WITTS THEOREM FOR QUADRATIC FORMS OVER NON-DYADIC DISCRETE VALUATION RINGS

DAVID MORDECAI COHEN

Introduction. Let R be a discrete valuation ring, with maximal ideal pR, such that $\frac{1}{2} \in R$. Let L be a finitely generated R-module and $B: L \times L \to R$ a non-degenerate symmetric bilinear form. The module L is called a *quadratic module*. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of isometries, i.e. all R-linear isomorphisms $\varphi: L \to L$ such that $B(\varphi(x), \varphi(y)) = B(x, y)$. Given two submodules M and N of L and an isometry $\tau: M \to N$ defined on M, we shall find necessary and sufficient conditions for τ to extend to L, i.e. there exists $\varphi \in O(L)$ such that $\varphi \upharpoonright M = \tau$.

Our starting point is the observation that when L is unimodular (i.e. the form $B: L \times L \to R$ induces an isomorphism $L \simeq \operatorname{Hom}_R(L, R)$), our theorem can be proved by imitating the proof of Witt's theorem for L/pL over the field R/pR. We are therefore led to define, for an arbitrary quadratic module L, a family of invariant submodules L_j such that $L = \lim_{\leftarrow} L/L_j$, and the induced bilinear forms $\overline{B}: L/L_j \times L/L_j \to R/p^j$ are non-degenerate. Since the "forms" L/L_j are non-degenerate, the submodules L_j are in some sense more "natural" for the study of quadratic forms than the usual filtration, p^jL . Using the L_j we define a family of normal subgroups $O_j(L)$ which form a neighborhood system of the identity of O(L) in the usual topology.

For L/L_j we show that if $M + L_{j-1} = N + L_{j-1}$ then only a length and a primality condition are needed to give an isometry $\varphi \in O(L)$ such that $\varphi(M) + L_j = N + L_j$. Since $L = \lim L/L_j$ we use a limit argument to prove our theorem for L.

To illustrate the techniques involved we first prove the theorem for the case of two vectors x and y with $x^2 = y^2$. This case is originally due to James and Rosenzweig [1]. The main theorem generalizes a theorem of Band [2].

We will first assume that R is complete. The non complete case follows by an easy argument (cf. [1] and [5]).

Section I. In this section we discuss the topologies on L and O(L) which are induced by the valuation on R.

Definition. For $x \in L$, we define ord $(x) = \min \{ \operatorname{ord}_R (xy) | \text{ for all } y \in L \}$. Clearly,

Received August 10, 1976 and in revised form, April 20, 1977.

- i) ord (ax) = ord(a) + ord(x) for any $a \in R$
- ii) ord $(x + y) \ge \min \{ \text{ord } (x), \text{ ord } (y) \}$
- iii) ord $(x) \leq \text{ord} (x^2)$

iv) If $L = L_1 \perp L_2$ and $x = x_1 + x_2, x_i \in L_i$, then ord $(x) = \min \{ \operatorname{ord}_{L_i}(x_i) \}$

By selecting a vector x_1 , such that ord (x_1) is a minimum, we can decompose $L = \langle x_1 \rangle \perp L_1$. By induction, we can prove that L is an orthogonal sum of lines. Therefore by property iv) above it follows that for a large integer N, if ord (x) > N, then $x \in pL$.

We now define the submodules L_i .

Definition. $L_j = \{x \in L | \text{ord } (x) \ge j\}$ Clearly then, (1.1) $L_j \supset L_{j+1} \supset pL$ for all j, (1.2) $L_j \subset pL$ for all j > N, (1.3) $L_{j+1} = pL_j$ j > N.

From properties (1.1) and (1.3) it follows that the topology on L induced by the L_j agrees with the *p*-adic topology. Therefore $L = \lim_{\leftarrow} L/L_j$. Since for any isometry $\varphi \in O(L)$, ord $(x) = \text{ord } (\varphi(x))$, the submodule L_j is invariant, i.e. $\varphi(L_j) = L_j$. Clearly the induced forms $B : L/L_j \times L/L_j \to R/p^j$ are nondegenerate.

