 𝑥 ′ ∈ 𝑇 , the following hold:

(i) W∗

𝑥′ ≠ ∅ (hence, W 𝑥′ ≠ ∅),
(ii) (𝑔1) |W∗

𝑥′
is surjective (hence, also (𝑔1) |W𝑥′

is surjective).

Proof of claim. Fix any 𝑥4 ∈ 𝑇 and consider 𝑅′ = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅). By Lemma 3.6(ii), there are finitely
many curves 𝐶 ′

0 ∈ 𝑉1,𝑚(𝑅
′, 𝑇, 𝐿 ′

0), such that 𝐶 ′
0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦5 + 𝑦6 + 𝑦7. On the other hand, by

Lemma 3.11(ii), taking property (17) into account, and considering the linear series

𝔤(𝑥4) := |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 (−𝑦1 − 𝑦2 − 𝑦3 − 𝑥4 − 𝑦5 − 𝑦6 − 𝑦7) | (19)

of type 𝑔1
2 on T, there exist finitely many curves 𝐷 ′

0 ∈ 𝑉0,𝑚(𝑃
′, 𝑇, 𝐿 ′′

0 ), with 𝑃′ = Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃) for
some 𝑥8 + 𝑥9 ∈ 𝔤(𝑥4), such that 𝐷 ′′

0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦1 + 𝑦2 + 𝑦3. Thus(
𝑅′ ∪𝑇 𝑃′, (𝐶 ′

0 + 𝔢1 + 𝔢2 + 𝔢3) ∪𝑇 (𝐷 ′
0 + 𝔢5 + 𝔢6 + 𝔢7)

)
∈ W ∗

𝑥′ ∩ 𝑔−1
1 (𝑥4),

which proves (i) and (ii) (note, in particular, that the condition that 𝑥8 + 𝑥9 ∈ 𝔤(𝑥4) is equivalent
to (18)). �

Note that Claim 4.5 also implies that p is surjective, whence all fibres W 𝑥′ are two-dimensional by
Claim 4.4.

Now consider the map

𝜎 : 𝑇 × 𝑇 −→ Sym2 (𝑇),

(𝑥, 𝑦) ↦→ 𝑥 + 𝑦

and recall that there is a fibration 𝑢 : Sym2(𝑇) → 𝑇 with fibres being the 𝑔1
2s on T.

For all 𝑥4 ∈ 𝑇 , we consider the linear series 𝔤(𝑥4) ⊂ Sym2(𝑇) defined in (19) above; it is a 𝑔1
2, hence,

a fibre of u.

Claim 4.6. For all 𝑥′ ∈ 𝑇 , one has 𝑢(𝜎(𝑔2 (W 𝑥′ ))) = 𝑇 , that is, 𝜎(𝑔2 (W 𝑥′ )) is not a union of fibres of u.

Proof of claim. Suppose to the contrary that 𝜎(𝑔2 (W 𝑥′ )) is a union of fibres of u. Then, for general
𝑥4 ∈ 𝑇 , we would have 𝜎(𝑔2 (W 𝑥′ )) ∩ 𝔤(𝑥4) = ∅, contradicting Claim 4.5(ii). �

Let now 𝑥 ′ ∈ 𝑇 be general. Set W𝑥′ = W 𝑥′ ∩ W , which is nonempty, as [(𝑋,𝑌 )] ∈ W𝑥 . Since
W 𝑥′ is a general fibre of p and W is irreducible, W𝑥′ is dense in any component of W 𝑥′ . It follows
that 𝑔2 (W𝑥′ ) is dense in any component of 𝑔2(W 𝑥′ ). By the last claim, 𝜎(𝑔2 (W𝑥′ )) ∩ 𝔤(𝑥4) ≠ ∅ for
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general 𝑥4 ∈ 𝑇 . Pick any (𝑥8, 𝑥9) ∈ 𝑔2(W𝑥′ ) ∩ 𝜎−1(𝔤(𝑥4)). Then, by definition, there exists a pair
[(𝑋1, 𝑌1 = 𝐶1 ∪𝑇 𝐷1)] ∈ W𝑥′ , such that

𝑋1 = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥
′
4
(𝑅) ∪𝑇 Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃) for some 𝑥 ′4 ∈ 𝑇, and

𝑦1 + 𝑦2 + 𝑦3 + 𝑥4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑥8 + 𝑥9 ∈ |N𝑇 /𝑅 ⊗ N𝑇 /𝑃 |.

In particular, 𝐷1 ⊂ Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃) satisfies the conditions of Proposition 4.1 and

𝐷1 = 𝐷1
0 + 𝔢5 + 𝔢6 + 𝔢7, 𝐷1

0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦1 + 𝑦2 + 𝑦3. (20)

As 𝑥4 is general in T, one has 𝑥4 ∈ 𝑔1 (W𝑥′ ) (since (𝑔1) |W𝑥′
is surjective, by Claim 4.5(ii)). Then, by

definition, there exists a pair [(𝑋2, 𝑌2 = 𝐶2 ∪𝑇 𝐷2)] ∈ W𝑥′ , such that

𝑋2 = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) ∪𝑇 Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥′8 ,𝑥
′
9
(𝑃) for some 𝑥 ′8, 𝑥 ′9 ∈ 𝑇.

In particular, 𝐶2 ⊂ Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) satisfies the conditions of Proposition 4.1 and

𝐶2 = 𝐶2
0 + 𝔢1 + 𝔢2 + 𝔢3, 𝐶2

0 ∩ 𝑇 = 𝑚𝑥 ′ + 𝑦5 + 𝑦6 + 𝑦7. (21)

Consider the pair

(𝑋 = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑥4 (𝑅) ∪𝑇 Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑥8 ,𝑥9 (𝑃), 𝑌 = 𝐶2 ∪𝑇 𝐷1).

Recall that 𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦6, 𝑦7 were chosen general to start with, and 𝑥4 and 𝑥 ′ are also general by
construction. Lemma 3.11(ii) implies that we may choose 𝑥8 + 𝑥9 general in 𝔤(𝑥4). It follows that 𝑋 is a
general member of D∗

[4] , that is, (b) holds. Properties (20) and (21) imply that the pair (𝑋,𝑌 ) satisfies
the conditions of Proposition 4.1 and therefore (c) holds. It is, moreover, clear that also (a) holds. �

5. Isotropic 10-sequences and simple isotropic decompositions

An important tool for identifying the various components of the moduli spaces of polarised Enriques
surfaces is the decomposition of line bundles as sums of effective isotropic divisors. In this section, we
will recall some notions and results from [10, 23].

Definition 5.1 [13, p. 122]. An isotropic 10-sequence on an Enriques surface S is a sequence of isotropic
effective divisors {𝐸1, . . . , 𝐸10}, such that 𝐸𝑖 · 𝐸 𝑗 = 1 for 𝑖 ≠ 𝑗 .

