THE HOMOLOGY OF SINGULAR POLYGON SPACES

YASUHIKO KAMIYAMA

ABSTRACT. Let M_n be the variety of spatial polygons $P = (a_1, a_2, \ldots, a_n)$ whose sides are vectors $a_i \in \mathbf{R}^3$ of length $|a_i| = 1$ $(1 \le i \le n)$, up to motion in \mathbf{R}^3 . It is known that for odd n, M_n is a smooth manifold, while for even n, M_n has cone-like singular points. For odd n, the rational homology of M_n was determined by Kirwan and Klyachko [6], [9]. The purpose of this paper is to determine the rational homology of M_n for even n. For even n, let \tilde{M}_n be the manifold obtained from M_n by the resolution of the singularities. Then we also determine the integral homology of \tilde{M}_n .

1. **Introduction.** Let M_n be the variety of spatial polygons $P = (a_1, a_2, ..., a_n)$ whose sides are vectors $a_i \in \mathbf{R}^3$ of length $|a_i| = 1 (1 \le i \le n)$. Two polygons are identified if they differ only by motions in \mathbf{R}^3 . The sum of the vectors is assumed to be zero:

$$(1.1) a_1 + a_2 + \dots + a_n = 0.$$

It is known that M_n admits a Kähler structure such that the complex dimension of M_n is n-3. For odd n, M_n has no singular points. For even n, $P = (a_1, a_2, ..., a_n)$ is a singular point iff all the $a_i(1 \le i \le n)$ lie on a line in \mathbb{R}^3 through O [2], [5], [6], [9]. Such singular points are cone-like singularities and have neighborhoods $C(S^{n-3} \times_{S^1} S^{n-3})$, where C denotes the cone and S^1 acts on both copies of S^{n-3} by complex multiplication [6], [9].

For odd n, $H_*(M_n; \mathbf{Q})$, the rational homology of M_n , was determined by Kirwan and Klyachko [6], [9]. Their strategies are different, but both use theorems in symplectic geometry. Unfortunately, their methods cannot apply to M_n for even n, because of the singular points of M_n .

Thus the purposes of this paper are (a) and (b) below. For the rest of this paper, we always assume n to be even, and sometimes set n = 2m.

- (a) We determine $H_*(M_n; \mathbf{Q})$. Actually we can also determine $H_q(M_n; \mathbf{Z})$ (q > n 2).
- (b) Let \tilde{M}_n be the manifold obtained from M_n by the resolution of the singularities. That is, for every singular point of M_n , replace $C(S^{n-3} \times_{S^1} S^{n-3})$ by $D^{n-2} \times_{S^1} S^{n-3}$. Then we determine $H_*(\tilde{M}_n; \mathbb{Z})$.

Our results are as follows. For $H_*(M_n; \mathbf{Q})$, we begin by proving the following:

THEOREM A. The groups
$$H_q(M_n; \mathbb{Z})$$
 $(q \ge n-2)$ are given by:
(i) $H_{2i+1}(M_n; \mathbb{Z}) = 0$ $(i \ge m-1)$.

Received by the editors March 17, 1997. AMS subject classification: 14D20, 57N65.

© Canadian Mathematical Society 1998.

(ii) $H_{2i}(M_n; \mathbf{Z}) \cong \mathbf{Z}^{A_{2i}}(i \geq m-1)$ with $A_{2i} = {2m-1 \choose 0} + {2m-1 \choose 1} + \cdots + {2m-1 \choose 2m-3-i}$, where n = 2m, ${a \choose b}$ denotes the binomial coefficient, and $\mathbf{Z}^{A_{2i}}$ denotes the A_{2i} -fold direct sum of \mathbf{Z} .

Next we determine the groups $H_q(M_n; \mathbf{Q})$ $(1 \le q \le n-4)$, which are isomorphic to $H^q(M_n; \mathbf{Q})$. In order to state the result, we define algebras U, V and a map of algebras $\mu: U \to V$ as follows. Let U be the algebra over \mathbf{Q} generated by $\alpha_1, \ldots, \alpha_{n-1}$ and f, of degree two, subject to the relations $\alpha_i^2 = -f\alpha_i$ for $1 \le i \le n-1$:

$$(1.2) U = \mathbf{Q}[\alpha_1, \dots, \alpha_{n-1}, f]/(\alpha_i^2 = -f\alpha_i), \deg \alpha_i = \deg f = 2.$$

Next we set

$$(1.3) S = \{(\epsilon_1, \dots, \epsilon_{n-1}); \epsilon_i = \pm 1 \ (1 \le i \le n-1), \epsilon_1 + \epsilon_2 + \dots + \epsilon_{n-1} + 1 = 0\}.$$

Thus S consists of $\binom{2m-1}{m}$ -elements. (Recall that n=2m.) For each $(\epsilon_1,\ldots,\epsilon_{n-1})\in S$, we denote by $\mathbf{Q}[e_{(\epsilon_1,\ldots,\epsilon_{n-1})}]$ a polynomial algebra on *one* generator $e_{(\epsilon_1,\ldots,\epsilon_{n-1})}$ which has degree two. Then we set

(1.4)
$$V = \bigoplus_{(\epsilon_1, \dots, \epsilon_{n-1}) \in S} \mathbf{Q}[e_{(\epsilon_1, \dots, \epsilon_{n-1})}].$$

Finally we define a map of algebras $\mu: U \to V$. In order to do so, it suffices to give $\mu(\alpha_i)$ $(1 \le i \le n-1)$ and $\mu(f)$.