The orthogonal group O(L) has a natural *p*-adic topology inherited from *R* in which it is complete.

Definition. $O_i(L) = \{\varphi \in O(L) | \text{ for all } x \in L, \varphi(x) \equiv x \pmod{L_i} \}.$

Since the L_j are invariant under the action of O(L), the $O_j(L)$ are normal subgroups. Since $L = \lim_{\leftarrow} L/L_j$, the $O_j(L)$ satisfy

 $(1.4) O_j(L) \supset O_{j+1}(L)$

 $(1.5) \cap O_j(L) = \{1\}.$

The $O_j(L)$ therefore form a neighborhood of the identity in O(L).

We now define some special types of vectors.

Definition. $v \in \mathscr{L}$ is orthogonal if ord $(v) = \text{ord } (v^2)$, or equivalently if $L = \{v\} \perp K$.

If v is orthogonal of order j, then for any $x \in L$, ord $(xv) \geq$ ord (v^2) and so $({}^{vx}/v^2)v \in L_j$. Therefore the reflection about v, defined as usual by setting $\sigma_v(x) = x - 2 ({}^{vx}/v^2)v$ [4], is an isometry of L. Since $\sigma_v^2 = 1$, if $v \equiv w \pmod{L_k}$ and w is also orthogonal then $\sigma_w(x) \equiv \sigma_v(v) \pmod{L_k}$, $\sigma_v\sigma_w(x) \equiv x \pmod{L_k}$ and $\sigma_v\sigma_w \in O_k(L)$.

Definition. A vector $v \in L$ is called *simple* if there exists a vector w, necessarily also simple, such that ord (v) = ord (vw) = ord (w).

Since ord $(pwv) > \text{ord } (wv) \ge \text{ord } (w)$, a simple vector v is primitive (i.e. $v \notin pL$). If v is simple, and ord (z) > ord (v), then ord ((v + z)w) = ord (vw) = ord (w) = ord (v + z) and v + z is also simple. If v is orthogonal then ord $(v) = \text{ord } (v^2)$ and v is simple. Therefore simple vectors are a generalization of orthogonal vectors. Our interest in them is further explained by the following lemma.

LEMMA 1. Let $x \in L$ be primitive. Then there exists v and $z \in L$ such that x = pz + v and either v is orthogonal, or v is simple and isotropic (i.e. $v^2 = 0$).

Proof. Using an orthogonal basis of L, we can write $x = pz_1 + u$ where u is the sum of mutually perpendicular orthogonal vectors. Such a vector is simple. If u is orthogonal then set v = u.

If ord $(u^2) > \text{ord } (u)$ then choose $w \in L$ such that ord (u) = ord (wu) = ord (w). Using Hensel's lemma we can find an $a \in R$ such that $(apw + u)^2 = 0$. Since ord (apw) > ord (w) = ord (u), apw + u is simple. Then set $z = z_1 - apw$ and v = apw + u.

If v is a simple vector for which $\operatorname{ord}(v^2) > \operatorname{ord}(v)$ then using Hensel's lemma we can find a simple isotropic vector v^* such that $\operatorname{ord}(v) = \operatorname{ord}(vv^*) = \operatorname{ord}(v^*)$. Therefore we have an isotropic vector v^* such that $L = \{v, v^*\} \perp K$.

Definition. The exponent of a vector x modulo L_k will denote the greatest integer t for which there is a $z \in L$ such that

 $x \equiv p^t z \pmod{L_k}.$

If $x \notin pL + L_k$ then x has exponent zero modulo L_k and is called *primitive* modulo L_k .

Note that if t_k is the exponent of x modulo L_k then $t_k \ge t_{k+1}$. Suppose that $x \in p^{t}L$ and $x \notin p^{t+1}L$, i.e. x has exponent t in L. Suppose that N is sufficiently large so that for all j > N, $L_j \subset pL$. Then $L_{j+t} \subset p^{t+1}L$ and $x \notin p^{t+1}L + L_{j+t}$. Therefore for all k > N + t the exponent of x modulo L_k equals t. In particular if x is primitive in L and k is large, then x is primitive modulo L_k . Conversely if x is primitive modulo L_k , for any k, then $x \notin pL + L_k$ and x is primitive in L. If v is simple and ord (v) < k, then v is primitive modulo L_k .