It is well-known that any Enriques surface contains isotropic 10-sequences. Note that we, contrary
to [13], require the divisors to be effective, which can always be arranged by changing signs. We also
recall the following result:

Lemma 5.2 ([10, Lemma 3.4(a)], [13, Corollary 2.5.5]). Let {𝐸1, . . . , 𝐸10} be an isotropic 10-sequence.
Then there exists a divisor D on S, such that 𝐷2 = 10 and 3𝐷 ∼ 𝐸1 + · · · + 𝐸10. Furthermore, for any
𝑖 ≠ 𝑗 , we have

𝐷 ∼ 𝐸𝑖 + 𝐸 𝑗 + 𝐸𝑖, 𝑗 , with 𝐸𝑖, 𝑗 effective isotropic, 𝐸𝑖 · 𝐸𝑖, 𝑗 = 𝐸 𝑗 · 𝐸𝑖, 𝑗 = 2, (22)

and 𝐸𝑘 · 𝐸𝑖, 𝑗 = 1 for 𝑘 ≠ 𝑖, 𝑗 . Moreover, 𝐸𝑖, 𝑗 · 𝐸𝑘,𝑙 =

{
1, if {𝑖, 𝑗} ∩ {𝑘, 𝑙} ≠ ∅,

2, if {𝑖, 𝑗} ∩ {𝑘, 𝑙} = ∅.

The next result yields a ‘canonical’ way of decomposing line bundles:
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Proposition 5.3 [23, Theorem 5.7]. Let L be an effective line bundle on an Enriques surface S, such that
𝐿2 > 0. Then there are unique nonnegative integers 𝑎0, 𝑎1, . . . , 𝑎7, 𝑎9, 𝑎10, depending on L, satisfying

𝑎1 ≥ · · · ≥ 𝑎7, and (23)

𝑎9 + 𝑎10 ≥ 𝑎0 ≥ 𝑎9 ≥ 𝑎10, (24)

such that L can be written as

𝐿 ∼ 𝑎1𝐸1 + · · · + 𝑎7𝐸7 + 𝑎9𝐸9 + 𝑎10𝐸10 + 𝑎0𝐸9,10 + 𝜀𝐿𝐾𝑆 , (25)

for an isotropic 10-sequence {𝐸1, . . . , 𝐸10} (depending on L) and

𝜀𝐿 =

{
0, if 𝐿 + 𝐾𝑆 is not 2-divisible in Pic(𝑆),
1, if 𝐿 + 𝐾𝑆 is 2-divisible in Pic(𝑆).

(26)

Remark 5.4. Although the coefficients 𝑎𝑖 are unique, the isotropic 10-sequence in Proposition 5.3 is
not unique, not even up to numerical equivalence or permutation, and nor is the presentation (25) (see
[23, Remark 5.6]).
Definition 5.5 [23, Definitions 5.1, 5.8]. Let L be any effective line bundle on an Enriques surface S,
such that 𝐿2 > 0. A decomposition of the form (25) with coefficients satisfying (23), (24) and (26)
is called a fundamental presentation of L. The coefficients 𝑎𝑖 = 𝑎𝑖 (𝐿), 𝑖 ∈ {0, 1, . . . , 7, 9, 10} and 𝜀𝐿
appearing in any fundamental presentation are called fundamental coefficients of L or of (𝑆, 𝐿).
Remark 5.6. By [10, Lemma 4.8] (or [23, Theorem 1.3(f) and Proposition 5.5]), a line bundle L is
2-divisible in Num(𝑆) if and only if all 𝑎𝑖 = 𝑎𝑖 (𝐿) are even, 𝑖 ∈ {0, 1, . . . , 7, 9, 10}. In particular, by
(26) or [10, Corollary 4.7], the number 𝜀 = 𝜀𝐿 satisfies

𝜀 =

{
0, if some 𝑎𝑖 is odd,
0 or 1, if all 𝑎𝑖 are even.

(27)

This means that any 11-tuple (𝑎0, 𝑎1, . . . , 𝑎7, 𝑎9, 𝑎10, 𝜀) occurring as fundamental coefficients satisfies
the conditions (23), (24) and (27). Conversely, for any such 11-tuple, we can choose any isotropic
10-sequence on any Enriques surface and write down the line bundle (25) having this 11-tuple as
fundamental coefficients.

For any integer 𝑔 ≥ 2, let E𝑔 denote the moduli space of complex polarised Enriques surfaces (𝑆, 𝐿)
of genus g, which is a quasiprojective variety by [38, Theorem 1.13]. Its irreducible components are
determined by the fundamental coefficients, by the following:
Theorem 5.7 [23, Theorem 5.9]. Given an irreducible component E of E𝑔, all pairs (𝑆, 𝐿) in E have the
same fundamental coefficients. Different components correspond to different fundamental coefficients.

The following technical result will be useful for our purposes:
Lemma 5.8. Let (𝑆, 𝐿) be an element of E𝑔 \ E𝑔 [2]. Set 𝑎𝑖 = 𝑎𝑖 (𝐿). Then one of the following holds:

(i) There are three distinct 𝑘, 𝑙, 𝑚 ∈ {1, . . . , 7}, such that 𝑎𝑖 + 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is odd for 𝑖 = 9 or 10.
(ii) 𝑎0 > 0 is odd, and all 𝑎𝑖 for 𝑖 ≠ 0 are even.

(iii) 𝑎0 > 0, and all 𝑎𝑖 for 𝑖 ≠ 0 are odd.
Proof. We first show that if 𝑎0 = 0, then we end up in case (i). We have 𝑎9 = 𝑎10 = 0 by condition (24).
Moreover, by Remark 5.6, the set 𝐼 := {𝑖 ∈ {1, . . . , 7} | 𝑎𝑖 is odd} is nonempty. If ♯𝐼 ≥ 3, then for any
distinct 𝑘, 𝑙, 𝑚 ∈ 𝐼, we have that 𝑎𝑖 + 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 = 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is odd for 𝑖 = 9 and 10. If ♯𝐼 ≤ 2, we
may pick 𝑘 ∈ 𝐼 and two distinct 𝑙, 𝑚 ∈ {1, . . . , 7} \ 𝐼; then again, 𝑎𝑖 + 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 = 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is
odd for 𝑖 = 9 and 10.
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We may therefore assume that 𝑎0 > 0.
Assume next that (i) does not hold; then we have

𝑎𝑖 + 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is even for all 𝑖 ∈ {9, 10} and distinct 𝑘, 𝑙, 𝑚 ∈ {1, . . . , 7}. (28)

This clearly implies that 𝑎9 and 𝑎10 have the same parity.
Assume that 𝑎9 and 𝑎10 are even. Then (28) implies that 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is even for all distinct

𝑘, 𝑙, 𝑚 ∈ {1, . . . , 7}. Hence, 𝑎𝑖 is even for all 𝑖 ∈ {1, . . . , 7}. Then 𝑎0 is odd by Remark 5.6, and we end
up in case (ii).

Assume that 𝑎9 and 𝑎10 are odd. Then (28) implies that 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is odd for all distinct 𝑘, 𝑙, 𝑚 ∈

{1, . . . , 7}. Hence, 𝑎𝑖 is odd for all 𝑖 ∈ {1, . . . , 7}, yielding case (iii). �

6. Isotropic 10-sequences on members of D
The notions of isotropic divisors and isotropic 10-sequences can be extended in the obvious way to all
members of D. Referring to [23, Section 3] for more details, we will in Example 6.1 below construct
one such 10-sequence that we will use in the proof of Theorem 1.1 in the next section.

