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STOCHASTIC MEASURE DIFFUSION PROCESSES 

BY 

DONALD A. DAWSON 

1. Introduction. The purpose of this article is to give an introduction to the 
study of a class of stochastic partial differential equations and to give a brief 
review of some of the recent developments in this field. This study has evolved 
naturally out of the theory of stochastic differential equations initiated in a 
pioneering paper of K. Itô [13]. In order to set this review in its appropriate 
setting we begin by considering a simple scalar stochastic differential equation. 
Such an equation is written in differential form as 

(1.1) dZ(t) = a(t, Z(tj) dt + y(t, Z(t)) db(t), t>0, 

Z(0) = zo 

where b(t), t > 0 , refers to a standard Wiener process and appropriate regular­
ity conditions are imposed on the coefficients a ( . , . ) and y(.,.). Under the 
appropriate conditions the solution, Z(f), is a stochastic diffusion process, that 
is, a Markov process with almost surely continuous sample paths. Such a 
process is specified by a family of probability measures {PZo:z0eR} defined on 
a canonical measure space (ft,F) where ft denotes the space of continuous 
functions from [0, °o) into R and F denotes the o--algebra of Borel subsets (with 
respect to an appropriate topology on ft). Then Z ( . , . ) is described as the 
canonical mapping Z : [0, <*>) x ft —> R defined by Z(t, co) = a)(t) for t > 0, o> e ft. 
The probability measure PZo describes the behavior of the system when the 
initial condition is Z(0) = zo. This family of probability measures can be 
uniquely specified by a semigroup of contraction operators {T t:f>0}, defined 
on C0(R) the Banach space of bounded real-valued continuous functions 
vanishing at as furnished with the supremum norm. The semigroup is 
defined by 

mz)^Ez{f(Z{t)\ feCo(R),t>0,zeR, 

and Ez denotes the expectation operator with respect to the probability 
measure Pz. In turn the semigroup is identified by means of its infinitesimal 
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generator, L, which is defined by 

Lf(z) = lim [(Ttf(z) - f(z))/t] (when the limit belongs to C0(R)). 

In general L is an unbounded operator with domain D(L). Thus the diffusion 
process, Z (0 , can be specified by the semigroup {Tt:t>0}, the infinitesimal 
generator (L,D(L)) or the stochastic differential equation (1.1). Returning to 
equation (1.1) it should be noted that it is not a differential equation in the 
usual sense since the Wiener process {b(t):t>0} is with probability one 
nowhere differentiable. It was for this reason that K. Itô introduced his 
stochastic calculus which made possible the study of (1.1) as a well defined 
mathematical object. Stochastic differential equations have become an impor­
tant tool in applied mathematics. One reason for this is that such equations 
arise naturally as approximations to many complex and mathematically un-
tractable stochastic systems. Typical examples arise in queueing theory, trans­
port theory [16] and genetics [10]. 

In recent years considerable interest has developed in the study of spatially 
distributed stochastic systems and it natural to extend the methods of stochastic 
calculus in this direction. Examples of spatially distributed systems arise in 
chemical kinetics, statistical physics and population biology. Translated into the 
language of stochastic calculus these problems involve stochastic partial 
differential equations. Of these an important family consists of the parabolic 
equations with non-negative solutions and it is this family that we discuss 
below. Such an equation can be written formally as 

(1.2) du/dt = Gu+F(u)+W(u) 