LEMMA 2. If ord (x) = k and x is primitive modulo L_{k+1} , then x is simple.

Proof. Write x = pz + v for some simple vector v. Since x is primitive modulo L_{k+1} , ord $(v) \leq k$. Choose a simple vector w such that ord (v) =ord (vw) =ord (w). Then

 $k \leq \operatorname{ord} (xw) = \operatorname{ord} (pzw + vw) = \operatorname{ord} (vw) = \operatorname{ord} (v) \leq k$

Therefore ord (xw) = ord (w) = k, and x is simple.

COROLLARY. If v is simple, ord $(v) \leq k$, $v \equiv w \pmod{L_k}$ and w is primitive modulo L_{k+1} , then w is simple and ord $(v) = \operatorname{ord}(w)$.

Proof. If ord (v) < k, then w = v + z where ord $(z) \ge k >$ ord (v). Then it is clear that w is simple and that ord (w) =ord (v). If ord (v) = k, then ord (w) = k and the lemma applies.

If $x \equiv p^t x_1 \equiv p^t x_2 \pmod{L_k}$ then $p^t (x_1 - x_2) \in L_k$, $x_1 \equiv x_2 \pmod{L_{k-t}}$ and $x_1^2 \equiv x_2^2 \pmod{p^{k-t}}$. Therefore even though the vector x_1 is not unique its length modulo p^{k-t} is an invariant of x. Thus we make the following definition.

Definition. For x and $y \in L$, we shall write $x \approx y \pmod{L_k}$ if

1) x and y have the same exponent t modulo L_k , and

2) given any x_1 and y_1 such that $x \equiv p^t x_1$ and $y \equiv p^t y_1 \pmod{L_k}$ then $x_1^2 \equiv y_1^2 \pmod{p^{k-t}}$.

Remark 1. $x \approx y \pmod{L_k}$ does not necessarily imply that $x \approx y \pmod{L_{k-1}}$. However if the exponent of x and y modulo L_k equals the exponent of x and y modulo L_{k-1} then a fortiori $x \approx y \pmod{L_k}$ does imply that $x \approx y \pmod{L_{k-1}}$. Since for large enough k, the exponent of x and y modulo L_k equals the exponent of x and y in L, if $x^2 = y^2$ then for all sufficiently large k, $x \approx y \pmod{L_k}$.

LEMMA 3. The congruence relation $x \approx y \pmod{L_k}$ satisfies the following properties.

1) If $\varphi \in O(L)$, then for all $k, x \approx \varphi(x) \pmod{L_k}$.

2) If $x \equiv y \pmod{L_k}$, then $x \approx y \pmod{L_k}$

3) If $px \approx py \pmod{L_k}$, then $x \approx y \pmod{L_{k-1}}$

4) If v is simple, ord (v) $\leq k$, and $v \equiv w \pmod{L_k}$ then $pz + v \approx pz + w \pmod{L_{k+1}}$ implies that w is simple and that $v \approx w \pmod{L_{k+1}}$.

Proof. Only (4) is not immediate. Since ord $(v) \leq k$, pz + v and pz + w, and therefore w are all primitive modulo L_{k+1} . By the corollary to Lemma 2, since $v \equiv w \pmod{L_k}$, w is simple. Finally

$$0 \equiv (pz + w)^2 - (pz + v)^2 \equiv 2pz(v - w) + (w^2 - v^2)$$
$$\equiv w^2 - v^2 \pmod{p^{k+1}}.$$

In Section 2 we shall prove that if $x \approx y \pmod{L_k}$ for all k, then there is an isometry $\varphi \in O(L)$ such that $\varphi(x) = y$. By Remark 1, if $x^2 = y^2$ and x and y have the same exponent in L, then for all large $k, x \approx y \pmod{L_k}$. Therefore the theorem will involve only a finite number of k. In particular if L is unimodular, then $L_k = p^k L$ and for primitive vectors x and y we will get Witt's original theorem, i.e. $x^2 = y^2$ if and only if there exists $\varphi \in O(L), \varphi(x) = y$.