(i) For $1 \le i \le m-1$, we set

$$\mu(\alpha_i) = -\sum_{\{(\epsilon_1, \dots, \epsilon_{n-1}) \in S: \epsilon_i = -1\}} e_{(\epsilon_1, \dots, \epsilon_{n-1})}.$$

(ii) For $m \le i \le 2m - 1$, we set

$$\mu(\alpha_i) = -\sum_{\{(\epsilon_1,\dots,\epsilon_{n-1}) \in S; \epsilon_i = +1\}} e_{(\epsilon_1,\dots,\epsilon_{n-1})}.$$

(iii) We set

$$\mu(f) = \sum_{(\epsilon_1, \dots, \epsilon_{n-1}) \in S} e_{(\epsilon_1, \dots, \epsilon_{n-1})}.$$

Now $H^q(M_n; \mathbf{Q})$ $(1 \le q \le n-4)$ are given by the following:

THEOREM B. The map $\mu: U \to V$ is a morphism of algebras and one has

$$H^{2i}(M_n; \mathbf{Q}) \cong \text{Ker}(\mu: U^{2i} \to V^{2i}) \ (2 \le 2i \le n-4),$$

 $H^{2i+1}(M_n; \mathbf{Q}) \cong \text{Coker}(\mu: U^{2i} \to V^{2i}) \ (1 \le 2i+1 \le n-4),$

where U^q denotes the subspace of U consisting of elements of degree q.

Theorems A and B give $H_q(M_n; \mathbf{Q})$ $(q \neq n-3)$. $H_{n-3}(M_n; \mathbf{Q})$ is determined if we give $\chi(M_n)$, the Euler characteristic of M_n . We set n = 2m.

THEOREM C [2].
$$\chi(M_{2m}) = -2^{2m-2} + {2m \choose m}$$
.

REMARK 1.5. In [2], $\chi(M_{2m})$ is determined by establishing and then solving a recurrence formula for M_{2m} . As this method needs some effort, we give a more direct proof of Theorem C in this paper.

EXAMPLE 1.6. The rational Poincaré polynomials of M_4 , M_6 and M_8 are given by:

$$P_{\mathbf{Q}}(M_4, t) = 1 + t^2.$$

$$P_{\mathbf{Q}}(M_6, t) = 1 + t^2 + 5t^3 + 6t^4 + t^6.$$

$$P_{\mathbf{Q}}(M_8, t) = 1 + t^2 + 28t^3 + 8t^4 + 14t^5 + 29t^6 + 8t^8 + t^{10}.$$

Note that $M_4 = S^2$.

As an example, we will show how to determine $P_{\mathbf{Q}}(M_8,t)$ in Example 1.6. First we know $H_q(M_8;\mathbf{Q})$ ($q\geq 6$) by Theorem A. Next we can determine $H^q(M_8;\mathbf{Q})$ ($q\leq 4$) by Theorem B. For example, the fact that $H^4(M_8;\mathbf{Q})=\mathbf{Q}^8$ is proved as follows. By Theorem B, we have that $H^4(M_8;\mathbf{Q})\cong \mathrm{Ker}(\mu\colon U^4\to V^4)$. By (1.2), a basis of U^4 is $\{\alpha_i\alpha_j\ (1\leq i< j\leq 7),\alpha_if\ (1\leq i\leq 7),f^2\}$, and hence $\dim_{\mathbf{Q}}U^4=29$. By (1.4), a basis of V^4 is $\{e^2_{(\epsilon_1,\ldots,\epsilon_7)};(\epsilon_1,\ldots,\epsilon_7)\in S\}$, and hence $\dim_{\mathbf{Q}}V^4=35$. Now, since $\mu(\alpha_i)$ ($1\leq i\leq 7$) and $\mu(f)$ are described by the above basis of V^4 , we can write $\mu\colon U^4\to V^4$ as a 35×29 matrix. Then it is elementary to prove that $\mathrm{Ker}(\mu\colon U^4\to V^4)\cong \mathbf{Q}^8$. Finally we can determine $H^5(M_8;\mathbf{Q})$ by Theorem C.

REMARK 1.7. In [6], [9], $H_*(M_n; \mathbf{Q})$ is determined for odd n. In particular these groups obey Poincaré duality, and $H_q(M_n; \mathbf{Q}) = 0$ for odd q. But for even n, Example 1.6 shows that we cannot expect Poincaré duality to hold for M_n . Moreover in general, we cannot expect that $H_q(M_n; \mathbf{Q}) = 0$ for odd q.

Finally we give $H_*(\tilde{M}_n; \mathbf{Z})$.

THEOREM D. $H_*(\tilde{M}_n; \mathbf{Z})$ is a free **Z**-module and $P_{\mathbf{Q}}(\tilde{M}_n, t)$, the rational Poincaré polynomial of \tilde{M}_n , is given by

$$P_{\mathbb{Q}}(\tilde{M}_n, t) = 1 + nt^2 + \dots + \left\{ 1 + (n-1) + \binom{n-1}{2} + \dots + \binom{n-1}{\min(i, n-3-i)} \right\} t^{2i}$$

Thus \tilde{M}_n obeys Poincaré duality as expected.

This paper is organized as follows. In Section 2, we give strategies to prove Theorems A and B. Theorems A, B, C and D are proved in Sections 3, 4, 5 and 6 respectively.

Before we leave this section, we note that we can identify M_n with the moduli space of semistable configurations with respect to the action of PSL(2, \mathbb{C}). And the latter arise naturally in the theory of vector bundles and torsion free sheaves [8], [9]. Thus our main theorems give information on this theory.

In the paper [4], we will prove some new results on the topology of M_n for odd n. For example, we determine $\pi_q(M_n)$ ($q \le n-3$), then we describe M_n in the oriented cobordism ring.

