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Distance Sets of Urysohn Metric Spaces

N. W. Sauer

Abstract. A metric space M = (M; d) is homogeneous if for every isometry f of a finite subspace of M

to a subspace of M there exists an isometry of M onto M extending f . The space M is universal if it

isometrically embeds every finite metric space F with dist(F) ⊆ dist(M) (with dist(M) being the set of

distances between points in M).

A metric space U is a Urysohn metric space if it is homogeneous, universal, separable, and com-

plete. (We deduce as a corollary that a Urysohn metric space U isometrically embeds every separable

metric space M with dist(M) ⊆ dist(U ).)

The main results are: (1) A characterization of the sets dist(U ) for Urysohn metric spaces U . (2) If

R is the distance set of a Urysohn metric space and M and N are two metric spaces, of any cardinality

with distances in R, then they amalgamate disjointly to a metric space with distances in R. (3) The

completion of every homogeneous, universal, separable metric space M is homogeneous.

1 Introduction

The classical Urysohn metric space Uℜ≥0
is a homogeneous separable complete met-

ric space that embeds every separable metric space; see [19]. In this paper we will

discuss the following question. For which subsets R of the reals ℜ and for which

subsets of the set of properties of being homogeneous, separable, complete, univer-

sal or embedding every separable metric space with distances in R, does there exist

a metric space M with dist(M) = R? It is, for example, well known that there exists

a unique homogeneous, separable, complete metric space that isometrically embeds

every separable metric space with set of distances a subset of the interval [0, 1]. This

space is the Urysohn sphere U [0,1].

A note as to terminology: countable homogeneous universal metric spaces are

separable and so is their completion. In earlier papers, for example [12, 14, 15], such

countable metric spaces are called Urysohn spaces. The reason for this derived from

the fact that in the case of a countable homogeneous universal metric space with

set of distances the non negative rationals, its completion is the classical Urysohn

space. The completion was then thought of as an easy final step in the construction.

In this paper we realized that a sharper distinction is necessary and hence suggest

the definition given above. Note that a countable, homogeneous, universal, metric

space with a finite set of distances or for which 0 is not a limit of the set of distances

is a Urysohn metric space in both terminologies. The notion of homogeneous in

model theory and Fraı̈ssé theory specializes in the case of metric spaces to the one
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given here. But in some areas the notion homogeneous means vertex transitive, and

ultrahomogeneous is used for what is defined to be homogeneous here.

In [6], Kechris, Pestov, and Todorcevic established a connection between struc-

tural Ramsey theory and automorphism groups of homogeneous relational struc-

tures. There, and in particular also in [17], the notion of oscillation stability of such

groups is defined. It is shown that this notion is equivalent to a partition problem

in the case of homogeneous metric spaces. A metric space M = (M; d) is oscillation

stable if for every ǫ > 0 and f : M → ℜ bounded and uniformly continuous there

exists a copy M∗
= (M∗; d) of M in M such that

sup{| f (x) − f (y)| | x, y ∈ M∗} < ǫ.

Prompted by results of V. Milman [11] it is shown in [16] that the Hilbert sphere ℓ2 is

not oscillation stable and in [14] that the Urysohn sphere U [0,1] is oscillation stable.

In particular it was shown in [14] that the Urysohn metric spaces U n are indivisible,

which, due to the main result in [8], implies the oscillation stability of U [0,1]. (U n

is the Urysohn metric space with dist(U n) = {0, 1, 2, . . . , n}.) It is shown in [18]

that all Urysohn metric spaces with a finite distance set are indivisible. This result

together with the characterization result of Urysohn metric spaces given in this paper

will be used (just as in the case of the results in [8] and [14] for the classical Urysohn

metric space), to further investigate the oscillation stability question for Urysohn

metric spaces. See [12] for details and additional references on oscillation stability.

J. Clemens in [2] proved that given a set of non-negative reals, R ⊆ ℜ≥0, the set

R is the set of distances for some complete and separable metric space if and only

if R is an analytic set containing 0 and either R is countable or 0 is a limit point

of A. Clemens then seeks to determine distance sets of metric spaces that are homo-

geneous. The following three definitions describe the metric spaces under consider-

ation and define the basic tool for their characterization.

Definition 1.1 A metric space M is universal if it isometrically embeds every finite

metric space F with dist(F) ⊆ dist(M).

Definition 1.2 A metric space U is a Urysohn metric space if it is homogeneous,

universal, separable, and complete.

Definition 1.3 A triple (a, b, c) of non negative numbers is metric if a ≤ b + c,

b ≤ a + c, and c ≤ a + b.

A set R ⊆ ℜ≥0 satisfies the 4-values condition if for all pairs of metric triples of

numbers in R of the form (a, b, x) and (c, d, x) exists a number y ∈ R so that the

triples (b, c, y) and (a, d, y) are metric.

The notion of the 4-values condition was first formulated in [3] and will be dis-

cussed and used at length in this paper.

We will prove the following theorem.

Theorem 1.4 (See Theorems 4.13 and 2.11) Let 0 ∈ R ⊆ ℜ≥0 with 0 as a limit.

Then there exists a Urysohn metric space U R if and only if R is a closed subset of ℜ that

satisfies the 4-values condition.
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Let 0 ∈ R ⊆ ℜ≥0 that does not have 0 as a limit. Then there exists a Urysohn metric

space U R if and only if R is a countable subset of ℜ that satisfies the 4-values condition.

Any two Urysohn metric spaces having the same set of distances are isometric.

It follows from [3, Theorem 1.4] and is stated in this paper as Theorem 3.11 that

if 0 ∈ R ⊆ ℜ≥0 is a countable set of numbers that satisfies the 4-values condition,

then there exists a unique countable homogeneous universal metric space U R with

dist(U R) = R. Note that this space U R is not a Urysohn metric space if 0 is a limit of

R and R is not closed in ℜ.

Theorem 1.5 (See Theorem 3.9) The set of distances of a homogeneous universal

metric space satisfies the 4-values condition.

Proposition 10 of [12] provides an example of a countable homogeneous met-

ric space whose completion is not homogeneous. But, in the case of homogeneous

universal metric spaces, we have the following theorem.

Theorem 1.6 (See Theorem 4.5) The completion of a homogeneous universal sepa-

rable metric space M is homogeneous.

On the other hand, according to Example 5.3, the completion of a homogeneous,

universal, separable, metric space U need not be universal. That is, the completion

M might not embed every finite metric space with distances in dist(M). The next

theorem characterizes the finite metric spaces that have an embedding into M. In

particular it follows from the next theorem that dist(M) is the closure of dist(U ) in

ℜ (Corollary 4.7). See Example 5.2 for a metric space for which the distance set of its

completion is not closed.

Theorem 1.7 (See Theorem 4.6) Let 0 ∈ R ⊆ ℜ≥0 be countable, satisfy the 4-values

condition, and have 0 as a limit. Let M = (M; d) be the completion of U R, the countable

homogeneous universal metric space given by Theorem 3.11, with dist(U R) = R.