Section 2. We now prove that if $x \approx y \pmod{L_k}$ for all k, then there is an isometry $\varphi \in O(L)$ such that $\varphi(x) = y$. We prove this first for simple vectors and then use the properties of Lemma 3 to extend it to all x and y in L.

LEMMA 4. Let v be a simple vector such that ord $(v) \leq k$ and either v is orthogonal or v is isotropic. Then for any $w \in L$ such that

i) $v \equiv w \pmod{L_k}$ ii) $v \approx w \pmod{L_{k+1}}$ there exists an isometry $\varphi \in O(L)$ such that $\varphi(v) \equiv w \pmod{L_{k+1}}$.

Proof. By Lemma 3, we already know that w is simple. Let u = v - u. Then $u \in L_k$. If u were orthogonal, then $\sigma_u \in O_k(L)$.

Since u = v - w, and $v^2 \equiv w^2 \pmod{p^{k+1}}$,

$$\sigma_u(v) = v - [2(v-w)v/(v-w)^2](v-w) \equiv v - (v-w) \equiv w \pmod{L_{k+1}}.$$

Then $\varphi = \sigma_u$ is the desired isometry.

Therefore we may assume that ord $(u^2) > \text{ ord } (u) \ge k$. Since $v^2 = (w + u)^2 \equiv w^2 + 2wu \pmod{p^{k+1}}$,

(2.1)
$$wu \equiv vu \equiv u^2 \equiv 0 \pmod{p^{k+1}}$$

If v is orthogonal, then ord $(w) = \operatorname{ord} (v) = \operatorname{ord} (v^2) = \operatorname{ord} (w^2)$ and w is orthogonal. Similarly it follows from (2.1) that v + w = 2w + u is also orthogonal. Following the proof of Witt's theorem for a field, $\sigma_{v+w}(v) \equiv -w$ (mod L_{k+1}) and $\sigma_w \sigma_{v+w}(v) \equiv w \pmod{L_{k+1}}$. Since $2w \equiv v + w \pmod{L_k}$, $\sigma_{2w} \sigma_{v+w} \in O_k(L)$. Then let $\varphi = \sigma_w \sigma_{v+w}$.

Therefore we may assume that v is isotropic. Then neither w nor v + w is orthogonal and there are no reflections σ_w or σ_{v+w} . Assume though that there is a simple isotropic vector v^* such that

(2.2)
$$L = \{v, v^*\} \perp K$$
 and $L = \{w, v^*\} \perp K'$.

Then $v - v^*$, and $w - v^*$ are both orthogonal and $\sigma_{v-v}^*(v) \equiv v^* \pmod{L_{k+1}}$ and $\sigma_{w-v}^*(v^*) \equiv w \pmod{L_{k+1}}$. Since $v - v^* \equiv w - v^* \pmod{L_k}$, $\varphi = \sigma_{v-v}^* \sigma_{w-v}^* \in O_k(L)$ and $\varphi(v) \equiv w \pmod{L_{k+1}}$.

We shall now show that such a v^* exists. Choose any simple isotropic vector \tilde{v} such that $L = \{v, \tilde{v}\} \perp K$. If ord $(\tilde{v}w) \leq k$, then ord $(\tilde{v}w) = \text{ord } (\tilde{v}v + \tilde{v}u) = \text{ord } (\tilde{v}v) = \text{ord } (v) = \text{ord } (w)$ and $v^* = \tilde{v}$ is the desired vector. If ord $(\tilde{v}w) > k$, then find $a, b \in R$ and $w_1 \in K$ so that $w = av + b\tilde{v} + w_1$. Since ord (vw) > k, and ord $(\tilde{v}w) > k$, $av + b\tilde{v} \in L_{k+1}$. Therefore $w \equiv w_1 \pmod{L_{k+1}}$ and w_1 is thus a simple vector of order k in K. Choose a simple isotropic vector \tilde{w} in K such that $K = \{w_1, \tilde{w}\} \perp K''$. Then let $v^* = \tilde{v} + \tilde{w}$. Since ord $(v^*w) =$ ord $(\tilde{w}w_1) = k, v^*$ is the desired vector.