2. Strategies for proofs of Theorems A and B. We set $\mathbf{e} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \mathbf{R}^3$. Recall that

 M_n is defined from the space of spatial polygons by the action of the groups of motions in \mathbf{R}^3 . Thus for $P=(a_1,a_2,\ldots,a_n)\in M_n$, we can always assume that $a_n=\mathbf{e}$. More precisely, we define C_n by

(2.1)
$$C_n = \{ P = (a_1, a_2, \dots, a_{n-1}) \in (S^2)^{n-1}; a_1 + a_2 + \dots + a_{n-1} + \mathbf{e} = 0 \}.$$

Regard S^1 as the subgroup of SO(3) consisting of elements which fix **e**. Then S^1 acts naturally on C_n , and it is clear that

$$(2.2) M_n = C_n/S^1.$$

 $P = (a_1, a_2, \dots, a_{n-1}) \in C_n$ is a singular point iff $a_i = \pm \mathbf{e}$ $(1 \le i \le n-1)$. By the same argument as in the case of M_n [5], [8], we can prove that the singular points of C_n have neighborhoods $C(S^{n-3} \times S^{n-3})$.

Note that the S^1 -action on C_n is semifree, *i.e.*, the set of the singular points is exactly the set of the fixed points, and except at the singular points, S^1 acts freely.

Let i_n : $C_n \hookrightarrow (S^2)^{n-1}$ be the inclusion (*cf.* (2.1)). We prove Theorems A and B by the following steps.

STEP 1. First we prove the following proposition.

PROPOSITION 2.3. $(i_n)_*: H_q(C_n; \mathbf{Z}) \to H_q((S^2)^{n-1}; \mathbf{Z})$ are isomorphisms for $q \le n-2$.

STEP 2. Let C_n be the space obtained from C_n by removing Int $C(S^{n-3} \times S^{n-3})$, the interior of $C(S^{n-3} \times S^{n-3})$, for every singular point. Since C_n has $\binom{2m-1}{m}$ singular points, we have

$$(2.4) C_n = C_n \cup \left(\bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times S^{n-3})\right),$$

where we set n = 2m.

Let $\bar{\imath}_n : C_n \hookrightarrow C_n$ be the inclusion:

$$(2.5) C_n \xrightarrow{\bar{\iota}_n} C_n \xrightarrow{\bar{\iota}_n} (S^2)^{n-1}$$

Then we prove that $(i_n \cdot \bar{i}_n)_* : H_q(C_n; \mathbf{Z}) \to H_q((S^2)^{n-1}; \mathbf{Z})$ are isomorphisms for $q \leq n-4$.

STEP 3. By using the Serre spectral sequence of the fibration $C_n \to C_n/S^1 \to \mathbb{C}P^{\infty}$, we calculate $H_q(C_n/S^1; \mathbb{Z})$ $(q \le n-4)$ from Step 2.

STEP 4. By using the isomorphisms

$$(2.6) H_q(M_n, \{\text{singular points}\}; \mathbf{Z}) \cong H^{2n-6-q}(\mathcal{C}_n/S^1; \mathbf{Z}),$$

we determine $H_q(M_n; \mathbf{Z})$ $(q \ge n - 2)$ from Step 3, which is Theorem A.

Next we state the strategies for the proof of Theorem B. Note that if we attach $C(S^{n-3} \times_{S^1} S^{n-3})$ to every boundary component of C_n/S^1 , then we obtain M_n :

(2.7)
$$M_n = C_n/S^1 \cup \left(\bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times_{S^1} S^{n-3})\right)$$

(cf. (2.4)).

STEP 5. From the proof of Step 3, we prove that the ring structure of $H^*(\mathcal{C}_n/S^1; \mathbf{Q})$ (* $\leq n-4$) is isomorphic to that of U. Then we identify the ring structure of $H^*(\bigcup_{\binom{2m-1}{n}} S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q})$ (* $\leq n-4$) with that of V in a suitable manner.

STEP 6. Consider the cohomology Mayer-Vietoris sequence of the pair $\{C_n/S^1, \bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times_{S^1} S^{n-3})\}$ (cf. (2.7)). Let $j_n: \bigcup_{\binom{2m-1}{m}} S^{n-3} \times_{S^1} S^{n-3} \hookrightarrow C_n/S^1$ be the inclusion. Then we prove that $(j_n)^*: H^q(C_n/S^1; \mathbf{Q}) \to H^q(\bigcup_{\binom{2m-1}{m}} S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q})$ ($q \le n-4$) is equal to $\mu: U^q \to V^q$ in Section 1, where U^q and V^q denote the subspaces of U and V consisting of elements of degree q. Thus Theorem B follows.

3. **Proof of Theorem A.** We prove Theorem A by following Steps 1–4 in Section 2.

STEP 1. For Step 1, we need to prove Proposition 2.3. We prove this proposition by the idea of [3]. Recall that we have the inclusion i_n : $C_n \hookrightarrow (S^2)^{n-1}$. We write its complement as A_n . Thus

(3.1)
$$A_n = \{(a_1, \dots, a_{n-1}) \in (S^2)^{n-1}; a_1 + \dots + a_{n-1} + \mathbf{e} \neq 0\}.$$

We define a function $f_n: A_n \longrightarrow \mathbf{R}$ by

(3.2)
$$f_n(a_1,\ldots,a_{n-1}) = -|a_1+\cdots+a_{n-1}+\mathbf{e}|^2.$$

Concerning f_n , we can prove the following Propositions 3.3 and 3.4 in the same way as in [3]. Since the calculations are easy, we omit the details.

PROPOSITION 3.3. $(a_1, ..., a_{n-1}) \in A_n$ is a critical point of f_n iff $a_i = \pm \mathbf{e}$ $(1 \le i \le n-1)$.

We try to determine the index of $H(f_n)$, the Hessian of f_n , at every critical point. We say a critical point (a_1, \ldots, a_{n-1}) is of type (k, l) if **e** appears k-times and $-\mathbf{e}$ appears l-times in (a_1, \ldots, a_{n-1}) , such that k + l = n - 1. Note that $k - l + 1 \neq 0$ by (3.1). Then we have the following:

PROPOSITION 3.4. The index of $H(f_n)$ at the critical point of type (k, l) is given by

$$\begin{cases} 2l & k > l \\ 2(k+1) & k < l-1. \end{cases}$$

We note that $k - l + 1 \neq 0$.