Recall that we have the points 𝑦1, . . . , 𝑦9 ∈ 𝑇 , which are the blownup points on either R or P.
We will now assume that 𝑦1, . . . , 𝑦9 are distinct, though the case of coinciding points can be treated
similarly. Denote by 𝔢 𝑗 the exceptional divisor over 𝑦 𝑗 , without fixing whether it lies on 𝑅 or 𝑃. View
𝑦 𝑗 ∈ 𝑇 ⊂ 𝑃. The linear system of lines in P through 𝑦 𝑗 is a pencil inducing a 𝑔1

2 on T, which has, by
Riemann-Hurwitz, two members that are also two fibres of 𝜋 |𝑇 : 𝑇 → 𝐸 . In other words, there are two
fibres 𝔣𝛼𝑗 and 𝔣𝛼′

𝑗
of 𝜋 : 𝑅 → 𝐸 , such that the intersection divisors 𝔣𝛼𝑗 ∩ 𝑇 and 𝔣𝛼′

𝑗
∩ 𝑇 belong to this

𝑔1
2. Since 𝔣𝛼𝑗 − 𝔣𝛼𝑖 restricts trivially to T, one has 𝛼′

𝑗 = 𝛼 𝑗 ⊕ 𝜂 (see Remark 2.1). In particular, there are
two uniquely defined points 𝛼 𝑗 and 𝛼 𝑗 ⊕ 𝜂 on E, such that the pairs

(𝔣𝛼𝑗 + 𝔢 𝑗 , ℓ) and (𝔣𝛼𝑗 ⊕𝜂 + 𝔢 𝑗 , ℓ), if 𝔢 𝑗 ⊂ 𝑅,

(𝔣𝛼𝑗 , ℓ − 𝔢 𝑗 ) and (𝔣𝛼𝑗 ⊕𝜂 , ℓ − 𝔢 𝑗 ), if 𝔢 𝑗 ⊂ 𝑃,

define distinct numerically equivalent Cartier divisors on 𝑋 := 𝑅 ∪𝑇 𝑃. Hence, their difference is 𝐾𝑋

(see, again, Remark 2.1).
Similarly, for four distinct (general) 𝑦𝑖 , 𝑦 𝑗 , 𝑦𝑘 , 𝑦𝑙 ∈ 𝑇 , the linear system of plane conics through

𝑦𝑖 , 𝑦 𝑗 , 𝑦𝑘 , 𝑦𝑙 is again a pencil inducing a 𝑔1
2 on T. As above, there are two fibres 𝔣𝛼𝑖 𝑗𝑘𝑙 and 𝔣𝛼𝑖 𝑗𝑘𝑙⊕𝜂 of

𝜋 : 𝑅 → 𝐸 , such that the divisors 𝔣𝛼𝑖 𝑗𝑘𝑙 ∩ 𝑇 and 𝔣𝛼𝑖 𝑗𝑘𝑙⊕𝜂 ∩ 𝑇 belong to this 𝑔1
2. In particular, the pairs

(𝔣𝛼𝑖 𝑗𝑘𝑙 + 𝔢𝑖 + 𝔢 𝑗 + 𝔢𝑘 + 𝔢𝑙 , 2ℓ) and (𝔣𝛼𝑖 𝑗𝑘𝑙⊕𝜂 + 𝔢𝑖 + 𝔢 𝑗 + 𝔢𝑘 + 𝔢𝑙 , 2ℓ), if 𝔢𝑖 ,𝔢 𝑗 ,𝔢𝑘 ,𝔢𝑙 ⊂ 𝑅,

(𝔣𝛼𝑖 𝑗𝑘𝑙 , 2ℓ − 𝔢𝑖 − 𝔢 𝑗 − 𝔢𝑘 − 𝔢𝑙) and (𝔣𝛼𝑖 𝑗𝑘𝑙⊕𝜂 , 2ℓ − 𝔢𝑖 − 𝔢 𝑗 − 𝔢𝑘 − 𝔢𝑙), if 𝔢𝑖 ,𝔢 𝑗 ,𝔢𝑘 ,𝔢𝑙 ⊂ 𝑃,

together with similar pairs when 𝔢𝑖 ,𝔢 𝑗 ,𝔢𝑘 ,𝔢𝑙 are distributed differently, define Cartier divisors on X. One
may again check that their difference is 𝐾𝑋 .

Considering instead, 𝑦𝑖 ∈ 𝑇 ⊂ 𝑅 = Sym2(𝐸), we may write 𝑦𝑖 = 𝑝𝑖 + (𝑝𝑖 ⊕ 𝜂), for some 𝑝𝑖 ∈ 𝐸 .
There are two sections in R passing through 𝑦𝑖 , namely, 𝔰𝑝𝑖 and 𝔰𝑝𝑖⊕𝜂 , cf. (1). Thus, the pairs

(𝔰𝑝𝑖 − 𝔢𝑖 , 0) and (𝔰𝑝𝑖⊕𝜂 − 𝔢𝑖 , 0), if 𝔢𝑖 ⊂ 𝑅,

(𝔰𝑝𝑖 ,𝔢𝑖) and (𝔰𝑝𝑖⊕𝜂 ,𝔢𝑖), if 𝔢𝑖 ⊂ 𝑃

define Cartier divisors on 𝑋 . Again, one may check that their difference is 𝐾𝑋 .
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Example 6.1. We consider 𝑅 = Bl𝑦1 ,𝑦2 ,𝑦3 ,𝑦4 (𝑅) and 𝑃 = Bl𝑦5 ,...,𝑦9 (P
2). Define

𝐸0
𝑖 := (𝔰𝑝𝑖 − 𝔢𝑖 , 0) for 𝑖 ∈ {1, 2, 3, 4},

𝐸0
𝑖 := (𝔣𝛼𝑖 , ℓ − 𝔢𝑖) for 𝑖 ∈ {5, 6, 7, 8},

𝐸0
9 := (𝔰𝑝9 ,𝔢9),

𝐸0
10 := (𝔣𝛼5678 , 2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8).

These are all Cartier divisors on 𝑋 = 𝑅∪𝑇 𝑃 by the above considerations. One may check that (𝐸0
𝑖 )

2 = 0
for all i and 𝐸0

𝑖 ·𝐸
0
𝑗 = 1 for all 𝑖 ≠ 𝑗 . If X is a member of D∗, then, arguing as in the proof of [23, Lemma

3.6], one may show that

𝐸0
1 + · · · + 𝐸0

10 − 𝜉 ∼ 3(𝐸0
9 + 𝐸0

10 + 𝐸0
9,10),

with 𝜉 as in (7) and

𝐸0
9,10 = (𝔣𝛼9 , ℓ − 𝔢9).

Thus, we may similarly to (22) define

𝐸0
𝑖, 𝑗 :=

1
3

(
𝐸0

1 + · · · + 𝐸0
10 − 𝜉

)
− 𝐸0

𝑖 − 𝐸0
𝑗 for each 𝑖 ≠ 𝑗 .