COROLLARY. Let x and $y \in L$. If

1)
$$x \equiv y \pmod{L_k}$$
, and

2)
$$x \approx y \pmod{L_{k+1}}$$

then there exists $\varphi \in O(L)$, such that $\varphi(x) \equiv y \pmod{L_{k+1}}$. Moreover, if x is primitive modulo L_{k+1} , we can choose $\varphi \in O_k(L)$.

Proof. By (3) of Lemma 3, we may assume that x is primitive modulo L_{k+1} . Write x = pz + v where v is simple, ord $(v) \leq k$, and v is either orthogonal or isotropic. If w = v + y - x, then y = pz + w. Since $x \equiv y \pmod{L_k}$, $v \equiv w$

932

(mod L_k). By Lemma 3, $v \approx w \pmod{L_{k+1}}$. By Lemma 4, there is an isometry $\varphi \in O_k(L)$, such that $\varphi(v) \equiv w \pmod{L_{k+1}}$. Since $\varphi \in O_k(L)$, $\varphi(pz) \equiv pz \pmod{L_{k+1}}$ and is the desired isometry.

For $x, y \in L$ we shall write $x \approx y$ if there is $\varphi \in O(L)$ such that $\varphi(x) = y$.

THEOREM 1. Given $x, y \in L$. Then $x \approx y$ if and only if

(2.3) $x \approx y \pmod{L_k}$ for all k.

Proof. By dividing x by p, we may assume that x and y are both primitive in L. We shall construct a convergent sequence of isometries φ_k , such that $\varphi_k(x) \equiv y \pmod{L_k}$. Then for $\varphi = \lim_{\to} \varphi_k, \varphi(x) = y$.

The classical Witt's theorem for fields gives φ_1 such that $\varphi_1(x) \equiv y \pmod{L_1}$. Assume that we have φ_k , such that $\varphi_k(x) \equiv y \pmod{L_k}$. Since φ_k is an isometry, by Lemma 3, $\varphi_k(x) \approx y \pmod{L_{k+1}}$. By the above corollary, there is a $\chi \in O(L)$, such that $\chi \varphi_k(x) \equiv y \pmod{L_{k+1}}$. Let $\varphi_{k+1} = \chi \varphi_k$. For large k, x is primitive modulo L_k , and we can choose $\chi \in O_k(L)$, and, thus, the sequence converges.

Remark 2. If $x^2 = y^2$ and $x \approx y \pmod{L_k}$, for large enough k, then automatically $x \approx y \pmod{L_j}$ for all j > k. So if we add the to theorem the hypothesis that $x^2 = y^2$, we need (2.3) for only a finite number of k. Also, by Remark 1, we would then need (2.3) for only those k for which the primality of x or y changes in passing from L_{k-1} to L_k . This theorem gives Rosenzweig's Theorem.

Section 3. We now extend the results of Section 2 to arbitrary submodules. We first generalize Lemma 1.

Definition. A set of simple vectors v_1, \ldots, v_n will be called *completely ortho*gonal if

1) each v_i is either orthogonal or isotropic, and

2) $L = \{v_1\} \perp \ldots \perp \{v_r\} \perp \{v_{r+1}, v_{r+1}^*\} \perp \ldots \perp \{v_n, v_n^*\} \perp K$ for some simple isotropic vectors v_i^* .

Note. ord $(a_1v_1 + \ldots + a_nv_n) = \min \{ \text{ord } (a_iv_i) \}.$

For convenience we shall extend the definition of simple vector to allow some of the v_t to be the zero vector.

LEMMA 5. Every submodule M has a basis $pz_1 + v_1, \ldots, pz_n + v_n$ where the v_i are completely orthogonal simple vectors.