Now we complete the proof of Proposition 2.3. By Proposition 3.4, we see that the index of $H(f_n)$ at every critical point is less than or equal to n-2. Thus A_n has the

homotopy type of an (n-2)-dimensional CW complex. By Poincaré-Lefschetz duality $H_q((S^2)^{n-1}, \mathcal{C}_n; \mathbf{Z}) \cong H^{2n-2-q}(A_n; \mathbf{Z})$, we have $H_q((S^2)^{n-1}, \mathcal{C}_n; \mathbf{Z}) = 0$ $(q \leq n-1)$. Hence Proposition 2.3 follows.

This completes Step 1.

STEP 2. We prove the following:

Proposition 3.5.

(i)
$$H_{2i}(C_{2m}; \mathbf{Z}) \cong \mathbf{Z}^{A_{2i}} \ (0 \le i \le m-2) \ with \ A_{2i} = \binom{2m-1}{i}$$
.

(ii)
$$H_{2i+1}(C_{2m}; \mathbf{Z}) = 0 \ (0 \le i \le m-3).$$

PROOF. By Proposition 2.3, $(i_n)_*: H_q(C_n; \mathbf{Z}) \to H_q\big((S^2)^{n-1}; \mathbf{Z}\big)$ are isomorphisms for $q \leq n-2$. By applying the Mayer-Vietoris argument to the pair $\big(C_n, \bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times S^{n-3})\big), (\bar{\imath}_n)_*: H_q(C_n; \mathbf{Z}) \to H_q(C_n; \mathbf{Z})$ are isomorphisms for $q \leq n-4$. Thus $(i_n \cdot \bar{\imath}_n)_*: H_q(C_n; \mathbf{Z}) \to H_q\big((S^2)^{n-1}; \mathbf{Z}\big)$ are isomorphisms for $q \leq n-4$. Thus Proposition 3.5 follows.

This completes Step 2.

STEP 3. We prove the following:

Proposition 3.6.

(i)
$$H_{2i}(C_{2m}/S^1; \mathbf{Z}) \cong \mathbf{Z}^{A_{2i}}$$
 (0 $\leq i \leq m-2$) with $A_{2i} = \binom{2m-1}{0} + \binom{2m-1}{1} + \cdots + \binom{2m-1}{i}$.

(ii)
$$H_{2i+1}(C_{2m}/S^1; \mathbf{Z}) = 0 \ (0 \le i \le m-3).$$

PROOF. Consider the Serre spectral sequence of the fibration $C_n \to C_n/S^1 \to \mathbb{C}P^{\infty}$. By Proposition 3.5, for dimensional reasons we have $E_2^{s,t} \cong E_{\infty}^{s,t}$ $(s+t \le 2m-4)$. Hence Proposition 3.6 follows.

This completes Step 3.

STEP 4. Since $M_n = C_n/S^1 \cup \left(\bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times_{S^1} S^{n-3})\right)$ (cf. (2.7)), we have the following isomorphisms:

$$H_q(M_n, \{\text{singular points}\}; \mathbf{Z}) \cong \tilde{H}_q(M_n/\{\text{singular points}\}; \mathbf{Z})$$

$$\cong \tilde{H}_q(C_n/S^1/\partial(C_n/S^1); \mathbf{Z})$$

$$\cong H_q(C_n/S^1, \partial(C_n/S^1); \mathbf{Z})$$

$$\cong H^{2n-6-q}(C_n/S^1; \mathbf{Z}),$$

where $\partial(C_n/S^1)$ denotes the boundary of C_n/S^1 , and the fourth isomorphism is Poincaré-Lefschetz duality.

Now Theorem A follows from Proposition 3.6.

4. **Proof of Theorem B.** We prove Theorem B by Steps 5 and 6 in Section 2.

STEP 5. (A) First we give an identification of $H^*(\bigcup_{\binom{2m-1}{m}} S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q})$ (* $\leq n-4$) with V. Recall that $M_n = C_n/S^1 \cup (\bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times_{S^1} S^{n-3}))$ (cf. (2.7)), and every $C(S^{n-3} \times_{S^1} S^{n-3})$ corresponds to a singular point of M_n . A singular point of M_n is represented by some $P = (a_1, a_2, \ldots, a_{n-1}) \in (S^2)^{n-1}$ such that $a_i = \pm \mathbf{e}$ and $a_1 + \cdots + a_{n-1} + \mathbf{e} = 0$ (cf. Section 2). Set

(4.1)
$$a_i = \epsilon_i \mathbf{e} \ (1 \le i \le n-1).$$

Then $\epsilon_i = \pm 1$. Note that $a_1 + \cdots + a_{n-1} + \mathbf{e} = 0$ implies $\epsilon_1 + \cdots + \epsilon_{n-1} + 1 = 0$.

Thus every boundary component of C_n/S^1 (which is homeomorphic to $S^{n-3} \times_{S^1} S^{n-3}$) is labeled by $(\epsilon_1, \ldots, \epsilon_{n-1})$ such that $\epsilon_1 + \cdots + \epsilon_{n-1} + 1 = 0$. Since $H^2(S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q}) \cong H^2(\mathbb{C}P^{m-2}; \mathbf{Q})$, we denote the generator of the the left side by $\mathbf{e}_{(\epsilon_1, \ldots, \epsilon_{n-1})}$.

Then it is clear that $H^*(\bigcup_{\binom{2m-1}{m}} S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q})$ (* $\leq n-4$) is isomorphic to V, where V is defined in Section 1.

- (B) Next we give an identification of $H^*(\mathcal{C}_n/S^1, \mathbf{Q})$ (* $\leq n-4$) with U. First we construct the generators of $H_2(\mathcal{C}_n/S^1, \mathbf{Q})$, which we denote by $\{h_1, \ldots, h_{n-1}, y\}$.
 - (i) Construction of $\{h_1, \ldots, h_{n-1}\}$.