A finite metric space A = (A; dA) with A = {ai | i ∈ m} has an isometric embedding

into M if and only if for every ǫ > 0 there exists a metric space B with B = {bi | i ∈ m}
and distances in R so that | d(ai , a j) − d(bi , b j)| < ǫ for all i, j ∈ m.

Using “Katĕtov functions”, M. Katĕtov in [5] generalized Urysohn’s construction

to metric spaces that are “κ-homogeneous” and have “weight” κ for κ an inaccessi-

ble cardinal number, thus extending Urysohn’s original result. The distance sets of

the such constructed Urysohn type spaces are either ℜ≥0 or the unit interval. More

recently those Urysohn spaces attracted attention because of interesting properties

of their isometry group, Iso(U). For example, Uspenskij’s result [20] that the isom-

etry group of the Urysohn space is a universal Polish group and the connection of

Iso(U [0,1]) to minimal topological groups, [21]. See also Mbombo and Pestov [9]

and Melleray [10] for further discussion.

We do not follow Katĕtov’s method but lean instead on the general Fraı̈ssé theory

(see [4]) for our results. Fraı̈ssé theory is particularly well suited for investigating par-

tition problems of separable metric spaces, our main interest. Nevertheless it turned

out to be easy to extend the arguments to obtain a general amalgamation result, The-

orem 3.8, for metric spaces whose distance sets are subsets of a closed set of reals
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satisfying the 4-values condition. This then implies, by extending the Fraı̈ssé con-

structions in an obvious way (see for example [7] or more recently [1] or many other

recent generalizations), the existence of Urysohn type metric spaces U that are “κ-

homogeneous” and have weight κ for κ an inaccessible cardinal. The distance sets of

those spaces U are closed subsets of ℜ satisfying the 4-values condition. Providing

another construction for the “Katĕtov type metric spaces” with sets of distances all of

ℜ or the unit interval.

2 Notation and Fraı̈ssé Theory

For another and more detailed introduction to Fraı̈ssé theory in the context of metric

spaces, see [12]. The exposition here is complete and self contained but might require

some, indeed very limited, familiarity with simple model theoretic constructions.

A pair H = (H, d) is a premetric space if d : H2 → ℜ≥0, the distance function of

H, is a function with d(x, y) = 0 if and only if x = y and d(x, y) = d(y, x) for

all x, y ∈ H. For A ⊆ H we denote by H ↾ A the substructure of H generated by A,

that is, the premetric space on A with distance function the restriction of d to A2.

The skeleton of H is the set of finite induced subspaces of H, and the age of H is the

class of finite premetric spaces isometric to some element of the skeleton of H. Let

dist(H) = {d(x, y) | x, y ∈ H}.

A function t : F → ℜ>0 with F a finite subset of H is a type function of H. For t a

type function let Sp(t) be the premetric space on F ∪ {t} for which:

(i) Sp(t)↾ dom(t) = H↾ dom(t).

(ii) ∀x ∈ F
(

d(t, x) = t(x)
)

.

Note that Sp(t) is a metric space if and only if H ↾ dom(t) is a metric space and if

for all x, y ∈ dom(t):

|t(x) − t(y)| ≤ d(x, y) ≤ t(x) + t(y).

For t a type function let

tset(t) =
{

y ∈ H \ dom(t) : ∀ x ∈ dom(t)
(

d(y, x) = t(x)
)}

,

the typeset of t. Every element y ∈ tset(t) is a realization of t in H. Let dist(t) =

{t(x) | x ∈ dom(t)}.

Definition 2.1 Let M = (M; d) be a metric space. A type function k of M is metric

if Sp(k) is a metric space and it is a Katĕtov function of M if Sp(k) is an element of the

age of M.

A type function of M is restricted if it is metric and if dist(k) ⊆ dist(M).

Note that a type function k of a universal metric space M is a Katĕtov function if

and only if it is restricted.

Lemma 2.2 If every restricted type function of a metric space M = (M; d) has a

realization in M, then every countable metric space N = (N; d) with dist(N) ⊆ dist(M)

has an isometric embedding into M.
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If every Katĕtov function of a metric space M = (M; d) has a realization in M, then

every countable metric space N = (N; d) whose age is a subset of the age of M has an

isometric embedding into M.

Proof Enumerate N into an ω sequence (vi ; i ∈ ω) and let Nn = {vi | i ∈ n} for

n ∈ ω. If fn is an isometry of N ↾ Nn into M, let fn+1 be the extension of fn to an

isometry of N ↾Nn+1 into M constructed as follows: Let k be the type function of M

with dom(k) = fn[Nn] and k( fn(x)) = d(x, vn). Then k is a restricted type function

of M and hence has a realization, say a, in M. Let fn+1(vn) = a.

Then f =
⋃

n∈ω fn with f0 the empty function is an isometry of N into M.

The proof of the second part of the lemma is analogous.

Lemma 2.3 Let M and N be two countable metric spaces with dist(M) = dist(N) and

so that every restricted type function of M has a realization in M and every restricted

type function of N has a realization in N.

Or, let M and N be two countable metric spaces with equal ages and so that every

Katĕtov function of M has a realization in M and every Katĕtov function of N has a

realization in N.

Then every isometry of a finite subspace of M into N has an extension to an isometry

of M onto N.

Proof Extend the proof of Lemma 2.2 to a back and forth argument by alternat-

ing the extension of finite isometries between M and N. (As in the standard proof

that every countable dense and unbounded linear order is order isomorphic to the

rationals.)

Corollary 2.4 Let M be a countable metric space so that every Katĕtov function of M

has a realization in M. Then M is homogeneous. If every restricted type function of M

has a realization in M, then M is homogeneous universal.

Lemma 2.5 Every Katĕtov function of a homogeneous metric space M has a realization

in M. Every restricted type function of a homogeneous universal metric space M has a

realization in M.

Proof If M is homogeneous and k is a Katĕtov function of M, there exists an isometry

f of Sp(k) into M. Let g be the restriction of f to dom(k). Then g−1 is an isometry of a

finite subspace of M to a finite subspace of M, which has, because M is homogeneous,

an extension, say h, to an isometry of M onto M. The point h( f (k)) is a realization

of k.

Lemma 2.6 Let M = (M; d) be a homogeneous metric space and let A = (A; dA) be

a countable metric space with A ∩ M finite whose age is a subset of the age of M and

for which d(x, y) = dA(x, y) for all x, y ∈ A ∩ M. Then there exists a realization of

A in M, that is, a subset B ⊆ M \ (A ∩ M) for which there is an isometry of A onto

M↾ (B ∪ (M ∩ A)) that fixes A ∩ M pointwise.

Proof The proof is by induction on A \ M or a recursive construction realizing

Katĕtov functions step by step.
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Corollary 2.7 Every complete and homogeneous universal metric space V embeds

isometrically every separable metric space M = (M; d) with dist(M) ⊆ dist(V). A

Urysohn metric space U = (U ; d) embeds isometrically every separable metric space M

with dist(M) ⊆ dist(U ).