In particular, letting 𝑦78 ∈ 𝑇 ⊂ P2 be the third intersection point of the line through 𝑦7 and 𝑦8 with T,
and writing 𝑦78 = 𝑝78 + (𝑝78 ⊕ 𝜂) ∈ 𝑇 ⊂ Sym2 (𝐸) for some 𝑝78 ∈ 𝐸 , we will use that

𝐸0
5,6 ∼ (𝔰𝑝78 , ℓ − 𝔢7 − 𝔢8).

Note that 𝐸0
9,10 and 𝐸0

5,6 are Cartier divisors on any X in D.

Remark 6.2. If 𝑋 = 𝑅 ∪𝑇 𝑃 belongs to D∗, then, by Theorem 2.2, as it deforms to a general Enriques
surface S, the sequence (𝐸0

1 , . . . , 𝐸0
10) deforms to an isotropic 10-sequence (𝐸1, . . . , 𝐸10) on S and each

𝐸0
𝑖, 𝑗 deforms to 𝐸𝑖, 𝑗 , satisfying (22).

7. Proof of Theorem 1.1

We are now ready to finish the proof of our main result, Theorem 1.1. Keeping in mind that the various
irreducible components of E𝑔 are determined by the fundamental coefficients of the line bundles they
parametrise (cf. Theorem 5.7), the proof will be divided in various cases depending on parity properties
of the fundamental coefficients. Also recall that since we assume that we are not in E𝑔 [2], at least one
of the fundamental coefficients 𝑎𝑖 is odd and 𝜀 = 0 (cf. Remark 5.6). In particular, the components
we consider contain both (𝑆, 𝐿) and (𝑆, 𝐿 + 𝐾𝑆), so there is no need to distinguish between linear and
numerical equivalence classes (cf. also [23, Theorem 1.1]).

The proof strategy will be as follows: given fundamental coefficients 𝑎𝑖 , find a suitable line bundle
with the same fundamental decomposition on some limit surface in terms of the isotropic divisors in
Example 6.1, and apply Proposition 4.2 or 4.3 (and Remark 6.2). As mentioned in the beginning of
Section 4, the existence of a rigid nodal elliptic curve will prove Theorem 1.1.

We will first treat three special cases in Sections 7.1–7.3 and then the three cases of Lemma 5.8 in
Sections 7.4–7.6.
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7.1. The case 𝑎1 = 𝑎2 = 1 and 𝑎𝑖 = 0 otherwise

Consider the limit line bundle 𝐿0 = 𝐸0
8 + 𝐸0

9 , with 𝐸0
8 and 𝐸0

9 as in Example 6.1 (where we consider a
general surface 𝑅 ∪𝑇 𝑃 in D∗). Note that the order in an isotropic 10-sequence does not matter, hence,
we can choose 𝐸0

8 and 𝐸0
9 instead of 𝐸0

1 and 𝐸0
2 . This fact will be used throughout the rest of the proof,

without further mention. Then

𝐿0 |𝑅 ≡ 𝔣 + 𝔰 and 𝐿0 |𝑃 ∼ (ℓ − 𝔢8) + 𝔢9.

In this case, there is no need to invoke Proposition 4.2 or 4.3: indeed, the linear system |𝐿 | contains the
following curve:

Here, 𝔣′ is the unique fibre passing through the point 𝑦9 = 𝔢9 ∩ 𝑇 and D is the unique element of
|ℓ − 𝔢8 | passing through the point 𝑦′9, such that 𝑦9 + 𝑦′9 = 𝑇 ∩ 𝔣′; finally 𝔰′ is one of the two sections 𝔰
passing through the remaining intersection point of D with T.

Arguing as in the proof of Proposition 4.1, this curve can be deformed to a one-nodal rigid elliptic
curve of arithmetic genus 2 in the linear system |𝐿 | as (𝑅 ∪𝑇 𝑃, 𝐿0) deforms to (𝑆, 𝐿).

7.2. The case 𝑎0 = 𝑎9 and 𝑎𝑖 = 0 otherwise

Both 𝑎0 and 𝑎9 are odd.

7.2.1. Subcase 𝑎0 = 𝑎9 = 1
Consider the limit line bundle 𝐿0 = 𝐸0

9,10 + 𝐸0
9 , with 𝐸0

9,10 and 𝐸0
9 as in Example 6.1 (as above). Then

𝐿0 |𝑅 ≡ 𝔣 + 𝔰 and 𝐿0 |𝑃 ∼ (ℓ − 𝔢9) + 𝔢9.

There is, again, no need to invoke Proposition 4.2 or 4.3: indeed, the linear system |𝐿 | contains the
following curve, constructed as in the previous case:

Arguing, again, as in the proof of Proposition 4.1, this curve can be deformed to a rigid elliptic
two-nodal curve of arithmetic genus 3 in the linear system |𝐿 | as (𝑅 ∪𝑇 𝑃, 𝐿0) deforms to (𝑆, 𝐿).
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7.2.2. Subcase 𝑎0 = 𝑎9 ≥ 3
Consider the limit line bundle 𝐿0 = 𝑎0 (𝐸

0
5,6 + 𝐸0

5), with 𝐸0
5,6 and 𝐸0

5 as in Example 6.1. Then

𝐿 ′ := 𝐿0 |𝑅 ≡ 𝑎0𝔰 + 𝑎0𝔣 and 𝐿 ′′ := 𝐿0 |𝑃 ∼ 𝑎0 (ℓ − 𝔢7 − 𝔢8) + 𝑎0 (ℓ − 𝔢5) = 𝑎0 (2ℓ − 𝔢5 − 𝔢7 − 𝔢8).

We see that we might as well substitute 𝑅 with R and 𝑃 with 𝑃′ = Bl𝑦5 ,𝑦7 ,𝑦8 (𝑃) and consider
𝐿0 = (𝐿 ′, 𝐿 ′′) as a line bundle on 𝑅 ∪𝑇 𝑃′. We apply Proposition 4.2 with 𝑘 = 0, 𝑠 = 0 and 𝑡 = 3.

Clearly 𝐿 ′ satisfies condition (★) and is odd and 𝐿 ′′ is big and nef. Moreover, 𝔢𝑖 · 𝐿 ′′ > 0 for
𝑖 ∈ {5, 7, 8}. The conditions of Proposition 4.2 are satisfied, and we are done.

7.3. The cases 𝑎7 = 𝑎9 = 𝑎10 = 𝑎0 = 0

At least one of the 𝑎𝑖 is odd. Pick the minimal such and call it 𝑐1. Reordering the remaining 𝑎𝑖s, we
have that a limit line bundle is of type

𝐿0 ≡ 𝑐1𝐸0
1 +

8∑
𝑖=5

𝑐𝑖𝐸
0
𝑖 + 𝑐10𝐸0

10,

with the 𝐸0
𝑖 as in Example 6.1, where 𝑐1 is the minimal odd coefficient, and we may also assume that

𝑐5 > 0. Then

𝐿 ′ := 𝐿0 |𝑅 ≡ 𝑐1 (𝔰 − 𝔢1) +

8∑
𝑖=5

𝑐𝑖𝔣 + 𝑐10𝔣 = 𝑐1𝔰 + (𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10)𝔣 − 𝑐1𝔢1,

𝐿 ′′ := 𝐿0 |𝑃 ∼

8∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖) + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8).