Proof. If M contains any vector y = pz + v where v is orthogonal, then ord $(yv) = \text{ord } (pzv + v^2) = \text{ord } (v^2) = \text{ord } (v)$. Thus for any $x \in M$, $x - (xv/yv)y \in M$. We can then write $L = \{v\} \perp K$, and $M = \{pz + v\} \oplus M'$ where $M' \subset K$, and can then proceed by induction. Therefore assume that Mcontains no y = pz + v with v orthogonal.

https://doi.org/10.4153/CJM-1977-093-7 Published online by Cambridge University Press

Choose a simple vector $w \in M + pL$ whose order is maximal, i.e. if v_j is simple and $v_j \in M + pL$ then ord $(w) \ge$ ord (v_j) . Then $M = \{pz + w\} \oplus M'$ for some $z \in L$.

By induction on the dimension of M we have a basis pz + w, $pz_2 + v_2, \ldots$, $pz_n + v_n$. of M where the v_j are simple vectors completely orthogonal. Then ord $(wv_j) >$ ord (v_j) . Otherwise, ord $(w) \ge$ ord $(v_j) =$ ord $(wv_j) \ge$ ord (w), and $w + v_j$ would be orthogonal.

Since v_2, \ldots, v_n are completely orthogonal we can write

$$L = \{v_2, v_2^*\} \perp \ldots \perp \{v_n, v_n^*\} \perp K, \quad v_i^* \text{ isotropic}$$

and

$$w = a_2v_2 + \ldots + a_nv_n + b_2v_2^* + \ldots + b_nv_n^* + v', \quad v' \in K.$$

Since ord $(wv_j) >$ ord $(v_j), p$ divides b_j . Therefore

$$pz + w - a_2(pz_2 + v_2) - \ldots - a_n(pz_n + v_n) = pz' + v'.$$

LEMMA 6. If v_1, \ldots, v_n are simple isotropic vectors, completely orthogonal, ord $(v_i) \leq k$, and ord $(a_2v_2 + \ldots + a_nv_n) \geq k$ $a_i \in R$, then there exists $\varphi \in O_k(L)$ such that

$$\varphi(v_1) = v_1 + a_2 v_2 + \ldots + a_n v_n$$

$$\varphi(v_j) = v_j \quad \text{for } j \neq 1.$$

Proof. Choose simple isotropic vectors v_i^* such that $L = \{v_1, v_1^*\} \perp \ldots \perp \{v_n, v_n^*\} \perp K$. Then define $\varphi \in O(L)$ by $\varphi(v_1^*) = v_1^*$ and $\varphi(v_j^*) = v_j^* - (a_j v_j v_j^* / v_1 v_1^*) v_1^*$ and $\varphi|K$ = identity. Since $(a_j v_j v_j^* / v_1 v_1^*) v_1^* \in L_k, \varphi \in O_k(L)$.

LEMMA 7. Let v_1, \ldots, v_n be simple vectors completely orthogonal, ord $(v_i) \leq k$. Let w_j be simple vectors such that

1) $v_j \equiv w_j \pmod{L_k}$.

2) For any $a_j \in R$, $\sum_{1}^{n} a_j v_j \approx \sum_{j}^{n} a_j w_j \pmod{L_{k+1}}$.

Then there is an isometry $\varphi \in O_k(L)$ such that $\varphi(v_i) \equiv w_i \pmod{L_{k+1}}$.

Proof. Suppose that v_1 is orthogonal. By Lemma 4 there is an isometry $\psi \in O_k(L)$ such that $\psi(v_1) \equiv w_1 \pmod{L_{k+1}}$. By properties (1) and (2) of Lemma 2,

$$\sum_{1}^{n} a_{j} \psi(v_{j}) \approx \sum_{1}^{n} a_{j} v_{j} \approx \sum_{1}^{n} a_{j} w_{j} \approx a_{1} \psi(v_{1}) + \sum_{2}^{n} a_{j} w_{j} \pmod{L_{k+1}}.$$

Since $\psi \in O_k(L)$, we may assume that $v_1 = w_1$.

Write $L = \{v_1\} \perp K$. Let $w_j' = w_j - (w_j v_1/v_1^2)v_1$. Then $w_j' \in K$, and $w_j \equiv w_j' \pmod{L_{k+1}}$. By property (2) of Lemma 3 we can complete the proof by induction.