Proof Let A be a dense subset of M and A = M ↾ A. Because dist(A) ⊆ dist(M) ⊆
dist(V) and V is universal, the age of A is a subset of the age of V. Lemma 2.6 supplies

an isometric embedding of A into V, which, because V is complete and A is dense in

M, has an extension to an isometric embedding of M into V. The second assertion

follows because every Urysohn metric space is homogeneous and complete.

Lemma 2.8 Let M = (M; d) be a separable metric space and T a countable subset of

M. If M realizes all of its restricted type functions, then it contains a countable dense

subspace S with T ⊆ S, which realizes all of its restricted type functions and for which

dist(S) is a dense subset of dist(M). If M realizes all of its Katĕtov functions, then it

contains a countable dense subspace S with T ⊆ S, which realizes all of its Katĕtov

functions and for which dist(S) is a dense subset of dist(M).

Proof Let M be separable and realize all of its restricted type functions. For A ⊆ M

let spec(A) be the set of distances between points of A and K(A) the set of restricted

type functions k of M with dom(k) ⊆ A.

Let S0 be a countable dense subset of M with T ⊆ S0 and so that the set dist(M↾S0)

is a dense subset of dist(M). If for n ∈ ω a countable set Sn has been determined,

choose a realization k̄ for every restricted type function k ∈ K(Sn). Let Sn+1 = Sn ∪
{k̄ | k ∈ K(Sn)}. The set Sn+1 is countable, because K(Sn) is countable. Then S =⋃

n∈ω Sn is countable and every restricted type function k ∈ K(S) has a realization

in S.

Hence we obtain the following from Corollary 2.4.

Corollary 2.9 Every separable, homogeneous, universal, metric space M = (M; d)

contains a countable, dense, homogeneous, universal subspace N for which dist(N) is

a dense subset of dist(M). Every separable, homogeneous, metric space M = (M; d)

contains a countable, dense, homogeneous subspace N for which dist(N) is a dense subset

of dist(M).

Theorem 2.10 Every Katĕtov function of a homogeneous metric space M has a real-

ization in M. Every restricted type function of a homogeneous universal metric space M

has a realization in M.

If a metric space M is countable and every Katĕtov function has a realization in M,

then M is homogeneous. If a metric space M is countable and every restricted type

function has a realization in M, then M is homogeneous universal.

If a metric space M is complete and separable and every Katĕtov function has a real-

ization in M, then M is homogeneous. If a metric space M is complete and separable and

every restricted type function has a realization in M, then M is a Urysohn metric space.

Proof On account of Corollary 2.4 and Lemma 2.5, it remains to consider the case

that M is complete and separable.

https://doi.org/10.4153/CJM-2012-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-022-4


228 N. W. Sauer

Let F be a finite subset of M and f an isometry of M↾F into M. Lemma 2.8 yields

a dense countable subspace S = (S; d) of M, with F ⊆ S, which in the case of Katĕtov

functions realizes all of its Katĕtov functions and hence is homogeneous on account

of Corollary 2.4. It follows that there is an extension g of f to an isometry of S onto

S. Because M is complete, the isometry g has an extension to an isometry of M to M.

It follows that M is homogeneous.

In the case of reduced type functions the metric space M is homogeneous as well,

because every reduced type function is a Katĕtov function. Let N = (N; d) be a

separable metric space with dist(N) ⊆ dist(M). Let T be a countable dense subset

of N. According to Lemma 2.2 there exists an isometry f of N ↾ T into M, which

because M is complete, has an extension to an isometry of N into M. Hence M is

Urysohn.

Theorem 2.11 Any two homogeneous, separable, and complete metric spaces M and

N with the same age are isometric. Any two Urysohn metric spaces M and N with

dist(M) = dist(N) are isometric.

Proof Let S0 be a countable dense subset of M and let T0 be a countable dense subset

of N. There exists an isometry f of M↾ S0 into N and then a dense countable homo-

geneous subspace T = (T; d) of N with f [S0] ∪ T0 ⊆ N. There exists an isometry g

of T into M with g( f (x)) = x for all x ∈ S0. Then g[T] is dense in M and because M,

and N are complete, there exists an extension of g to an isometry of N onto M.

Definition 2.12 A pair (A,B) of metric spaces is an amalgamation instance if

dA(x, y) = dB(x, y) for all x, y ∈ A ∩ B. Then ∐(A,B) is the set of metric spaces

with

∐(A,B) =
{

C = (A ∪ B; dC) | C↾A = A and C↾B = B
}
.

For R ⊆ ℜ≥0 let

∐R(A,B) = {C ∈ ∐(A,B) | dist(C) ⊆ R}.

Definition 2.13 An age of metric spaces is a class of finite metric spaces closed under

subspaces and isometric copies and which is updirected; that is, for all metric spaces

A and B in the class there exists a metric space C in the class that isometrically embeds

both spaces A and B. An age is countable if it has countably many isometry classes.

Definition 2.14 A Fraı̈ssé class A of metric spaces is a countable age of finite metric

spaces that is closed under amalgamation. That is, for all amalgamation instances

(A,B) with A,B ∈ A, there exists a metric space C ∈ A ∩ ∐(A,B).

Theorem 2.15 (Fraı̈ssé ) For every Fraı̈ssé classA of metric spaces there exists a unique

countable homogeneous metric space UA, the Fraı̈ssé limit of A, whose age is equal to A.

Note that Theorem 2.15 implies that two countable homogeneous universal met-

ric spaces with the same set of distances are isometric and, together with Theo-

rem 2.11, that any two homogeneous and countable or separable and complete met-

ric spaces with the same age are isometric. Hence we can give the following definition.

https://doi.org/10.4153/CJM-2012-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-022-4


Distance Sets of Urysohn Metric Spaces 229

Definition 2.16 A Urysohn metric space or countable homogenous universal met-

ric space with set of distances equals to R will be denoted by U R. A homogenous

metric space with age A which is countable or separable and complete will be de-

noted by UA.

3 The 4-values Condition

Note that a triple (a, b, c) of numbers is metric if and only if |a − b| ≤ c ≤ a + b. For

(a, b, c, d) a quadruple of numbers and x a number, write x  (a, b, c, d) to mean

that the triples (x, a, b) and (x, c, d) are metric. Then Definition 1.3 can be reworded

to: a set R ⊆ ℜ≥0 satisfies the 4-values condition if and only if for all quadruples

(a, b, c, d) of numbers in R for which there exists an x ∈ R with x (a, b, c, d) there

exists also a y ∈ R with y  (a, d, c, b).

Note that if x  (a, b, c, d), then x  (b, a, c, d), x  (a, b, d, c), and x  

(c, d, a, b), but not necessarily x  (a, c, b, d). It follows that in order to verify the

4-values condition for R it is sufficient to consider quadruples (a, b, c, d) for which

a ≥ max{b, c, d}.