We see that we might as well substitute 𝑅 with 𝑅′ = Bl𝑦1 (𝑅) and 𝑃 with 𝑃′ = Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑦8 (𝑃) and
consider 𝐿0 = (𝐿 ′, 𝐿 ′′) as a line bundle on 𝑅′ ∪𝑇 𝑃′. We apply Proposition 4.2 with 𝑠 = 1, 𝑡 = 4 and
𝑘 = 0. Conditions (i)–(iii) of (★) are verified by 𝐿 ′; condition (iv) is equivalent to 𝑐5+𝑐6+𝑐7+𝑐8+𝑐10 ≥ 2,
which is verified unless 𝑐5 = 1 and 𝑐6 = 𝑐7 = 𝑐8 = 𝑐10 = 0. Since 𝑐1 was assumed to be a minimal odd
fundamental coefficient, we must have 𝑐1 = 1 as well. This case is the one treated in Section 7.1. We may
therefore assume that 𝐿 ′ satisfies (★). One readily checks that 𝐿 ′ is odd (since 𝑐1 is odd), and that 𝐿 ′′ is
big and nef (all components have square zero, intersect and can be represented by irreducible curves).
This verifies conditions (i)–(iv) in Proposition 4.2. Since, for instance, 𝔢5 · 𝐿 ′′ = 𝑐5 + 𝑐10 ≥ 𝑐5 > 0, also
condition (v) therein is satisfied. Hence, we are done by Proposition 4.2.

7.4. Case where there are three distinct 𝑘, 𝑙, 𝑚 ∈ {1, . . . , 7}, such that 𝑎𝑖 + 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is odd for
𝑖 = 9 or 10 (case (i) in Lemma 5.8)

Note that the cases among these with 𝑎0 = 0 (whence also 𝑎9 = 𝑎10 = 0) and 𝑎7 = 0 fall into the cases
treated in Section 7.3. We can therefore assume that

𝑎7 > 0 (whence 𝑎𝑖 > 0 for all 𝑖 ∈ {1, . . . , 7}), if 𝑎0 = 0. (29)

Similarly, the cases among these with 𝑎0 = 𝑎9 and all remaining 𝑎𝑖 = 0 fall into the cases treated in
Section 7.2. We can therefore assume that

𝑎0 ≠ 𝑎9, if 𝑎𝑖 = 0 for all 𝑖 ∈ {1, . . . , 7, 10}. (30)

We know that for 𝑖 = 9 or 10, we can find indices 𝑘, 𝑙, 𝑚 so that 𝑎𝑖+𝑎𝑘 +𝑎𝑙+𝑎𝑚 is odd. In this case, we
take 𝑘, 𝑙, 𝑚 so that 𝑎𝑘 + 𝑎𝑙 + 𝑎𝑚 is minimal with respect to this property. If we can do this for both 𝑖 = 9
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and 10 (with possibly different triples of indices 𝑘, 𝑙, 𝑚), we will pick 𝑖 ∈ {9, 10} so that 𝑎𝑖 +𝑎𝑘 +𝑎𝑙 +𝑎𝑚
is minimal. We rename these coefficients 𝑎𝑖 , 𝑎𝑘 , 𝑎𝑙 , 𝑎𝑚 as 𝑐9, 𝑐2, 𝑐3, 𝑐4, making sure that

𝑐2 ≥ 𝑐3 ≥ 𝑐4, (31)

set 𝑐0 = 𝑎0, 𝑐10 =

{
𝑎10, if 𝑖 = 9
𝑎9, if 𝑖 = 10

, and rename the remaining 𝑎𝑖 as 𝑐5, 𝑐6, 𝑐7, 𝑐8 in such a way that

𝑐5 ≥ 𝑐6 ≥ 𝑐7 ≥ 𝑐8. (32)

We thus have a limit line bundle

𝐿0 ≡ 𝑐0𝐸0
9,10 + 𝑐9𝐸0

9 + 𝑐10𝐸0
10 +

8∑
𝑖=2

𝑐𝑖𝐸
0
𝑖 ,

with the 𝐸0
𝑖 and 𝐸0

9,10 as in Example 6.1, where, besides (31) and (32), one has

𝑐9 + 𝑐10 ≥ 𝑐0 ≥ max{𝑐9, 𝑐10}, (33)

𝑐9 + 𝑐2 + 𝑐3 + 𝑐4 is odd, (34)

there are no 𝑖 ∈ {9, 10}, 𝑘, 𝑙, 𝑚 ∈ {2, . . . , 8}, such that (35)

𝑐𝑖 + 𝑐𝑘 + 𝑐𝑙 + 𝑐𝑚 is odd and{
𝑐𝑘 + 𝑐𝑙 + 𝑐𝑚 < 𝑐2 + 𝑐3 + 𝑐4, or
𝑐𝑘 + 𝑐𝑙 + 𝑐𝑚 = 𝑐2 + 𝑐3 + 𝑐4 and 𝑐𝑖 + 𝑐𝑘 + 𝑐𝑙 + 𝑐𝑚 < 𝑐9 + 𝑐2 + 𝑐3 + 𝑐4.

Furthermore, (29) gives

𝑐𝑖 > 0 for all 𝑖 ∈ {2, . . . , 8}, if 𝑐0 = 0, (36)

and (30) yields

𝑐0 ≠ 𝑐9 if 𝑐𝑖 = 0 for all 𝑖 ∈ {2, . . . , 8, 10}. (37)

We define

𝜅 := ♯{ 𝑗 ∈ {2, 3, 4} | 𝑐 𝑗 > 0} and 𝜆 := ♯{ 𝑗 ∈ {5, 6, 7, 8} | 𝑐 𝑗 > 0}.

Claim 7.1. The following hold:

(i) If 𝑐0 = 0, then (𝜅, 𝜆) = (3, 4).
(ii) If 𝜆 ≤ 2, then 𝜅 ≤ 1; moreover, 𝜅 = 1 implies 𝑐10 ≥ 2.

(iii) If (𝜅, 𝜆, 𝑐10) = (0, 0, 0), then 𝑐0 ≠ 𝑐9.

Proof. Property (i) follows from condition (36).
Next assume 𝜆 ≤ 2, that is, 𝑐7 = 𝑐8 = 0. Then properties (34) and (35) yield that 𝑐3 = 𝑐4 = 0, that

is, 𝜅 ≤ 1, as we now explain. Indeed, if 𝑐4 is even and positive, we have that 𝑐9 + 𝑐2 + 𝑐3 + 𝑐8 is odd and
𝑐2 + 𝑐3 + 𝑐8 < 𝑐2 + 𝑐3 + 𝑐4, contradicting (35) (similarly for the cases where 𝑐𝑖 is even and positive with
𝑖 = 2, 3). From this, it follows that none among 𝑐2, 𝑐3, 𝑐4 can be even and positive.