Suppose that all the v_i are isotropic. By induction assume that $v_2 = w_2$, ..., $v_n = w_n$. Choose simple isotropic v_i^* such that

$$L = \{v_2, v_2^*\} \perp \ldots \perp \{v_n, v_n^*\} \perp K$$

and

$$w_1 = a_2v_2 + b_2v_2^* + \ldots + a_nv_n + b_nv_n^* + w, w \in K$$

By Condition 2 above $w_1v_j \equiv v_1v_j \equiv 0 \pmod{p^{k+1}}$. Thus $b_jv_j^* \in L_{k+1}$, and $w_1 \equiv a_2v_2 + \ldots + a_nv_n + w \pmod{L_{k+1}}$. Since $w_1 \equiv v_1 \pmod{L_k}$ and the v_i are completely orthogonal each $a_jv_j \in L_k$, and $w \equiv v_1 \pmod{L_k}$.

By Lemma 3, Condition 2, and Lemma 6,

$$w \approx w_1 - a_2 v_2 - \ldots - a_n v_n \approx v_1 - a_2 v_2 - \ldots - a_n v_n \approx v_1 \pmod{L_{k+1}}.$$

Therefore by Lemma 4 applied to w and v_1 and K, there is an isometry $\psi \in O_k(L)$ such that $\psi(w) \equiv v_1 \pmod{L_{k+1}}$ and such that $\psi(w_1) \equiv a_2v_2 + \ldots + a_nv_n + v_1 \pmod{L_{k+1}}$. Now Lemma 6 completes the proof.

COROLLARY. Let M and N be submodules of L. Let $\chi : M \to N$ be a linear transformation such that for all $x \in M$,

1) $\chi(x) \equiv x \pmod{L_k}$

2) $\chi(x) \approx x \pmod{L_{k+1}}$.

Suppose that M has a basis x_1, \ldots, x_n such that each x_j is primitive modulo L_{k+1} . Then there is an isometry $\varphi \in O_K(L)$ such that

 $\varphi(x) \equiv \chi(x) \pmod{L_{k+1}}.$

Proof. Let $x_i = pz_i + v_i$ be a basis of M such that ord $(v_i) \leq k$. Let $w_i = \chi(x_i) - pz_i$. Then $w_i \equiv v_i \pmod{L_k}$.

For any $x = pz + v \in M$, if $w = \chi(x) - pz$, then $v \equiv w \pmod{L_k}$. Since $pz + v \approx pz + w \pmod{L_{k+1}}$, by Lemma 3, $v \approx w \pmod{L_{k+1}}$.

Therefore the v_i and w_i satisfy the conditions of the lemma, and there is an isometry $\varphi \in O_k(L)$ such that $\varphi(v_i) \equiv w_i \pmod{L_{k+1}}$. Therefore $\varphi(x_i) \equiv \varphi(pz_i + v_i) \equiv pz_i + w_i \equiv \chi(x_i) \pmod{L_{k+1}}$.

LEMMA 8. Let M and N be submodules of L and $\chi : M \to N$ a linear transformation such that for all $x \in M$,

1) $\chi(x) \equiv x \pmod{L_k}$

2) $\chi(x) \approx x \pmod{L_{k+1}}$.

Then there is an isometry $\varphi \in O(L)$ such that

 $\varphi(x) \equiv \chi(x) \pmod{L_{k+1}}.$

Proof. We shall show that there is an isometry $\psi \in O(L)$ such that if $x \in M$ is imprimitive modulo L_{k+1} , then

$$\psi(x) \equiv \chi(x) \pmod{L_{k+1}}.$$

We can then apply the corollary to Lemma 7 to find an isometry $\psi' \in O_k(L)$ such that $\psi'\psi(x) \equiv \chi(x) \pmod{L_{k+1}}$ for all $x \in M$ primitive modulo L_{k+1} . Since $\psi' \in O_k(L)$, if x is imprimitive modulo L_{k+1} , then $\psi'\psi(x) \equiv \chi(x) \pmod{L_{k+1}}$, and the lemma would be proved.

We shall use induction to construct ψ . Assume that the lemma is true for k-1.