Definition 3.1 For R ⊆ ℜ≥0 let Q(R) be the set of quadruples (a, b, c, d) of num-

bers in R for which there exists a number x ∈ R with x  (a, b, c, d) and for which

a ≥ max{b, c, d}.

It follows that a set of numbers R ⊆ ℜ≥0 satisfies the 4-values condition if and

only if (a, b, c, d) ∈ Q(R) implies that (a, d, c, b) ∈ Q(R).

Lemma 3.2 Let x, a, b, c, d ∈ ℜ≥0. Then x (a, b, c, d) implies that |a− d| ≤ b + c

and |b − c| ≤ a + d.

Proof If a ≥ b, then |b − c| ≤ a + d and a − b ≤ x ≤ c + d implying |a − d| ≤ b + c.

If b ≥ a, then |a − d| ≤ b + c and b − a ≤ x ≤ c + d implying |b − c| ≤ a + d.

The next lemma appeared first in [3], and for completeness the statement and

proof are given in the present notation.

Lemma 3.3 A set R ⊆ ℜ≥0 satisfies the 4-values condition if and only if for any two

metric spaces of the form A = ({p, v,w}; dA) and B = ({q, v,w}; dB) with dist(A) ⊆ R

and dist(B) ⊆ R and R ∋ x = dA(v,w) = dB(v,w) the set ∐R(A,B) 6= ∅.

Proof Let R satisfy the 4-values condition and assume that the spaces A and B with

x = dA(v,w) = dB(v,w) are given. Let

(3.1) a = dA(p, v), b = dA(p,w), c = dB(q,w), d = dB(q, v).

Then x  (a, b, c, d). Hence there is a number y ∈ R with y  (a, d, c, b) implying

that the space C = ({p, q, v,w}; dC) ∈ ∐R(A,B) with dC(p, q) = y.

For the other direction of the proof let x, a, b, c, d ∈ R and x  (a, b, c, d). Then

let A = ({p, v,w}; dA) and B = ({q, v,w}; dB) be metric spaces with distances as in

(3.1) and with x = dA(v,w) = dB(v,w). Let C = ({p, q, v,w}; dC) ∈ ∐R(A,B). Then

R ∋ y  (a, d, c, b) for y = dC(p, q).
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Definition 3.4 For two metric spaces A = ({p, v,w}; dA) and B = ({q, v,w}; dB)

with distances as in (3.1) let

u(A,B) = max{|a − d|, |b − c|}, l(A,B) = min{a + d, b + c}

Lemma 3.5 Let A = ({p, v,w}; dA) and B = ({q, v,w}; dB) be two metric spaces

with dA(v,w) = dB(v,w), then u(A,B) ≤ l(A,B) and
[
u(A,B), l(A,B)

]
=

{
dC(p, q) | C ∈ ∐(A,B)

}
.

Let R ⊆ ℜ≥0 satisfy the 4-values condition and dist(A)∪dist(B) ⊆ R. Then there exists

a number y ∈ R ∩ [u(A,B), l(A,B)].

Proof Let the numbers (a, b, c, d) be given by condition (3.1).

That u(A,B) ≤ l(A,B) follows from Lemma 3.2. If y ∈ [u(A,B), l(A,B)], then

|a−d| ≤ y ≤ a+d and |b−c| ≤ y ≤ b+c, and hence the triples (y, a, d) and (y, b, c)

are metric. If y = dC(p, q) for C ∈ ∐(A,B), then the triples (y, a, d) and (y, b, c) are

metric, and hence |a − d| ≤ y ≤ a + d and |b − c| ≤ y ≤ b + c.

If R satisfies the 4-values condition and dist(A) ∪ dist(B) ⊆ R, it follows from

Lemma 3.3 that ∐R(A,B) 6= ∅, and hence

∅ 6 = {dC(p, q) | C ∈ ∐R(A,B)} = R ∩ {dC(p, q) | C ∈ ∐(A,B)}

= R ∩ [u(A,B), l(A,B)].

Lemma 3.6 Let the set R ⊆ ℜ≥0 satisfy the 4-values condition and let (A = (A; dA),

B = (B; dB)) with dist(A)∪dist(B) ⊆ R be an amalgamation instance. Let A\B = {p}
and B \ A = {q}.

Then ∐R(A,B) 6= ∅ if A ∪ B is finite or if R is closed.

Proof For v,w ∈ A ∩ B let Av,w = A ↾ {p, v,w} and Bv,w = B ↾ {q, v,w}. Note that

(Av,w,Bv,w) is an amalgamation instance. We have to prove that there is a number y ∈
R so that the premetric space C = (A∪B; d) with d(p, q) = y and d(p, v) = dA(p, v)

and d(q, v) = dB(q, v) and d(v,w) = dA(v,w) = dB(v,w) for all v,w ∈ A ∩ B is a

metric space. That is, for

S :=
⋂

v,w∈A∩B

[
u(Av,w,Bv,w), l(Av,w,Bv,w)

]
,

we have to prove, according to Lemma 3.5, that S ∩ R 6= ∅. Let

û := sup
{
| dA(p, v) − dB(q, v)| | v ∈ A ∩ B

}
, l̂ := inf

{
dA(p, v) + dB(q, v)

}
.

Then û ≤ l̂ according to Lemma 3.2 and [û, l̂] ⊆ S according to Definition 3.4.

Let R be closed. There exists for every ǫ > 0 a point v ∈ A ∩ B with û − ǫ <

| dA(p, v)−dB(q, v)| ≤ û and a point w ∈ A∩B with l̂ ≤ dA(p,w) + dB(q,w) ≤ l̂+ ǫ.

Then

û− ǫ < | dA(p, v) − dB(q, v)| ≤ u(Av,w,Bv,w) ≤ û

≤ l̂ ≤ dA(p,w) + dB(q,w) ≤ l(Av,w,Bv,w) < l̂ + ǫ.
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Because R satisfies the 4-values condition, it follows that for every ǫ > 0 there exists

a number yǫ ∈ R with

û− ǫ < u(Av,w) ≤ yǫ ≤ l(Av,w,Bv,w) < l̂ + ǫ.

Hence, because R is closed, there exists a number y ∈ R ∩ [û, l̂] ⊆ R ∩ S.

If A ∪ B is finite, let v ∈ A ∩ B such that û = | dA(p, v) − dB(q, v)| and w ∈ A ∩ B

such that l̂ = dA(p,w) = dB(q,w). Then

û = u(Av,w,Bv,w) ≤ l(Av,w,Bv,w) = l̂.

Because R satisfies the 4-values condition, there exists a number y ∈ R ∩ [û, l̂] ⊆
R ∩ S.

Lemma 3.7 Let the set R ⊆ ℜ≥0 satisfy the 4-values condition and let (A = (A; dA),

B = (B; dB)) with dist(A)∪dist(B) ⊆ R be an amalgamation instance. Let A\B = {p}.

Then ∐R(A,B) 6= ∅ if A ∪ B is finite or if R is closed.

Proof Note that for A∩B ⊆ C ⊆ B and C = B↾C , the pair (A,C) is an amalgamation

instance. Let

M =

⋃

A∩B⊆C⊆B

∐R(A,B↾C).