If 𝑐3 and 𝑐4 are odd, then 𝑐9 + 𝑐2 + 𝑐7 + 𝑐8 is odd and 𝑐2 + 𝑐7 + 𝑐8 < 𝑐2 + 𝑐3 + 𝑐4, contradicting (35)
(similarly if 𝑐2 and 𝑐3 or 𝑐2 and 𝑐4 are odd). Hence, at most one among 𝑐2, 𝑐3, 𝑐4 is odd.

In conclusion, at least two among 𝑐2, 𝑐3, 𝑐4 must be zero, hence, 𝑐3 = 𝑐4 = 0 by (31), as we claimed.
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If 𝜅 = 1, we have 𝑐2 > 0 and 𝑐9 + 𝑐2 is odd by (34). Condition (35) yields that 𝑐9 is even (whence 𝑐2
is odd), for otherwise, 𝑐9 = 𝑐9 + 𝑐3 + 𝑐4 + 𝑐8 would be odd with 0 = 𝑐3 + 𝑐4 + 𝑐8 < 𝑐2 = 𝑐2 + 𝑐3 + 𝑐4. For
the same reason, 𝑐10 is even, and condition (35) yields that 𝑐10 ≥ 𝑐9. By (33) and the fact that 𝑐0 > 0
from (i), we must have 𝑐10 > 0. This proves (ii).

Finally, (iii) is a reformulation of property (37). �

Consider

𝐿 ′ := 𝐿0 |𝑅 ≡ 𝑐0𝔣 + 𝑐9𝔰 + 𝑐10𝔣 +
4∑
𝑖=2

𝑐𝑖 (𝔰 − 𝔢𝑖) +
8∑
𝑖=5

𝑐𝑖𝔣

= (𝑐2 + 𝑐3 + 𝑐4 + 𝑐9)𝔰 + (𝑐0 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10)𝔣 −
4∑
𝑖=2

𝑐𝑖𝔢𝑖

= 𝐿 ′
0 +

𝜅+1∑
𝑖=2

(𝔣 − 𝔢𝑖),

where

𝐿 ′
0 := (𝑐2 + 𝑐3 + 𝑐4 + 𝑐9)𝔰 + (𝑐0 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10 − 𝜅)𝔣 −

𝜅+1∑
𝑖=2

(𝑐𝑖 − 1)𝔢𝑖

and
∑𝜅+1
𝑖=2 (𝔣 −𝔢𝑖) is the sum of 𝜅 disjoint (−1)-curves. We note that we may consider 𝐿 ′ as a line bundle

on the blowup of R at 𝜅 points. Hence, we will eventually apply Proposition 4.2 with 𝑘 = 𝑠 = 𝜅.
Claim 7.2. 𝐿 ′

0 verifies condition (★) and is odd.
Proof. Oddness is equivalent to condition (34). Conditions (i)–(iii) of (★) are easily checked. Condition
(iv) is equivalent to

2𝑐0 + 𝑐9 + 2𝑐10 + 2
8∑
𝑖=5

𝑐𝑖 − 𝜅 ≥ 4. (38)

If 𝑐0 = 0, then 𝑐9 = 𝑐10 = 0 by (33) and (𝜅, 𝜆) = (3, 4) by Claim 7.1(i), whence the left-hand side of
(38) equals 2

∑8
𝑖=5 𝑐𝑖 − 𝜅 ≥ 8 − 3 = 5, and we are done. Hence, we may assume that 𝑐0 > 0 for the rest

of the proof.
We note that, by (33),

2𝑐0 + 𝑐9 + 2𝑐10 + 2
8∑
𝑖=5

𝑐𝑖 − 𝜅 ≥ 3𝑐0 + 𝑐10 + 2𝜆 − 𝜅 ≥ 3 + 𝑐10 + 2𝜆 − 𝜅.

This, together with Claim 7.1(ii) tells us that (38) is always satisfied if 𝜆 ≥ 1. Assume, therefore, that
𝜆 = 0. Then 𝜅 ≤ 1, by Claim 7.1(ii). If 𝜅 = 1, then 𝑐10 ≥ 2, by Claim 7.1(ii), and (38) is again satisfied.
If 𝜅 = 0, we have that 𝑐9 is odd by (34). If 𝑐10 > 0, (38) is satisfied. Otherwise, Claim 7.1(iii) yields
𝑐0 ≥ 2, whence (38) is again satisfied. �

Consider

𝐿 ′′ := 𝐿0 |𝑃 ∼ 𝑐0 (ℓ − 𝔢9) + 𝑐9𝔢9 + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8) +

8∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖)

= (𝑐0 − 𝑐9) (ℓ − 𝔢9) + 𝑐9ℓ + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8) +

8∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖).

The idea is now to apply Proposition 4.2 with 𝑘 = 𝜅.
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7.4.1. Subcase 𝜆 = 3, 4
We have 𝑐5 ≥ 𝑐6 ≥ 𝑐7 > 0, by (32). Define

𝐿 ′′
0 (3) := (𝑐0 − 𝑐9) (ℓ − 𝔢9) + 𝑐9ℓ + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8)+ (39)

+

7∑
𝑖=5

(𝑐𝑖 − 1) (ℓ − 𝔢𝑖) + 𝑐8(ℓ − 𝔢8) + (ℓ − 𝔢5 − 𝔢6) + (ℓ − 𝔢6 − 𝔢7) + (ℓ − 𝔢7 − 𝔢8),

𝐿 ′′
0 (2) = 𝐿 ′′

0 (3) + 𝔢6,

𝐿 ′′
0 (1) = 𝐿 ′′

0 (3) + 𝔢6 + 𝔢7,

𝐿 ′′
0 (0) = 𝐿 ′′

0 (3) + 𝔢6 + 𝔢7 + 𝔢8.

Then one may check that

𝐿 ′′ = 𝐿 ′′
0 (𝜅) +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if 𝜅 = 0,

𝔢8, if 𝜅 = 1,

𝔢7 + 𝔢8, if 𝜅 = 2,

𝔢6 + 𝔢7 + 𝔢8, if 𝜅 = 3.

Claim 7.3. 𝐿 ′′
0 (𝜅) is big and nef for all 𝜅 ∈ {0, 1, 2, 3}.

Proof. Since 𝔢𝑖 · 𝐿 ′′
0 (3) > 0, for 𝑖 ∈ {6, 7, 8}, it suffices to verify that 𝐿 ′′

0 (3) is big and nef. All divisors
in the sum (39) are nef, except for the last three, which are irreducible. Nefness follows if the latter three
intersect 𝐿 ′′

0 (3) nonnegatively. We have

𝐿 ′′
0 (3) · (ℓ − 𝔢5 − 𝔢6) = 𝑐0 + (𝑐7 − 1) + 𝑐8 − 1 + 0 + 1 ≥ 0,

𝐿 ′′
0 (3) · (ℓ − 𝔢7 − 𝔢8) = 𝑐0 + (𝑐5 − 1) + (𝑐6 − 1) + 1 + 0 − 1 ≥ 0.