Using Lemma 5, choose a basis x_1, \ldots, x_n of M. Suppose that for $i \leq s$, $x_i = pz_i + v_i$ and ord $(v_i) \leq k$, and that for i > s, $x_i \equiv pz_i \pmod{L_{k+1}}$.

Let M' be the submodule of L generated by $x_1, \ldots, x_s, z_{s+1}, \ldots, z_n$. Choose a basis x_1', \ldots, x_r' of M'. For each x_i' choose a vector u_i in M such that $px_i' \equiv u_i \pmod{L_{k+1}}$. Since $\chi(u_i) \approx px_i' \pmod{L_{k+1}}$, there is a y_i' in L such that $\chi(u_i) \approx py_i' \pmod{L_{k+1}}$. Now define a linear transformation χ' on M' by setting, for each $x_i', \chi'(x_i') = y_i'$. Then for any $x' \in M'$ if $px' \equiv x \pmod{L_{k+1}}$ then $p \chi'(x') \equiv \chi(x) \pmod{L_{k+1}}$. The key fact is that although χ is not an isometry, if $x \equiv u \pmod{L_{k+1}}$ where x and u are elements of M, then $\chi(x) \equiv$ $\chi(u) \pmod{L_{k+1}}$. Therefore for any $x' \in M', p\chi'(x') \approx \chi(x) \approx x \approx px' \pmod{L_{k+1}}$, and so $\chi'(x') \approx x' \pmod{L_k}$.

Thus M' and χ' satisfy the hypotheses of the lemma for k - 1. By induction there is an isometry $\psi \in O(L)$ such that $\psi(x') \equiv \chi'(x') \pmod{L_k}$. If $x \in M$ is imprimitive, choose $x' \in M'$ such that $px' \equiv x \pmod{L_{k+1}}$. Then $\psi(x) \equiv \psi(px') \equiv p\psi(x') \equiv p\chi'(x') \equiv \chi(x) \pmod{L_{k+1}}$. Thus ψ is desired isometry and the lemma is proved.

THEOREM. Let M and N be submodules of L, and $\tau : M \to N$ an isometry defined on M. Then τ extends to an isometry of L if and only if $\tau(x) \approx x$ for all $x \in M$.

Proof. By Theorem 1, that condition is equivalent to $\tau(x) \approx x \pmod{L_k}$ for all k.

We shall construct a convergent sequence of isometries $\varphi_k \in O(L)$ such that $\varphi_k(x) \equiv \tau(x) \pmod{L_k}$. Then for $\varphi = \lim \varphi_k, \varphi(x) = \tau(x)$.

By the classical Witt's theorem for fields there is an isometry $\varphi_1 \in O(L)$ such that $\varphi_1(x) \equiv \tau(x) \pmod{L_1}$.

Assume that we have an isometry φ_k such that $\varphi_k(x) \equiv \tau(x) \pmod{L_k}$. Then $\varphi_k(x) \approx x \approx \tau(x) \pmod{L_{k+1}}$ by Lemma 3. Therefore by Lemma 8, we have $\psi \in O(L)$ such that $\psi \varphi_k(x) \equiv \chi(x) \pmod{L_{k+1}}$. Let $\varphi_{k+1} = \psi \varphi_k$.

For large enough k, M will satisfy the conditions of the corollary to Lemma 7. Thus for large enough k, $\varphi_{k+1} \in \varphi_k O_k(L)$, and so the sequence φ_k converges.

I would like to thank Professor N. C. Ankeny for the encouragement and guidence he has given me while writing this paper.

References

- D. G. James and S. Rosenzweig, Associated vectors in lattices over valuation rings, Amer. J. Math. 90 (1968), 295-307.
- 2. M. Band, On the integral extension of quadratic forms over local fields, Can. J. Math. 22 (1970), 297-307.
- 3. Allen Trojan, The integral extension of isometries of quadratic forms, Can. J. Math. 18 (1966), 920-942.
- 4. O. T. O'Meara, Introduction to quadratic forms (Springer-Verlag, 1971).
- 5. C. L. Siegel, Equivalence of quadratic forms, Amer. J. Math. 63 (1941), 658-680.

University of California, Irvine, California