Then (M;�) is a partial order for L = (L; d) � N = (N; d) if L ⊆ N and N↾ L = L.

Every chain in the partial order (M;�) has an upper bound, and hence using Zorn’s

lemma, the partial order (M;�) has a maximal element M = (M; dM). If M = A∪B,

then M ∈ ∐R(A,B). Otherwise let b ∈ (A ∪ B) \ M and let D = (M \ {p}) ∪ {b}
and D = B↾D. Lemma 3.6 applied to the amalgamation instance (M,D) results in a

metric space contradicting the maximality of M.

Theorem 3.8 Let the set R ⊆ ℜ≥0 satisfy the 4-values condition and let (A = (A; dA),

B = (B; dB)) with dist(A) ∪ dist(B) ⊆ R be an amalgamation instance.

Then ∐R(A,B) 6= ∅ if A ∪ B is finite or if R is closed.

Proof Let

M =

⋃

A∩B⊆C⊆B

∐R(A,B↾C).

Then (M;�) is a partial order for L = (L; d) � N = (N; d) if L ⊆ N and N↾ L = L.

Every chain in the partial order (M;�) has an upper bound, and hence using Zorn’s

lemma the partial order (M;�) has a maximal element M = (M; dM). If M = A ∪ B

then M ∈ ∐R(A,B). Otherwise let b ∈ (A ∪ B) \ M and let D = (M ∩ B) ∪ {b}
and D = B↾D. Lemma 3.7 applied to the amalgamation instance (M,D) results in a

metric space contradicting the maximality of M.

Theorem 3.9 The set of distances of a homogeneous universal metric space satisfies

the 4-values condition.
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Proof Let M = (M; d) be a homogeneous universal metric space with R = dist(M).

Let A = ({p, v,w}; dA) and B = ({q, v,w}; dB) with dist(A) ⊆ R and dist(B) ⊆ R

and let R ∋ x = dA(v,w) = dB(v,w). There exists an isometric copy with points

{p ′, v ′,w ′} ⊆ M in M. Let t be the restricted type function with dom(t) = {v ′,w ′}
and with t(v ′) = dB(q, v) and t(w ′) = dB(q,w). Let q ′ be a realization of t. Then the

metric space C = ({p, v,w, q}; dC) with C↾ {p, v,w} = A and C↾ {q, v,w} = B, and

dC(p, q) = d(p ′, q ′) is a metric space in ∐R(A,B). Hence the theorem follows from

Lemma 3.3.

Definition 3.10 Let R ⊆ ℜ≥0, then FR is the class of finite metric spaces M with

dist(M) ⊆ R.

Theorem 3.11 Let 0 ∈ R ⊆ ℜ≥0 be a countable set of numbers satisfying the 4-values

condition. Then there exists a countable homogeneous universal metric space U R.

If there exists a countable homogeneous universal metric space U R, then R satisfies

the 4-values condition.

Proof The class FR of finite metric spaces is closed under isometric copies and

substructures, and it follows from Theorem 3.8 and Definition 2.12 that ∅ 6=
∐R(A,B) ⊆ FR for all A,B ∈ FR. Hence FR is updirected and closed under amalga-

mation and hence a Fraı̈ssé class. According to Theorem 2.15 there exists a countable

homogeneous metric space UFR
whose age is equal to FR. It follows that UFR

is the

countable homogeneous universal metric space U R.

Lemma 3.12 Let R ⊆ ℜ≥0 be a set of numbers that satisfies the 4-values condition.

For every countable subset T of R, there exists a dense countable subset C ⊇ T of R that

satisfies the 4-values condition.

Proof Let S ⊇ T be a countable dense subset of R. There are countably many in-

stances of the form x  (a, b, c, d) with numbers in S. Because R does satisfy the

4-values condition there is a countably set S ′ ⊆ R so that for all those quadruples

there is a y ∈ S ′ with y  (a, d, c, b). Repeating this process countably often leads to

a countable subset C ⊆ R that satisfies the 4-values condition.

In order to verify the 4-values condition the following lemma is often useful.

Lemma 3.13 If a ≤ b + c or a ≤ b + d or a ≤ c + d and (a, b, c, d) ∈ Q(R), then

there exists y ∈ {a, b, c, d} with y  (a, d, c, b).

Proof If a ≤ b + c, then a  (a, d, c, b). If a ≤ b + d then b  (a, d, c, b) unless

2b < c in which case c  (a, d, c, b). If a ≤ c + d, then c  (a, d, c, b) unless 2c < b

in which case b (a, d, c, b).

Hence, in order to verify that R satisfies the 4-values condition, it suffices to con-

sider quadruples for which a is larger than the sum of any two of the other three

numbers.
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4 Completion of Homogeneous Universal Metric Spaces

Definition 4.1 Let A = (A; dA) and B = (B; dB) be two metric spaces with A =

{ai | i ∈ m ∈ ω} and B = {bi | i ∈ m ∈ ω} and A ∩ B = ∅. A metric space

P = (A ∪ B; dP) with P↾A = A and P↾B = B is an h-join of A and B if dP(ai , bi) < h

for all i ∈ m. (The h-join P depends explicitly on the enumeration of A and B.)

Let FR be the class of finite metric spaces F with dist(F) ⊆ R. For r a positive

real, let FR|r be the metric spaces in F ∈ FR for which the smallest postive number in

dist(F) is larger than r.

Lemma 4.2 Let R ⊆ ℜ≥0 satisfy the 4-values condition and have 0 as a limit.

Let A = (A; dA) and B = (B; dB) be two metric spaces in FR for which A =

{a0, a1, a2, . . . , am} and B = {b0, b1, b2, . . . , bm} and A ∩ B = ∅. Let

A ′
= {ai | i ∈ m} and B ′

= {bi | i ∈ m}

and A ′,B ′ metric spaces with A ′
= A↾A ′ and B ′

= B↾B ′. Let

k ≥ max{| dA(am, ai) − dB(bm, bi)| | i ∈ m}

and h ∈ R and l ∈ R with

l + k ≤ h ≤ min
(
{dA(am, ai) | i ∈ m} ∪ {dB(bm, bi) | i ∈ m}

)
.

Then if there exists an l-join Q = (A ′ ∪ B ′); dQ) ∈ FR of A ′ and B ′, there exists an

h-join P ∈ FR of A and B.

Proof There exist, according to Theorem 3.8, a metric space A∗
= (A∗; dA∗) ∈

∐R(A,Q) and a metric space B∗
= (B∗; dB∗) ∈ ∐R(B,Q). Note that

| dA(am, ai) − dA∗(am, bi)| < l and | dB(bm, bi) − dB∗(bm, ai)| < l

for all i ∈ m. Let P = (A ∪ B; d) be the premetric space with P ↾ (A ∪ B ′) = A∗ and

P↾ (B ∪ A ′) = B∗ and with d(am, bm) = h.