where u(., .):[0, oo)XjRd —» jR+ (the nonnegative reals), G is a linear elliptic 
operator, F(u) is a nonlinear operator and W(u) is state dependent fluctuation 
or noise term. Heuristically, u(f,.) describes the distribution of the population 
in Rd at time t, G describes the spatial dispersion of the population, F(u) 
describes the interaction effects such as competition and W(.) describes fluctu­
ations due to demographic or environmental stochasticity. However there are 
more serious obstacles to the rigorous mathematical development of (1.2) than 
in the case of (1.1). To obtain a mathematically well-posed version of (1.2) it is 
necessary to abandon the search for function-valued solutions and rather look 
for generalized function or measure-valued solutions. Secondly rather than try 
to give a rigorous sense to the expression W(u), we must reformulate (1.2) as a 
weak equation known as a martingale problem. This approach which is 
described in the next section is based on the generalization of an extremely 
useful reformulation of the stochastic differential equation (1.1) due to Stroock 
and Varadhan [17]. 
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2. Measure-valued martingale problems. To simplify the exposition of this 
section we assume that the system is confined to a compact subset, D, of Rd. 
Then the state space for the process {X(t) : t > 0} to be constructed is M(D), the 
space of nonegative Borel measures on D. Let C(D) denote the space of 
continuous functions on D. For ixeM(D), feC(D), let </x, / ) denote the 
integral if(x)fi(dx). Let Cb(M(D)) denote the Banach space of bounded 
continuous functions on M(D) furnished with the supremum norm. 

Let ft denote the space of continuous functions from [0, <») into M(D) 
furnished with the topology of uniform convergence on bounded intervals. Let 
F denote the cr-algebra of Borel subsets of ft and let X ( . , .):[0, oo)xft-> 
M(D) be defined by 

X(t, (o) = (o(t) for te[0, oo) and wef t . 

Finally, let II(ft) denote the family of probability measures on ft. 
A martingale problem is specified by a pair (L,D(L)) where L is an 

unbounded linear operator defined on a linear subspace, D(L), of Cb(M(D)). 
A solution to the martingale problem associated with the pair (L, D(L)) is a 
mapping jx —> P^ from M(D) to Il(ft) such that 

(2.1a) P,(X(0) = fx) = l, 

and 

(2.1b) for every VeD(L) and JLLGM(D), 

Y*(t) = ¥ (X( f ) ) - [ LV(X(s)) ds 

is a P^-martingale with respect to the increasing family of o--algebras F t = 
a{X(s, J3) :0<S<f , B Borel in D}. The martingale condition means that if 
t>s, then 

E | 1 ( Y v ( 0 | F . ) = y v ( s ) , P^a.s. 

where EM,(. | Fs) denotes conditional expectation with respect to the <r-algebra 
F 

The significance of the martingale problem is that if it has a unique solution 
satisfying a mild regularity condition, then the family of measures {P^IJLLG 

M(D)} is induced by a Markov process and hence can be identified with a 
semigroup of contraction operators {T t:f>0} on Cb(M(D)). Furthermore, for 

TMv) = E^mX(t)). 

The Markov property implies that for 0 < s < f , and any Borel subset B of 
M(D\ 

PJJCit) e B | Fs) = Px(s)(X(t - s) G B), P^-a.s. 
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where PJ,. |FS) denotes the conditional probability with respect to the a-
algebra Fs. However note that for fixed Borel subset B of D, the real-valued 
process X(t,B) may not be a Markov process, finally, the infinitesimal 
generator of the semigroup {Tt : t > 0} is given by the closure of the operator L. 

Thus to reformulate equation (1.2) as a martingale problem the operator L 
must be specified. The appropriate choice is 

(2.2) L*0*)==<<W, GV+F(fx)>+|<Q(]*) ,* 'V)> 

where G* denotes the adjoint of the infinitesimal operator of a diffusion 
semigroup on C(D), F:M(D) -» M(D) is a continuous mapping, ¥ ' , V denote 
the first and second Fréchet derivatives, and Q is a continuous mapping from 
M(D) into M*(D x D). M*(D x D) denotes the collection of symmetric signed 
measures o n D x D which are positive definite, that is, for every fe C(D), 

f(x)f(y)Q(iL:dxXdy)>0. 

Furthermore, we assume that if /u,(B) = 0, then Q(^i : B x B ) = 0. The martin­
gale problem is then specified by the (2.1), (2.2) and the triple (G,F, Q). A 
unique solution to the martingale problem is called a stochastic measure 
diffusion process with spatial diffusion generator G, interaction F and fluctua­
tion quadratic form Q. Heuristically, Q(JUL : dxxdy) represents the infinitesimal 
variance-covariance structure of the population at locations x and y when the 
current population distribution is given by jx. 