Finally

𝐿 ′′
0 (3) · (ℓ − 𝔢6 − 𝔢7) = 𝑐0 + (𝑐5 − 1) + 𝑐8 + 0 − 1 + 0 ≥ 𝑐0 + 𝑐8 − 1,

which is nonnegative, since, by Claim 7.1(i), either 𝑐0 > 0, or 𝜆 = 4 (whence 𝑐8 > 0). This proves
nefness. Bigness is easily checked. �

We apply Proposition 4.2 with 𝑘 = 𝑠 = 𝜅, 𝑡 = 5 and 𝐿 ′′
0 = 𝐿0 (𝜅). What is left to be checked is

condition (v). The set of additional 𝑡 − 𝑘 = 5 − 𝜅 disjoint (−1)-curves on 𝑃 is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝔢5,𝔢6,𝔢7,𝔢8,𝔢9, if 𝜅 = 0,

𝔢5,𝔢6,𝔢7,𝔢9, if 𝜅 = 1,

𝔢5,𝔢6,𝔢9 if 𝜅 = 2,

𝔢5,𝔢9 if 𝜅 = 3,

and 𝔢5 · 𝐿 ′′(𝜅) = 𝑐10 + 𝑐5 ≥ 𝑐5 > 0, as 𝜆 > 0, verifying condition (v) in Proposition 4.2.

7.4.2. Subcase 𝜆 ≤ 2
We have 𝑐0 > 0, 𝑐7 = 𝑐8 = 0, and 𝜅 ≤ 1, by Claim 7.1(i)–(ii).

If 𝜅 = 0, we apply Proposition 4.2 with 𝑘 = 𝑠 = 0 and 𝑡 = 5. Condition (v) therein is satisfied, as for
instance, 𝔢5 · 𝐿 ′′ = 𝑐10 + 𝑐5 and 𝔢9 · 𝐿 ′′ = 𝑐0 − 𝑐9; indeed, if 𝔢5 · 𝐿 ′′ = 0, then 𝑐10 = 𝑐5 = 0, whence
𝜆 = 0, so Claim 7.1(iii) yields 𝔢9 · 𝐿 ′′ > 0.
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If 𝜅 = 1, then 𝑐10 ≥ 2, by Claim 7.1(ii). Write 𝐿 ′′ = 𝐿 ′′
0 + 𝔢9, with

𝐿 ′′
0 := (𝑐0 − 𝑐9) (ℓ − 𝔢9) + 𝑐9ℓ + (𝑐10 − 1) (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8)+

6∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖) + (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8 − 𝔢9),

which is big and nef, since the only term with negative square is the last one, and one checks that
(2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8 − 𝔢9) · 𝐿 ′′

0 = 𝑐0 + 𝑐9 + 𝑐5 + 𝑐6 − 1 ≥ 0. We apply Proposition 4.2 with 𝑘 = 𝑠 = 1
and 𝑡 = 5. Condition (v), therein, is satisfied, as for instance, 𝔢5 · 𝐿 ′′ = 𝑐10 + 𝑐5 ≥ 𝑐10 ≥ 2.

7.5. Case where 𝑎0 > 0 is odd and all remaining 𝑎𝑖 are even (case (ii) in Lemma 5.8)

Since 𝑎9, 𝑎10 are even and 𝑎0 is odd, we have

𝑎9 + 𝑎10 > 𝑎0 > 𝑎9 ≥ 𝑎10,

which implies 𝑎0 ≥ 3 and 𝑎9, 𝑎10 ≥ 2. Rearranging indices, we have a limit line bundle

𝐿0 ≡ 𝑐0𝐸0
5,6 +

8∑
𝑖=1

𝑐𝑖𝐸
0
𝑖 + 𝑐10𝐸0

10,

with the 𝐸0
𝑖 and 𝐸0

5,6, as in Example 6.1, where

𝑐5 + 𝑐6 > 𝑐0 > 𝑐5 ≥ 𝑐6 ≥ 2, 𝑐0 is odd, 𝑐5, 𝑐6 are even, (40)

𝑐4 ≤ 𝑐3 ≤ 𝑐2 ≤ 𝑐1 ≤ 𝑐7 ≤ 𝑐8 ≤ 𝑐10, all even. (41)

We define

𝜅 := ♯{ 𝑗 ∈ {1, 2, 3, 4} | 𝑐 𝑗 > 0}.

Consider

𝐿 ′ := 𝐿0 |𝑅 ≡ 𝑐0𝔰 +
4∑
𝑖=1

𝑐𝑖 (𝔰 − 𝔢𝑖) +
8∑
𝑖=5

𝑐𝑖𝔣 + 𝑐10𝔣

= (𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4)𝔰 + (𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10)𝔣 −
𝜅∑
𝑖=1

𝑐𝑖𝔢𝑖

= 𝐿 ′
0 +

𝜅∑
𝑖=2

(𝔣 − 𝔢𝑖),

where

𝐿 ′
0 := (𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4)𝔰 + (𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10 − 𝜅 + 1)𝔣 − 𝑐1𝔢1 −

𝜅∑
𝑖=2

(𝑐𝑖 − 1)𝔢𝑖

and
∑𝜅
𝑖=2(𝔣 − 𝔢𝑖) is the sum of max{0, 𝜅 − 1} disjoint (−1)-curves. We note that we may consider 𝐿 ′ as

a line bundle on the blowup of R at 𝜅 points. Hence, we will eventually apply Proposition 4.2 with 𝑠 = 𝜅
and 𝑘 = max{0, 𝜅 − 1}.

Claim 7.4. 𝐿 ′
0 verifies condition (★) and is odd.
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Proof. Oddness follows since 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 is odd by our assumptions (40) and (41). Conditions
(i)–(iii) of (★) are easily checked. Condition (iv) is equivalent to

𝑐0 + 2(𝑐5 + 𝑐6 + 𝑐7 + 𝑐8 + 𝑐10) ≥ 𝜅 + 2.

This is verified since, by (40), the left-hand side is ≥ 𝑐0 + 2𝑐5 + 2𝑐6 ≥ 3 + 4 + 4 = 11. �

We have

𝐿 ′′ := 𝐿0 |𝑃 ∼ 𝑐0(ℓ − 𝔢7 − 𝔢8) +

8∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖) + 𝑐10(2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8).

We can view 𝐿 ′′ as a line bundle on Bl𝑦5 ,𝑦6 ,𝑦7 ,𝑦8 (𝑃). The idea is now to apply Proposition 4.2 with
𝑘 = max{0, 𝜅 − 1}, 𝑠 = 𝜅 and 𝑡 = 4.

7.5.1. Subcase 𝑐7 = 0
By (41), we have 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 0, whence 𝜅 = 0. We apply Proposition 4.2 with 𝑠 = 𝑘 = 0 and
𝑡 = 4. Condition (v), therein, is satisfied, as for instance, 𝔢5 · 𝐿 ′′ = 𝑐5 + 𝑐10 ≥ 𝑐5 > 0 by (40).