In order to see that P is a metric space we have to check the triples of the form

(am, bm, ai) and (am, bm, bi) for all i ∈ m. Indeed,

| d(am, ai) − d(bm, ai)| ≤ | d(am, ai) − d(bm, bi)| + | d(bm, bi) − d(bm, ai)|

≤ k + l ≤ h = d(am, bm).

This verifies that the triple (am, bm, ai) is metric, because h ≤ d(am, ai), and hence the

distance d(am, bm) is not larger than the other two distances in the triple (am, bm, ai).

Similarly, the triangles of the form (am, bm, bi) are metric.

Lemma 4.3 Let R ⊆ ℜ≥0 satisfy the 4-values condition and have 0 as a limit. Then,

for every m ∈ ω and r > 0 and h ∈ ℜ>0 there exists a number γ(h) < h such that for

all metric spaces

A =
(
{ai | i ∈ m}; dA

)
∈ FR|r and B =

(
{bi | i ∈ m}; dB

)
∈ FR|r

with | dA(ai , a j) − dB(bi , b j)| < γ(h) for all i, j ∈ m and A ∩ B = ∅ exists an h-join

of A and B in FR.
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Proof For every 0 < x ∈ R let 0 < x∗ ∈ R with 2 · x∗ < x. Given h and r let

0 < hm−1 < min{h, r} and for all integers m − 1 > i ≥ 0 let hi = h∗
i+1 and

γ(h) = h0. The lemma follows from Lemma 4.2 via induction on i.

Note: Let a, b, a ′, b ′ be four points in a metric space, then

| d(a, b) − d(a ′, b ′)| ≤ | d(a, b) − d(a, b ′)| + | d(a, b ′) − d(a ′, b ′)|(4.1)

≤ d(b, b ′) + d(a, a ′).

Theorem 4.4 Let 0 ∈ R ⊆ ℜ≥0 be countable, satisfy the 4-values condition, and

have 0 as a limit. Let U R be the countable homogenous universal metric space with R

as set of distances given by Theorem 3.11. Then M = (M; d), the completion of U R, is

homogeneous, separable, and complete.

Proof The homogeneous universal space U R = (U ; d) is dense in M. It follows from

Theorem 2.10 that M is homogeneous if every Katĕtov function of M has a realization

in M.

Let k be a Katĕtov function of M with dom(k) = {ai | i ∈ m ∈ ω} := A.

There exists a subset B = {bi | i ∈ m} ∪ {bm} ⊆ M with d(ai , a j) = d(bi , b j) and

k(ai) = d(bm, bi) for all i, j ∈ m. Let k = min(dist(Sp(k))).

Let 0 < e ∈ ℜ and B ′
= {b ′

i | 0 ≤ i ≤ m} ⊆ U with d(bi , b ′
i ) < e. Then

from inequality (4.1): | d(bi , b j) − d(b ′
i , b ′

j)| < 2e for all 0 ≤ i, j ≤ m. Note that

if e < k
4

then min{d(b ′
i , b ′

j) | 0 ≤ i, j ≤ m} > k
2
. If there is a set of points

A ′
= {a ′

i | i ∈ m} ⊆ U with d(ai , a ′
i ) < e, then | d(ai , a j) − d(a ′

i , a ′
j)| < 2e for all

i, j ∈ m. Hence, because d(ai , a j) = d(bi , b j),

| d(a ′
i , a ′

j) − d(b ′
i , b ′

j)| < 4e.

It follows from Lemma 4.3 that if 4e < min(γ(h), k) then there exists an h-join C ′
=

({B ′ ∪ A ′}; dC ′) ∈ FR of U R ↾ B ′ and U R ↾ A ′. It follows from Lemma 2.5 that

there exists a realization C = ({ci | i ∈ m}; d) of C ′ in U R with d(a ′
i , ci) < h and

d(ci , c j) = d(b ′
i , b ′

j) for all i, j ∈ m. Also,

d(ci , ai) ≤ d(ci , a ′
i ) + d(a ′

i , ai) < h + e < 2h for all i ∈ m.(4.2)

Let (hn; n ∈ ω) and (en; n ∈ ω) be a sequence of numbers in R with hn > 2 · hn+1

and 4en < min(γ( 1
2
hn), k). Then there exist sets of points:

B ′
n = {b ′

n,i | 0 ≤ i ≤ m} with d(b ′
n,i , bi) < en <

1

2
hn and(4.3)

Cn = {cn,i | i ∈ m} with d(cn,i , ai) < hn and with

d(b ′
n,i , b ′

n, j) = d(cn,i , cn, j) and d(ci , ai) < hn for all i, j ∈ m and

d(b ′
n,m, b ′

n+1,m) ≤ d(b ′
n,m, bn,m) + d(bn,m, b ′

n+1,m) < hn.
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Using the fact that Katĕtov functions of U R have realizations in U construct recur-

sively points cn,m ∈ U so that for all i ∈ m and n ∈ ω:

d(cn,m, cn,i) = d(b ′
n,m, b ′

n,i), d(cn,m, cn+1,m) = d(b ′
n,m, b ′

n+1,m) < hn.

That is, the function f with f (b ′
n,i) = cn,i for 0 ≤ i ≤ m and n ∈ ω is an isometry of

a subset of U to a subset of U .

It follows from inequality (4.2) that for every i ∈ m, the sequence (cn,i) converges

to ai and from inequality (4.3) that the sequence (cn,m) is Cauchy converging to, say

cm. For every 0 ≤ i ≤ m the sequence (b ′
n,i) converges to bi , and hence for every

i ∈ m,

lim
n→∞

d(b ′
n,m, bn,i) = d(bm, bi) = k(ai).

It follows that d(cm, ai) = limn→∞ d(cn,m, cn,i) = k(ai) implying that cm is a realiza-

tion of the Katĕtov function k.

Theorem 4.5 The completion of a homogeneous universal separable metric space M

is homogeneous.

Proof The space M contains a countable dense homogenous universal subspace N

according to Corollary 2.9. Let R = dist(N). It follows from Theorem 2.11 that we

can take N to be the homogeneous universal metric space U R. The theorem follows

from Theorem 4.4, because the completion of U R is equal to the completion of M.

Theorem 4.6 Let 0 ∈ R ⊆ ℜ≥0 be countable, satisfy the 4-values condition, and have

0 as a limit and let M = (M; d) be the completion of U R = (U ; d).

A finite metric space A = (A; dA) with A = {ai | i ∈ m} has an isometric embedding

into M if and only if for every ǫ > 0, there exists a metric space B = (B; dB) ∈ FR with

B = {bi | i ∈ m} so that | d(ai , a j) − d(bi , b j)| < ǫ for all i, j ∈ m.

Proof The condition is clearly necessary.