Thus the problem is now well-posed, namely to find conditions under which 
the martingale problem associated with the triple (G, F, Q) has a unique 
solution and then to study the structure and behavior of this solution. In the 
next section we describe a martingale problem of this type for which an explicit 
solution can be obtained. 

3. The branching measure diffusion process. The model to be described in 
this section arises as a diffusion approximation to a stochastic population model 
of a population subject to reproduction and spatial dispersion. We assume that 
D is a Green domain, for example, a sphere, and that G is the d -dimensional 
Laplacian, A, with absorbing boundary conditions on dD. We assume that 
F(.) = c, a constant and 

(3.1) Q(JLL ; dx x dy) = y8x_yfx (dx) 

where y > 0 and 8 denotes the Dirac delta function. 
This martingale problem has been solved explicitly (see for example [5], [7]) 

in terms of its characteristic functional, that is, the Fourier transform of the 
finite dimensional distributions of the probability measures P^. The transition 
characteristic functional of the measure-valued process X(t), f > 0 , is defined 
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by 

(3.2) L t , ,(^)-E,(exp(i<X(0, * » ) 

for <j> e C(D) and /u, eM(D). The following theorem is established in [7]. 

THEOREM 3.1. The martingale problem associated with the triple (A, c, Q) 
where Q is given by (3.1) has a unique solution with transition characteristic 
functional given by 

(3.3) L t | t(*) = exp( i | i i ( l ,xV (dx)), 4>eC{D\ 

where u(.,.) is the solution of the nonlinear initial value problem 

(3.4) du(t, x)/dt = Au(t, x) + iyu2(t, x) + cu(t, x), f > 0, 

xeD-dD, and 

u(0, x) = <f>(x) 

u(t,x) = 0,t>0, xedD. 

To indicate the significance of this process we next indicate how it arises as 
the diffusion approximation to a branching random field. Let Ye(t), f > 0 , 
denote the measure-valued Markov process which lives on D and has the 
following evolution. At time t = 0, Ye(0) is given by a Poisson random field on 
D with intensity Ae. Each particle has a random lifetime which is exponentially 
distributed with mean V"1. At the end of its lifetime each particle branches 
into n identical particles with probability pn, n = 0 ,1 ,2 , 3 , . . . We assume that 
the mean offspring size me = £ npn, and that m2,e =X n(n - l)pn <<*>. In addi­
tion, during its lifetime each particle moves in D according to a Brownian 
motion and is killed if it reaches the boundary 3D. For e > 0, let Àe = À/e, 
me = ce, Ve = Vie and m2,e —> m2 as e —> 0. Under these conditions, the follow­
ing theorem is established in [4], [6]. 

THEOREM 3.2. The branching random fields, Ye(t), t > 0 , converge in the sense 
of weak convergence of probability measures as e -» 0 to the branching measure 
diffusion process X(t), f > 0 , that is, the solution of the martingale problem (3.1) 
with y = \Vm2. 

Recall that for each f>0 , the branching measure diffusion process is de­
scribed by a random measure on D. The following result which is proved in [9] 
provides insight into the structure of these random measures. 

THEOREM 3.3. Let X(t), t > 0 , denote the branching measure diffusion process 
in D ci .Rd, d > 2. Then for fixed t>0, there exists a random set B^D, such that 

X(t, <o,Dn B(o))) = X(t, o), D) 
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for P^-almost every o> e ft, and 

dim B(co)< 2, 

for P^-almost every a> e ft. (The dimension refers to Hausdorff dimension.) 

A simple corollary to Theorem 3.3 is that for d > 3 , and f > 0 , the random 
measure X(t) is singular-measure-valued with probability one. This explains 
why equation (1.2) has no function-valued solution in d > 3 . In fact as written, 
it is essentially the equation fc^ die "density" of X(t) which of course does not 
exist if X(t) is singular. 

4. Some further results on the martingale problem. In this section we briefly 
review some recent results on martingale problems of the type (2.1). Although 
general existence and uniqueness results for the most general martingale 
problem have not yet been obtained, considerable progress has been made on 
identifying and solving some important classes of martingale problems. 