The proof of Proposition 3.5 shows that $(i_n \cdot \bar{\imath}_n)_*: H_2(\mathcal{C}_n; \mathbf{Q}) \to H_2((S^2)^{n-1}; \mathbf{Q})$ is an isomorphism. Denote the standard generators of $H_2((S^2)^{n-1}; \mathbf{Q})$ by $\{\sigma_1, \ldots, \sigma_{n-1}\}$. (More precisely, let $\sigma \in H_2(S^2; \mathbf{Q})$ be the canonical generator. Set $\sigma_i = 1 \times \cdots \times 1 \times \sigma \times 1 \times \cdots \times 1$, where the *i*-th element is σ .) Then set

(4.2)
$$h_i = (p_n)_* \left((i_n \cdot \bar{i}_n)_* \right)^{-1} (\sigma_i),$$

where $p_n: \mathcal{C}_n \to \mathcal{C}_n/S^1$ is the projection (cf. (4.4)).

(ii) Construction of y.

Consider the boundary component of C_n/S^1 , which corresponds to $(1, \ldots, 1, -1, \ldots, -1)$, *i.e.*, $(\epsilon_1, \ldots, \epsilon_{n-1})$ such that $\epsilon_i = +1$ $(1 \le i \le m-1)$ and $\epsilon_i = -1$ $(m \le i \le 2m-1)$. Since $H_2(S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q}) \cong H_2(\mathbf{C}P^{m-2}; \mathbf{Q})$, we denote the generator of the left side by x (cf. the definition of $\mathbf{e}_{(\epsilon_1, \ldots, \epsilon_{n-1})}$).

Let $k: S^{n-3} \times_{S^1} S^{n-3} \hookrightarrow C_n/S^1$ be the inclusion, where $S^{n-3} \times_{S^1} S^{n-3}$ denotes the boundary component which corresponds to $(1, \ldots, 1, -1, \ldots, -1)$. Set

$$(4.3) y = k_*(x)$$

(cf. (4.4)).

Now it is easy to show that $\{h_1, \ldots, h_{n-1}, y\}$ is a basis of $H_2(\mathcal{C}_n/S^1; \mathbf{Q})$. By taking the dual basis, we get a basis of $H^2(\mathcal{C}_n/S^1; \mathbf{Q})$, which we denote by $\{\alpha_1, \ldots, \alpha_{n-1}, f\}$.

Recall that the proof of Proposition 3.5 produces a S^1 -equivariant map $i_n \cdot \bar{\imath}_n$: $C_n \rightarrow (S^2)^{n-1}$ which is (n-4)-connected. Therefore, the homomorphism

(4.5)
$$H_{S^1}^*((S^2)^{n-1}; \mathbf{Q}) \xrightarrow{(i_n \cdot \bar{i}_n)^*} H_{S^1}^*(C_n; \mathbf{Q}) \cong H^*(C_n/S^1; \mathbf{Q})$$

is an isomorphism for $* \leq n-4$, where $H_{S^1}^*$ denotes equivariant cohomology. Recall that $H_{S^1}^*\left((S^2)^{n-1};\mathbf{Q}\right)$ was determined by Kirwan [7]. In our choice of generators $\alpha_1,\ldots,\alpha_{n-1}$ and f, the structure of $H_{S^1}^*\left((S^2)^{n-1};\mathbf{Q}\right)$ together with (4.5) tell us that $H^*(\mathcal{C}_n/S^1,\mathbf{Q})$ (* $\leq n-4$) is generated by $\alpha_1,\ldots,\alpha_{n-1}$ and f with the relations $\alpha_i^2=-f\alpha_i$ ($1\leq i\leq n-1$). Hence $H^*(\mathcal{C}_n/S^1,\mathbf{Q})$ (* $\leq n-4$) is isomorphic to U.

This completes Step 5.

STEP 6. Consider the Mayer-Vietoris sequence of the pair $\{C_n/S^1, \bigcup_{\binom{2^{m-1}}{m}} C(S^{n-3} \times_{S^1} S^{n-3})\}$ (cf. (2.7)). Let $j_n : \bigcup_{\binom{2^{m-1}}{m}} S^{n-3} \times_{S^1} S^{n-3} \hookrightarrow C_n/S^1$ be the inclusion. We need to know $(j_n)^* : H^q(C_n/S^1; \mathbf{Q}) \to H^q(\bigcup_{\binom{2^{m-1}}{m}} S^{n-3} \times_{S^1} S^{n-3}; \mathbf{Q})$ ($q \le n-4$). By Step 5, we can regard $(j_n)^*$ as $(j_n)^* : U \to V$. In order to describe this homomorphism of $(j_n)^* : J_n \to J_n$.

phism, it suffices to determine $(j_n)^*(\alpha_i)$ $(1 \le i \le n-1)$ and $(j_n)^*(f)$. We recall that $S = \{(\epsilon_1, \ldots, \epsilon_{n-1}); \epsilon_i = \pm 1 \ (1 \le i \le n-1), \epsilon_1 + \epsilon_2 + \cdots + \epsilon_{n-1} + 1 = 0\}$ (cf. (1.3)). Note that Theorem B follows from the next result:

Proposition 4.6.

(i) For
$$1 \le i \le m-1$$
, $(j_n)^*(\alpha_i) = -\sum_{\{(\epsilon_1, \dots, \epsilon_{n-1}) \in S; \epsilon_i = -1\}} e_{(\epsilon_1, \dots, \epsilon_{n-1})}$.

(ii) For
$$m \le i \le 2m-1$$
, $(j_n)^*(\alpha_i) = -\sum_{\{(\epsilon_1, \dots, \epsilon_{n-1}) \in S; \epsilon_i = +1\}} e_{(\epsilon_1, \dots, \epsilon_{n-1})}$.