Let k = min(dist(A)). Let (hn) be a sequence of positive numbers in R so that

h0 < k
4

and 2hn+1 < hn for all n ∈ ω. Let (en) be a sequence of positive numbers

in R so that γ(hn) < 2en and en+1 < en, with γ given by Lemma 4.3. For n ∈ ω let

Bn = (Bn; dBn
) be a metric space with Bn = {bn,i | i ∈ m} ∈ FR and with

| dA(ai , a j) − dBn
(bn,i , bn, j)| < en < hn.(4.4)

Then

| dBn+1
(bn+1,i , bn+1, j) − dBn

(bn,i , bn, j)| < en+1 + en < 2en.

It follows from Lemma 4.3 that there exists, for every n ∈ ω, an hn-join Pn =

(Bn ∪ Bn+1; dP) ∈ FR of Bn with Bn+1.

The space U R is homogeneous universal, and hence each of the finite metric spaces

Pn has an isometric embedding into U R. It follows from Lemma 2.6 via a recursive

construction that there exist isometric copies B ′
n = {b ′

n,i | i ∈ m} of the sets Bn in U

so that, for all n ∈ ω,

d(b ′
n,i , b ′

n+1,i) = dPn
(bn,i , bn+1,i) < hn.
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It follows that for every i ∈ m the sequence (bn,i) is Cauchy and hence has a limit, say

bi ∈ M. Also for all i, j ∈ m,

lim
n→∞

d(b ′
n,i , b ′

n, j) = lim
n→∞

d(bn,i , bn, j) = dA(ai , a j),

with the last equality implied by inequality (4.4).

Corollary 4.7 Let 0 ∈ R ⊆ ℜ≥0 be countable, satisfy the 4-values condition, and

have 0 as a limit, and let M = (M; d) be the completion of U R = (U ; d). Then dist(M)

is the closure of R. The set of distances of the completion N of a homogeneous universal

separable metric space is a closed subset of ℜ.

Proof Let ǫ > 0 be given and let a be in the closure of dist(M). There exists a number

b ∈ dist(M) with |a − b| < ǫ
2
. There exists a number c ∈ R with |b − c| < ǫ

2
. That

dist(N) is closed follows as in the proof of Theorem 4.5.

Note that in general the distance set of the completion of a metric space need not

be closed. (See Example 5.2.)

Definition 4.8 For R ⊆ ℜ let

R()
=

{
x ∈ R | ∃ǫ > 0

(
(x, x + ǫ) ∩ R = ∅

)}
.

Lemma 4.9 Let R ⊆ ℜ≥0, satisfy the 4-values condition and have 0 as a limit. If

{x, y, z} ⊆ R with z = y + x and x ∈ R(), then z ∈ R().

Proof Let {x, y, z} ⊆ R with z = y+x and x ∈ R() and ǫ > 0 so that (x, x+ǫ)∩R = ∅

and let 0 < δ < min{ǫ, x}. If z 6∈ R(), there exists z < z ′ ∈ R with z ′ − z < δ. Then

z  (z ′, δ, x, y). If R ∋ u  (z ′, y, x, δ), then the triple (δ, x, u) is metric and

hence u ≤ x + δ, which implies, because (x, δ] ∩ R = ∅, that u ≤ x. It follows that

u + y ≤ x + y = z < z ′, and hence that the triple (u, y, z ′) is not metric, which

contradicts R satisfying the 4-values condition.

Lemma 4.10 Let R ⊆ ℜ≥0 satisfy the 4-values condition and have 0 as a limit. If

{x, y, z} ⊆ R with z = y + x and {x, y} ⊆ R(), then both x and y are isolated points of

R and z ∈ R().

Proof It follows from Lemma 4.9 that z ∈ R(). Let z = y + x and {x, y} ⊆ R(). If,

say x, is not isolated in R, let ǫ > 0 be such that (y, y + ǫ) ∩ R = ∅. Let R ∋ δ < x

with 0 < δ < ǫ and let 0 < u < x with u ∈ R such that x − u ≤ δ. Note that

x (z, y, δ, u).

If R ∋ r  (z, u, δ, y), then r ≤ y + δ because the triple (r, y, δ) is metric and

hence r ≤ y because of the choice of δ. Then r + u ≤ y + u < y + x = z and hence

the triple (r, u, z) is not metric in contradiction to r  (z, u, δ, y).

Lemma 4.11 Let 0 ∈ R ⊆ ℜ≥0 satisfy the 4-values condition and have 0 as a limit.

Let S be a dense subset of R.

Then there exists, for every metric space A = (A; dA) ∈ FR with A = {ai | i ∈ m}
and every ǫ > 0, a metric space B = (B; dB) ∈ FS with B = {bi | i ∈ m} so that

| dA(ai , a j) − dB(bi , b j)| < ǫ for all i, j ∈ m.
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Proof Let

∆ =
1

3
min

{
y + x − z | z < y + x and {x, y, z} ⊆ dist(A)

}
.

Let I ⊆ dist(A) be the set of isolated points of R that are elements of dist(A). Note

that I ⊆ S.

Let E be the set of positive numbers in dist(A) \ R() with e0 < e1 < e2 < · · · <
en−1 < en an enumeration of E. Let e0 < ê0 ∈ S so that ê0 − e0 < min{∆, ǫ}. The

numbers êi ∈ S are determined recursively so that êi > ei and 1
3
(êi − ei) > êi+1 − ei+1

for all indices i ∈ n.

Let K be the set of positive numbers in dist(A) ∩ R() that are not isolated and let

k0 > k1 > k2 > · · · > kr−1 > kr be an enumeration of K. Let k0 > k̂0 ∈ S so that

k0 − k̂0 <
1
3
(ên − en). The numbers k̂i ∈ S are determined recursively so that ki > k̂i

and 1
3
(ki − k̂i) > ki+1 − k̂i+1 for all indices i ∈ r.

For every x ∈ I let x̂ = x and let 0̂ = 0. Note that the inequalities above imply for

{x, y, z} ⊆ dist(A) with x, y 6= 0 and z = x + y and x ∈ E or y ∈ E that ẑ ≤ x̂ + ŷ.

Claim If (x, y, z) is a metric triple of numbers with entries in dist(A), then (x̂, ŷ, ẑ)

is a metric triples of numbers with entries in S.

Proof Let z ≥ max{y, x}. It follows from the choice of ∆ and the definition of the

function̂ that ẑ ≥ max{ŷ, x̂}, and if z < y + x, then ẑ < ŷ + x̂, and hence that the

triple (ẑ, ŷ, x̂) is metric.

Let z = y + x with x, y 6= 0. If at least one of x and y are in E, then ẑ ≤ x̂ + ŷ. If

both are not in E, then they are both in R() and it follows from Lemma 4.10 that both

x and y are isolated in R and z ∈ R(). If z is isolated, then ẑ = z = x + y = x̂ + ŷ. If z

is not isolated, then ẑ < z = x + y = x̂ + ŷ.

It follows that the premetric space B = (B; dB) with B = {bi | i ∈ m} and

dB(bi , b j) = x̂i, j for xi, j = dA(ai , a j) is a metric space with | dA(ai , a j)−dB(bi , b j)| <
ǫ for all i, j ∈ m.

Corollary 4.12 Let 0 ∈ R ⊆ ℜ≥0 satisfy the 4-values condition and have 0 as a limit.