Although we have described a martingale problem above which does not 
have a function-valued solution, there is an important class of problems which 
do have function-valued solutions. These have been studied by M. Viot [18] 
and are examples of measure-valued martingale problems which have abso­
lutely continuous measure-valued solutions whose densities belong to an ap­
propriate Hilbert space of functions. Let À denote Lebesgue measure and for 
an absolutely continuous measure, JA, let #X denote its Radon-Nikodym deriva­
tive with respect to À. The martingale problems studied by Viot are given by 
triples (G, F, Q) where there are fairly weak hypothesis placed on G and F but 
a strong hypothesis is placed on Q. Q(.) is defined for an absolutely continuous 
measure /x, by 

Q(jLL ; dx x dy) = h(fi(x))h(fi(y))q(x, y)k (dx)X (dy) 

where h(.) is a continuous function with h(x)>0 if x > 0 and h(0) = 0. 
Furthermore the essential assumption is that q(x, y) is a positive definite 
function which is the kernel of a nuclear operator on the Hilbert space L2(D). 
Note that this implicitly requires that the infinitesimal fluctuations be spatially 
correlated in higher dimensions thus excluding those Q(.)'s which are concen­
trated on the diagonal in DxD. 

P. L. Chow [2] and S. Mizuno [15] have obtained existence results for the 
martingale problem with G = A, F = 0, and Q(JLL : dx x dy) = 
q(x, y)/uL (dx)iL (dy) where q(x, y) is a symmetric positive definite function on 
DxD. This represents a model of a population growing in a random environ­
ment and can also be viewed as a random linear evolution equation. 

Fleming and Viot [11] have introduced another martingale problem whose 
solution is a model for the evolution of a continuous genetic characteristic. For 
this model the triple is given by G = A with reflecting boundary conditions on 
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dD, F = 0 and 

QilL.dxx dy) = ÔX_VJLL (dx) — fi (dx)fA (dy). 

In this case the process is measure-preserving and the state space is M^D), the 
space of probability measures on D. They prove existence by obtaining a 
solution as a diffusion limit of a sequence of discrete models. They prove 
uniqueness by showing that the conditional moments are uniquely determined 
by the martingale problem. 

The martingale problem of Section 3 has the property that the measure 
Q(fjt :.) is concentrated on the diagonal i n D x D . This corresponds to the fact 
that the infinitesimal fluctuations in disjoint regions are independent con­
ditioned on the current distribution. A. Bose [1] has studied the family of 
martingale problems with G = F = 0 and in which Q(.) possesses this property. 
In this case the solution X(t) is for every t > 0, an atomic random measure even 
if X(0) is non-atomic. In this case each atom evolves according to a one 
dimensional diffusion and Bose establishes a connection between the behavior 
of the measure-valued process and the one dimensional diffusion by exploiting 
some deep results of Feller and McKean concerning the latter. 

Up to this point the martingale problems which were discussed were interac­
tion free, that is, F(.) was either linear or zero. This limitation can be removed 
by the extension to measure-valued processes of the formula of Cameron-
Martin-Girsanov for the function space Radon-Nikodym derivative of one 
probability measure with respect to another. To describe this method consider 
a martingale problem given by the triple (G, F, Q) and compare it with the 
martingale problem given by the triple (G, 0, Q). Let {P^ : fi e M(D)} and 
{P£: jut e M(D)} denote the solutions of the two martingale problems. Then the 
following result is established in [7]. 

THEOREM 4.1. Assume that 

F(jui ; dx) = 

Then for every JULeM(D) and t<<*, the probability measure P£F| is absolutely 
continuous with respect to the probability measure PMF, and the Radon-Nikodym 
dPlvJdP^.Vt = R(t) is given by 

R(t) = exp(j"</(X(s)), dXo(s))~ f |JV(X(s); x)f(X(s); y)Q(X(s):dx x y) ds) 

where 

XG(t) = X(t)-\ G*X(s)ds, 
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and 

\\f(X(s)ldXG(s)) 

denotes an appropriate ltd stochastic integral which is analogous to the stochastic 
integral introduced by ltd for the finite dimensional case. 