(iii)
$$(j_n)^*(f) = \sum_{(\epsilon_1,...,\epsilon_{n-1}) \in S} e_{(\epsilon_1,...,\epsilon_{n-1})}$$
.

PROOF. Instead of proving these formulae, we prove similar formulae in $(S^2)^{n-1}$. More precisely, let S^1 act on $(S^2)^{n-1}$ in the same way as on C_n . $P = (a_1, a_2, ..., a_{n-1}) \in (S^2)^{n-1}$ is a fixed point iff $a_i = \pm \mathbf{e}$ ($1 \le i \le n-1$). We remove a small open disc around every fixed point, and denote this space by D_n . Then we have the following commutative diagram:

$$\begin{array}{ccc}
C_n & \xrightarrow{i_n \cdot \overline{i_n}} & (S^2)^{n-1} \\
& \searrow & & \\
D_n
\end{array}$$

where all arrows are the inclusions.

By the definition of α_i ($1 \leq i \leq n-1$), $f \in H^2(\mathcal{C}_n/S^1; \mathbf{Q})$ and $\mathbf{e}_{(\epsilon_1,\dots,\epsilon_{n-1})} \in H^2(\partial(\mathcal{C}_n/S^1); \mathbf{Q})$, where $\partial(\mathcal{C}_n/S^1)$ denotes the boundary of \mathcal{C}_n/S^1 , it suffices to prove Proposition 4.6(i)–(iii) in D_n/S^1 . That is, we define α_i' ($1 \leq i \leq n-1$), $f' \in H^2(D_n/S^1; \mathbf{Q})$ and $\mathbf{e}'_{(\epsilon_1,\dots,\epsilon_{n-1})} \in H^2(\partial(D_n/S^1); \mathbf{Q})$ in the same way as for $\alpha_i, f, \mathbf{e}_{(\epsilon_1,\dots,\epsilon_{n-1})}$. Then we can prove that $\alpha_i', f', \mathbf{e}'_{(\epsilon_1,\dots,\epsilon_{n-1})}$ satisfy Proposition 4.6(i)–(iii), where in this case, we shall substitute the inclusion $j_n: \partial(\mathcal{C}_n/S^1) \hookrightarrow \mathcal{C}_n/S^1$ in Proposition 4.6 with the inclusion $j_n': \partial(D_n/S^1) \hookrightarrow D_n/S^1$. (Note that every boundary component of D_n is homeomorphic to $\mathbb{C}P^{2m-2}$.)

We summarize the constructions of α'_i , f', $\mathbf{e}'_{(\epsilon_1,\dots,\epsilon_{n-1})}$ as follows (*cf.* Step 5 (A) and (B)).

(A') $\mathbf{e}'_{(\epsilon_1,\dots,\epsilon_{n-1})} \in H^2(\partial(D_n/S^1);\mathbf{Q})$ is defined to be the generator of $H^2(\mathbb{C}P^{2m-2};\mathbf{Q})$.

(B') $\alpha'_1, \ldots, \alpha'_{n-1}, f' \in H^2(D_n/S^1; \mathbf{Q})$ are defined to be the duals of $\{(p'_n)_*(\sigma_1), \ldots, (p'_n)_*(\sigma_{n-1}), y'\}$, where $p'_n: D_n \to D_n/S^1$ denotes the projection (which corresponds to the projection $p_n: \mathcal{C}_n \to \mathcal{C}_n/S^1$ in Step 5 (B)(i)). We shall regard σ_i ($1 \leq i \leq n-1$), which are defined in Step 5 (B)(i), as elements of $H_2(D_n; \mathbf{Q})$, since $H_2(D_n; \mathbf{Q}) \cong H_2(S^2)^{n-1}; \mathbf{Q}$).

y' is defined in the same way as in (4.3), *i.e.*, $y' = (k')_*(x')$, where k': $\mathbb{C}P^{2m-2} \hookrightarrow D_n/S^1$ denotes the inclusion of the boundary component which corresponds to $(1, \ldots, 1, -1, \ldots, -1)$, and $x' \in H_2(\mathbb{C}P^{2m-2}; \mathbb{Q})$ denotes the generator (*cf.* (4.7)).

(4.8)
$$\frac{D_n}{\downarrow p'_n}$$

$$CP^{2m-2}$$

Denote the dual of $\mathbf{e}'_{(\epsilon_1,\ldots,\epsilon_{n-1})} \in H^2(\partial(D_n/S^1); \mathbf{Q})$ by $v_{(\epsilon_1,\ldots,\epsilon_{n-1})} \in H_2(\partial(D_n/S^1); \mathbf{Q})$. We denote the sequence $(1,\ldots,1,-1,\ldots,-1)$, which was used in Step 5 (B)(ii), by $(\epsilon_1^0,\ldots,\epsilon_{n-1}^0)$.

Recall that we have an inclusion $j_n': \partial(D_n/S^1) \hookrightarrow D_n/S^1$ (cf. (4.8)). Now the following lemma is proved easily from the definitions of $v_{(\epsilon_1,\ldots,\epsilon_{n-1})}, (p_n')_*(\sigma_1),\ldots,(p_n')_*(\sigma_{n-1})$ and y'.

LEMMA 4.9.

$$(j'_n)_*(v_{(\epsilon_1,\dots,\epsilon_{n-1})}) = y' + \sum_{1 \leq s \leq n-1} \delta_s \{(p'_n)_*(\sigma_s)\},$$

where
$$\delta_s = \begin{cases} -1 & \epsilon_s = -\epsilon_s^0 \\ 0 & \epsilon_s = \epsilon_s^0 \end{cases}$$
.

Now by taking the dual of Lemma 4.9 we have Proposition 4.6.

This completes the proof of Theorem B.

5. **Proof of Theorem C.** By Theorem A, we know $H_q(M_n; \mathbf{Q})$ $(q \ge n - 2)$. Hence in order to determine $\chi(M_n)$, it suffices to determine $\sum_{q \le n-3} (-1)^q \dim H^q(M_n; \mathbf{Q})$.