7.5.2. Subcase 𝑐7 > 0
By (41), we have 𝑐7, 𝑐8, 𝑐10 ≥ 2.

Define

𝐿 ′′
0 (3) := 𝑐0 (ℓ − 𝔢7 − 𝔢8) + 𝑐5 (ℓ − 𝔢5) +

8∑
𝑖=6

(𝑐𝑖 − 1) (ℓ − 𝔢𝑖)+ (42)

+ 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8) + (ℓ − 𝔢6 − 𝔢7) + (ℓ − 𝔢7 − 𝔢5) + (ℓ − 𝔢8 − 𝔢6),

𝐿 ′′
0 (2) = 𝐿 ′′(3) + 𝔢5,

𝐿 ′′
0 (1) = 𝐿 ′′(3) + 𝔢5 + 𝔢6,

𝐿 ′′
0 (0) = 𝐿 ′′(3) + 𝔢5 + 𝔢6 + 𝔢7.

Then one may check that, for 𝑗 ∈ {0, 1, 2, 3}:

𝐿 ′′ = 𝐿 ′′
0 ( 𝑗) +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if 𝑗 = 0,

𝔢7, if 𝑗 = 1,

𝔢6 + 𝔢7, if 𝑗 = 2,

𝔢5 + 𝔢6 + 𝔢7, if 𝑗 = 3.

Claim 7.5. 𝐿 ′′
0 ( 𝑗) is big and nef for all 𝑗 ∈ {0, 1, 2, 3}.

Proof. Since 𝔢𝑖 · 𝐿 ′′
0 (3) > 0, for 𝑖 ∈ {5, 6, 7}, it suffices to verify that 𝐿 ′′

0 (3) is big and nef. All divisors
in the sum (42) are of nonnegative square, except for the first and the last three. We have, using (40) and
the fact that 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐10 ≥ 2:

𝐿 ′′
0 (3) · (ℓ − 𝔢7 − 𝔢8) = −𝑐0 + 𝑐5 + (𝑐6 − 1) ≥ 0,

𝐿 ′′
0 (3) · (ℓ − 𝔢6 − 𝔢7) = 𝑐5 + (𝑐8 − 1) − 1 ≥ 2 + 1 − 1 = 2,

𝐿 ′′
0 (3) · (ℓ − 𝔢7 − 𝔢5) = (𝑐6 − 1) + (𝑐8 − 1) − 1 + 1 ≥ 1 + 1 + 0 ≥ 2,

𝐿 ′′
0 (3) · (ℓ − 𝔢8 − 𝔢6) = 𝑐5 + (𝑐7 − 1) + 1 − 1 ≥ 2 + 1 + 0 = 3,

which proves that 𝐿 ′′
0 (3) is nef. It is easily verified that it is big. �
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Now we apply Proposition 4.2 with 𝑘 = max{0, 𝜅−1} ≤ 3, 𝑠 = 𝜅, 𝑡 = 4 and 𝐿 ′′
0 = 𝐿0 (𝑘). What is left

to be checked is condition (v). This is satisfied because 𝔢8 ·𝐿
′′
0 (𝑘) = 𝑐0+𝑐8−1+𝑐10+1 = 𝑐0+𝑐8+𝑐10 > 0.

7.6. Case where 𝑎0 > 0 and all remaining 𝑎𝑖 are odd (case (iii) in Lemma 5.8)

Rearranging indices, we have a limit line bundle

𝐿0 ≡ 𝑐0𝐸0
9,10 + 𝑐9𝐸0

9 + 𝑐10𝐸0
10 +

7∑
𝑖=1

𝑐𝑖𝐸
0
𝑖 ,

with the 𝐸0
𝑖 and 𝐸0

9,10, as in Example 6.1, where

𝑐9 + 𝑐10 ≥ 𝑐0 ≥ 𝑐9 ≥ 𝑐10 > 0, 𝑐9, 𝑐10 odd, (43)

0 < 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐6 ≤ 𝑐7, all odd. (44)

Consider

𝐿 ′ := 𝐿0 |𝑅 ≡ 𝑐0𝔣 + 𝑐9𝔰 + 𝑐10𝔣 +
4∑
𝑖=1

𝑐𝑖 (𝔰 − 𝔢𝑖) +
7∑
𝑖=5

𝑐𝑖𝔣

= (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐9)𝔰 + (𝑐0 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐10)𝔣 −
4∑
𝑖=1

𝑐𝑖𝔢𝑖

= 𝐿 ′
0 +

4∑
𝑖=2

(𝔣 − 𝔢𝑖),

where

𝐿 ′
0 := (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐9)𝔰 + (𝑐0 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐10 − 3)𝔣 − 𝑐1𝔢1 −

4∑
𝑖=2

(𝑐𝑖 − 1)𝔢𝑖

and
∑4
𝑖=2(𝔣 − 𝔢𝑖) is the sum of three disjoint (−1)-curves. We will eventually apply Proposition 4.3.

Claim 7.6. 𝐿 ′
0 verifies condition (★) and is odd.

Proof. Oddness follows since 𝑐9 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 is odd by our assumptions (43)–(44). Conditions
(i)–(iv) of (★) easily follow from properties (43)–(44). �

We have

𝐿 ′′ := 𝐿0 |𝑃 ∼ 𝑐0 (ℓ − 𝔢9) + 𝑐9𝔢9 + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8) +

7∑
𝑖=5

𝑐𝑖 (ℓ − 𝔢𝑖)

= 𝐿 ′′
0 + 𝔢6 + 𝔢7 + 𝔢8,

with

𝐿 ′′
0 := (𝑐0 − 𝑐9) (ℓ − 𝔢9) + 𝑐9ℓ + 𝑐10 (2ℓ − 𝔢5 − 𝔢6 − 𝔢7 − 𝔢8) +

7∑
𝑖=5

(𝑐𝑖 − 1) (ℓ − 𝔢𝑖)+

+ (ℓ − 𝔢5 − 𝔢6) + (ℓ − 𝔢6 − 𝔢7) + (ℓ − 𝔢7 − 𝔢8).

Claim 7.7. 𝐿 ′′
0 is big and nef.
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Proof. All terms in the expression of 𝐿 ′′
0 right above have nonnegative square, except for the last three.

One computes

𝐿 ′′
0 · (ℓ − 𝔢5 − 𝔢6) = 𝑐0 + (𝑐7 − 1) − 1 + 0 + 1 ≥ 𝑐0 > 0,

𝐿 ′′
0 · (ℓ − 𝔢6 − 𝔢7) = 𝑐0 + (𝑐5 − 1) − 1 ≥ 0,

𝐿 ′′
0 · (ℓ − 𝔢7 − 𝔢8) = 𝑐0 + (𝑐5 − 1) + (𝑐6 − 1) + 1 − 1 ≥ 𝑐0 > 0,

which shows that 𝐿 ′′
0 is nef. One easily computes that it is big. �

We apply Proposition 4.3. What is left to be checked is condition (iv): The additional disjoint (−1)-
curves on 𝑃 are 𝔢5 and 𝔢9, and we have

𝔢5 · 𝐿 ′′
0 = 𝑐10 + 𝑐5 > 𝑐10 ≥ 𝑐0 − 𝑐9 = 𝔢9 · 𝐿 ′′

0 ,

by (43) and (44).
This concludes the proof of Theorem 1.1.
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