Applications of this formula have been made to the branching measure 
diffusion process and the Reming-Viot model (refer to [7]). 

The family of quadratic functional which have been discussed above to­
gether with the Cameron-Martin-Girsanov formula makes possible the study 
of many distributed population models which arise in chemical kinetics, gene­
tics and ecology. 

5. Global behavior of stochastic measure diffusion processes. In addition to 
questions of existence and uniqueness, the major open problems lie in the 
study of the global behavior of solutions of measure-valued martingale prob­
lems. Of greatest importance are questions of stability, singularity, critical 
behavior and bifurcation of solutions. These may form the basis for the study 
of nonequilibrium phase transitions arising in chemical kinetics and population 
biology. Some first steps in this direction have only recently been realized (see 
for example [2], and [8] and the references therein). The detailed description of 
these problems and results are beyond the scope of this review. However in 
order to give an introduction to this viewpoint we now describe one aspect of 
global behavior which can be described in the context of the branching 
measure diffusion process. 

The first thing to note is that the branching measure diffusion can be 
extended to all of Rd. In this setting assume that the system is spatially 
homogeneous, that is, consider the case in which X(0) = À, a constant multiple 
of Lebesgue measure. We also assume that c = 0 so that Ex(X(t, B)) is finite 
and constant in t for every relatively compact subset B of Rd. The process is 
then a fluctuation dissipation process with fluctuations produced locally and 
then dissipated via spatial diffusion. The question of interest is whether the 
fluctuations grow indefinitely or reach a steady state behavior. This question is 
answered by the following theorem which is proved in [5]. 

THEOREM 5.1. Let {X(t), f >0}, denote the branching measure diffusion pro-
cess in Rd with the initial condition X(0) = À. 

(a) For d>2, X(t) converges (in the topology of weak convergence of proba­
bility measures) to a steady state random measure, denoted by Xoo. 

(b) For d < 2 , and K a compact subset of Rd, X(t,K)->0 in probability as 
f-*oo. 
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The study of the structure of the steady state Xœ is also of interest. The 
covariance operator 

It has been proved in [5] that 

rfcfc <M = JW)<Ky) / |* - y r 2 ] dx dy. 

This means that the random measure has long-tailed correlations, a case not 
traditionally studied in probability theory but one which also arises in the study 
of critical point behavior in statistical physics. In particular the usual type of 
central limit theorem argument which depends on some type of "asymptotic 
independence" fails in this case. Nevertheless both central limit theorems and 
invariance principles have recently been proved in this setting ([5], [8] and 
Holley and Stroock [12]). To describe one of these results we introduce the 
following group of scaling transformations: for K>0, 

XK(t, A) - K-(d+2)/2(X(K2f, AK) - E(X(K2t, AK))) 

where AK = {x : x/K e A}. 

THEOREM 5.2 ([12], [8]). Let X(f), t>0, denote the branching measure 
diffusion with initial condition X(0) = a multiple of Lebesgue measure in Rd, 
d > 2 , and assume that c = 0. Then as K-*<*>, X K ( . , . ) converges weakly to a 
Gaussian stochastic process known as the infinite dimensional Ornstein-
Uhlenbeck process, Y(t), f > 0 . 

The Ornstein-Uhlenbeck process is of course not a measure-valued process 
(because of the centering) but is a process whose state space is S'CRd), the 
space of tempered distributions in JRd. The Ornstein-Uhlenbeck process is also 
the solution of a martingale problem, namely, the martingale problem as­
sociated with the triple (A, 0, Q) where Q O ; dx x dy) = aôx_y dx where a is a 
positive constant. It should also be pointed out that weak convergence results 
of this type are most easily proved within the martingale problem context 
because of the stability of the martingale property under weak limits (see [17] 
and [15]). The previous result is typical of those involving weak convergence to 
fixed points of the group of scaling transformations. 
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