Recall that we have an inclusion $i_n: C_n \hookrightarrow (S^2)^{n-1}$. Hence we also have an inclusion $M_n \hookrightarrow (S^2)^{n-1}/S^1$. We assume the truth of the following Propositions 5.1 and 5.2 for the moment. As in the proof of Proposition 2.3 in Section 3 Step 1, we set $A_n = (S^2)^{n-1} - C_n$.

Proposition 5.1. For $q \le 2m - 3$, we have

$$H_{c}^{q}(A_{2m}/S^{1}; \mathbf{Q}) \cong \begin{cases} \mathbf{Q}^{A_{2i}} \text{ with } A_{2i} = 2^{2m-1} - {2m-1 \choose m} & q = 2i+1 \ (1 \le i \le m-2) \\ 0 & q = 2i \ (0 \le i \le m-1) \text{ or } q = 1, \end{cases}$$

where H_c^* denotes cohomology with compact supports.

PROPOSITION 5.2. $\tilde{H}_*((S^2)^N/S^1; \mathbf{Q})$ is given by

$$\tilde{H}_q((S^2)^N/S^1; \mathbf{Q}) \cong \begin{cases} \mathbf{Q}^{b_q^N} & q = 2i+1 \ (1 \le i \le N-1) \\ 0 & otherwise, \end{cases}$$

where

$$b_q^N = \binom{N-1}{\frac{q-1}{2}} + 2\binom{N-2}{\frac{q-1}{2}} + 2^2\binom{N-3}{\frac{q-1}{2}} + \dots + 2^{\frac{2N-q-1}{2}}\binom{\frac{q-1}{2}}{\frac{q-1}{2}}.$$

PROOF OF THEOREM C. Recall the long exact sequence of cohomology with compact supports of the pair $((S^2)^{2m-1}/S^1, M_{2m})$:

$$\cdots \to H_c^q(A_{2m}/S^1; \mathbf{Q}) \to H^q((S^2)^{2m-1}/S^1; \mathbf{Q}) \to H^q(M_{2m}; \mathbf{Q})$$
$$\to H_c^{q+1}(A_{2m}/S^1; \mathbf{Q}) \to \cdots.$$

Since $H_c^{2m-2}(A_{2m}/S^1; \mathbf{Q}) = 0$ by Proposition 5.1, exactness shows that

(5.3)
$$\sum_{q \le 2m-3} (-1)^q \dim H^q(M_{2m}; \mathbf{Q}) = \sum_{q \le 2m-3} (-1)^q \dim H^q((S^2)^{2m-1}/S^1; \mathbf{Q}) - \sum_{q \le 2m-3} (-1)^q \dim H^q_c(A_{2m}/S^1; \mathbf{Q}).$$

By Proposition 5.2, we have

$$\sum_{q \le 2m-3} (-1)^q \dim H^q((S^2)^{2m-1}/S^1; \mathbf{Q})$$

$$= 1 - b_3^{2m-1} - b_5^{2m-1} - \dots - b_{2m-3}^{2m-1}$$

$$= \begin{cases} 1 - \left\{ \binom{2m-2}{1} + 2\binom{2m-3}{1} + \dots + 2^{2m-3}\binom{1}{1} \right\} \\ - \left\{ \binom{2m-2}{2} + 2\binom{2m-3}{2} + \dots + 2^{2m-4}\binom{2}{2} \right\} \\ \vdots \\ - \left\{ \binom{2m-2}{m-2} + 2\binom{2m-3}{m-2} + \dots + 2^m\binom{m-2}{m-2} \right\}.$$

While by Proposition 5.1, we have

$$\sum_{q \le 2m-3} (-1)^q \dim H_c^q(A_{2m}/S^1; \mathbf{Q}) = -(m-2) \left\{ 2^{2m-1} - \binom{2m-1}{m} \right\}.$$

Hence by (5.3), we have

(5.5)
$$\sum_{q \le 2m-3} (-1)^q \dim H^q(M_{2m}; \mathbf{Q}) = (5.4) + (m-2) \left\{ 2^{2m-1} - {2m-1 \choose m} \right\}$$
$$= -2^{2m-3} - \frac{m-4}{2} {2m-1 \choose m}.$$

On the other hand, we have

(5.6)

$$\sum_{q\geq 2m-2} (-1)^q \dim H^q(M_{2m}; \mathbf{Q}) = \sum_{i=0}^{m-2} \left\{ \binom{2m-1}{0} + \binom{2m-1}{1} + \dots + \binom{2m-1}{i} \right\}$$
$$= -2^{2m-3} + \frac{m}{2} \binom{2m-1}{m}$$

by Theorem A.

Now we have

$$\chi(M_{2m}) = (5.5) + (5.6)$$
$$= -2^{2m-2} + {2m \choose m}.$$

This completes the proof of Theorem C assuming the truth of Propositions 5.1 and 5.2.

PROOF OF PROPOSITION 5.1. As in the case of C_n , the S^1 -action on A_{2m} is semifree (cf. Section 2), and the fixed point set Σ is

$$\Sigma = \{(a_1, \dots, a_{n-1}) \in (S^2)^{n-1}; a_i = \pm \mathbf{e} \ (1 \le i \le n-1), a_1 + \dots + a_{n-1} + \mathbf{e} \ne 0\},\$$

which consists of $(2^{2m-1} - {2m-1 \choose m})$ -points. Set

$$B_{2m}=A_{2m}-\Sigma.$$

Recall that A_{2m} has the homotopy type of a 2(m-1)-dimensional CW complex (cf. Proposition 3.4). Hence the Mayer-Vietoris argument gives the following information on $H^q(B_{2m}; \mathbf{Q})$ ($q \ge 2m-1$):

(5.7)