Let S be a dense subset of R.

Then there exists, for every metric space A = (A; dA) ∈ FR with A = {ai | i ∈ m}
and every ǫ > 0, a metric space B = (B; dB) ∈ FS with B = {bi | i ∈ m} so that

dA(ai , bi) < ǫ for all i ∈ m.

Proof The proof follows from Lemmas 4.11 and 4.3.

Theorem 4.13 Let 0 ∈ R ⊆ ℜ≥0 with 0 as a limit. Then there exists a Urysohn metric

space U R if and only if R is a closed subset of ℜ that satisfies the 4-values condition.

Let 0 ∈ R ⊆ ℜ≥0 that does not have 0 as a limit. Then there exists a Urysohn metric

space U R if and only if R is a countable subset of ℜ satisfying the 4-values condition.

Proof Let 0 ∈ R ⊆ ℜ≥0 with 0 as a limit.

If there exists a Urysohn metric space U R, it follows from Theorem 3.9 that U R

satisfies the 4-values condition, because Urysohn metric spaces are homogeneous.

https://doi.org/10.4153/CJM-2012-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-022-4


238 N. W. Sauer

The space U R contains, according to Corollary 2.9, a dense, countable, homogeneous,

universal subspace U T with T a dense subset of dist(U R). Then U R is the completion

of U T , and by Corollary 4.7 the set R is closed.

Let R be closed and satisfy the 4-values condition. It follows from Lemma 3.12

that R has a countable dense subset T that satisfies the 4-values condition. Let the

countable homogeneous universal metric space U T be given by Theorem 3.11. The

completion M of U T is homogeneous and separable and complete according to The-

orem 4.4. It follows from Corollary 4.7 that dist(M) is the closure of T that implies

because T is dense in R and R is closed that dist(M) = R. It remains to prove that M

is universal, that is, that every finite metric space A ∈ FR has an isometric embedding

into M. This then indeed follows from Lemma 4.11 and Theorem 4.6

Let 0 ∈ R ⊆ ℜ≥0 that does not have 0 as a limit.

If R is uncountable, then there does not exist a Urysohn metric space U R, because

Urysohn metric spaces are separable. If R is countable, then there exists a homo-

geneous universal metric space U R according to Theorem 3.11. The space U R is a

Urysohn metric space, because the completion of U R is equal to U R.

5 Examples

Example 5.1 It is not difficult to check that the set of reals in the intervals [0,∞)

and [0, 1] satisfy the 4-values condition. Hence there exist, according to Theo-

rem 4.13, a Urysohn space U [0,∞), the classical Urysohn space and U [0,1], the Urysohn

sphere.

Example 5.2 The set of distances of the completion of a metric space need not be

closed:

Let R be the set of rationals in the interval [0, 1] and

V = {ai | i ∈ R} ∪ {bi | i ∈ R}.

Let V = (V ; d) be the metric space with d(ai , bi) = i and d(ai , a j) = d(ai , b j) = 1

for all i, j ∈ R with i 6= j. The completion of V is V.

Example 5.3 The completion of a homogeneous universal separable metric space

U R is homogeneous according to Theorem 4.5, but as the example below shows, the

completion need not be universal. The age of the completion consists of all finite

metric spaces that can be “approximated” by metric spaces with distances in R, The-

orem 4.6 and Lemma 4.11.

Let R be the set of rationals in the interval [0, 1) together with the number 2. Then

R satisfies the 4-values condition. To see this, let x (a, b, c, d) with x, a, b, c, d ∈ R.

According to Lemma 3.13 it suffices to assume a > max{b + c, b + d, c + d}. If

a ∈ [0, 1), then b + c  (a, d, c, b). If a = 2, then b = 2 or x = 2. If b = 2, then

2  (a, d, c, b). If x = 2, then c = 2 or d = 2. If c = 2, then 2  (a, d, c, b) and if

d = 2, then b + c  (a, d, c, b).

Hence, according to Theorem 3.11, there exists a homogeneous universal count-

able metric space U R. Let M be the completion of U R. According to Corollary 4.7

https://doi.org/10.4153/CJM-2012-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-022-4


Distance Sets of Urysohn Metric Spaces 239

dist(M) = [0, 1] ∪ {2} := T, which does not satisfy the 4-values condition, be-

cause 1  (2, 1, 1
2
, 1

2
), but there is no number y ∈ T with y  (2, 1

2
, 1

2
, 1). The

class FT contains a triangle with distance set {2, 1, 1}. The class R does not contain

any triangle with distance set of the form {a, b, c} with 2 − 1
4
< 2 < 2 + 1

4
and

1 − 1
4
< b, c < 1 + 1

4
. Hence M does not contain a triangle with distance set {2, 1, 1}

and is therefore not universal. Theorem 4.6 characterizes the finite metric spaces in

the age of M.

Indeed, it is not difficult to check that M consists of countably many copies of the

Urysohn space U [0,1] for which any two points in different copies have distance 2.

Example 5.4 Some additional examples of subsets R of the reals satisfying the

4-values condition.

To decide wether a finite set of numbers satisfies the 4-values condition is only of

polynomial complexity. On the other hand, there does not seem to be an easy way to

see directly if a finite set satisfies the 4-values condition. For examples of such finite

sets R see [13]. In the case of infinite sets R it can be quite challenging to determine

whether R satisfies the 4-values condition. It is not difficult to see that the sets

R1 = 0 ∪
{ 1

22n
| n ∈ ω

}
, R2 =

{
x + 3n | x ∈ [0, 1], n ∈ ω

}
.

satisfy the 4-values condition, while the set

R3 =

[
0,

1

2

]
∪
{

x + 3n | x ∈ [0, 1], 1 ≤ n ∈ ω
}

does not. Note that if R satisfies the 4-values condition and a > 0, then the sets

[0, a] ∩ R and {ax | x ∈ R} satisfy the 4-values condition. Every sum closed set

R ⊆ ℜ≥0 containing 0 satisfies the 4-values condition. The set ω and every initial

interval of ω satisfies the 4-values condition. The sets R = [0, 1] ∪ [3, 4] ∪ [9, 10]

and R = [0, 1] ∪ [3, 4] ∪ (8, 9] satisfy the 4-values condition. The set R = [0, 1] ∪
[3, 4] ∪ [8, 9] does not satisfy the 4-values condition.

It is a bit more challenging to prove that the set F of Cantor numbers with finitely

many digits 2 in the ternary expansion satisfy the 4-values condition. Hence there

exists a unique countable homogeneous universal metric space U F according to The-

orem 3.11. The set of all Cantor numbers does not satisfy the 4-values condition,

but it follows from Theorem 4.5 that there exists separable complete homogeneous

metric space U C̄ whose set of distances is the set of Cantor numbers. It follows from

Theorem 2.11 that U C̄ is the unique, separable, complete, metric space whose age is

the set of finite metric spaces that can be approximated by finite metric spaces with

distances in C as described in Theorem 4.6.
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