 $H^q(B_{2m}; \mathbf{Q})$

$$\cong \begin{cases} \mathbf{Q}^{A_{2i}} \text{ with } A_{2i} = 2^{2m-1} - \binom{2m-1}{m} & q = 4m-3\\ 0 & 2m-1 \le q \le 4m-4 \text{ or } q \ge 4m-2. \end{cases}$$

Next, by the Serre spectral sequence of the fiber bundle $S^1 \to B_{2m} \to B_{2m}/S^1$, we have the following information on $H^q(B_{2m}/S^1; \mathbf{Q})$ $(q \ge 2m-1)$ from (5.7): (5.8)

 $H^q(B_{2m}/S^1;\mathbf{Q})$

$$\cong \begin{cases} \mathbf{Q}^{A_{2i}} \text{ with } A_{2i} = 2^{2m-1} - \binom{2m-1}{m} & q = 2i(m \le i \le 2m-2) \\ 0 & q \ge 2m-1 \text{ and } q \ne 2i(m \le i \le 2m-2). \end{cases}$$

Since B_{2m}/S^1 is smooth, we have by Poincaré duality $H_c^q(B_{2m}/S^1; \mathbf{Q}) \cong H_{4m-3-q}(B_{2m}/S^1; \mathbf{Q})$. Hence we have the following information on $H_c^q(B_{2m}/S^1; \mathbf{Q})$ ($q \leq 2m-2$) from (5.8):

(5.9)

$$H_c^q(B_{2m}/S^1; \mathbf{Q}) \cong \begin{cases} \mathbf{Q}^{A_{2i}} \text{ with } A_{2i} = 2^{2m-1} - {2m-1 \choose m} & q = 2i+1 \ (0 \le i \le m-2) \\ 0 & q = 2i \ (0 \le i \le m-1). \end{cases}$$

Now by using the long exact sequence of cohomology with compact supports of the pair $(A_{2m}/S^1, \Sigma)$:

$$\cdots \longrightarrow H_c^q(B_{2m}/S^1; \mathbf{Q}) \longrightarrow H_c^q(A_{2m}/S^1; \mathbf{Q}) \longrightarrow H^q(\Sigma; \mathbf{Q}) \longrightarrow H_c^{q+1}(B_{2m}/S^1; \mathbf{Q}) \longrightarrow \cdots,$$

we can prove Proposition 5.1.

This completes the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.2. We prove Proposition 5.2 by induction on N. For $P = (a_1, a_2, \ldots, a_N) \in (S^2)^N/S^1$, we can assume that $a_1^2 \ge 0$ and $a_1^3 = 0$, where we set $a_1 = \begin{pmatrix} a_1^1 \\ a_1^2 \\ a_3^2 \end{pmatrix}$. More precisely, set

$$S^{+} = \left\{ a = \begin{pmatrix} a^{1} \\ a^{2} \\ a^{3} \end{pmatrix} \in S^{2}; a^{2} \ge 0, a^{3} = 0 \right\}.$$

Set $T = S^+ \times (S^2)^{N-1}$ and let S^1 act in the obvious way on the subspaces $\{\mathbf{e}\} \times (S^2)^{N-1}$ and $\{-\mathbf{e}\} \times (S^2)^{N-1}$ of T, where \mathbf{e} is defined in Section 2. Write this equivalence relation on T by \sim . Then it is clear that $(S^2)^N/S^1 \cong T/\sim$.

Decompose T/\sim as $L^+\cup L^-$, where

$$L^{+} = \left\{ \begin{pmatrix} a_{1}^{1} \\ a_{1}^{2} \\ a_{1}^{3} \end{pmatrix} \times a_{2} \times \cdots \times a_{N-1} \in T / \sim; a_{1}^{1} \geq 0, a_{i} \in S^{2} \ (2 \leq i \leq N-1) \right\}.$$

 (L^-) is defined similarly.) Since $L^+ \cap L^-$ is homeomorphic to $(S^2)^{N-1}$, and L^\pm is homotopically equivalent to $(S^2)^{N-1}/S^1$, we can calculate $\tilde{H}_*((S^2)^N/S^1; \mathbf{Q})$ from the Mayer-Vietoris sequence of the pair $\{L^+, L^-\}$ by induction on N.

This completes the proof of Proposition 5.2, and hence also that of Theorem C.

6. Proof of Theorem D. Recall that

(6.1)
$$M_{2m} = C_n / S^1 \cup \left(\bigcup_{\binom{2m-1}{m}} C(S^{n-3} \times_{S^1} S^{n-3}) \right)$$

by (2.7), while by the definition of \tilde{M}_{2m} we have

(6.2)
$$\tilde{M}_{2m} = C_n/S^1 \cup \left(\bigcup_{\binom{2m-1}{m}} D^{n-2} \times_{S^1} S^{n-3}\right).$$

First we prove the following:

PROPOSITION 6.3. For $q \le 2m - 4$, we have

$$H_{q}(\tilde{M}_{2m}; \mathbf{Z}) \\ \cong \begin{cases} \mathbf{Z}^{A_{2i}} \text{ with } A_{2i} = {2m-1 \choose 0} + {2m-1 \choose 1} + \dots + {2m-1 \choose i} & q = 2i \ (0 \le i \le m-2) \\ 0 & q = 2i+1 \ (0 \le i \le m-3). \end{cases}$$

PROOF. By using the Serre spectral sequence of the fiber bundle $S^{2m-3} \to S^{2m-3} \times_{S^1} S^{2m-3} \to \mathbb{C}P^{m-2}$, we can easily prove that $i_*: H_q(S^{2m-3} \times_{S^1} S^{2m-3}; \mathbb{Z}) \to H_q(D^{2m-2} \times_{S^1} S^{2m-3}; \mathbb{Z})$ are isomorphisms for $q \leq 2m-4$, where $i: S^{2m-3} \times_{S^1} S^{2m-3} \hookrightarrow D^{2m-2} \times_{S^1} S^{2m-3}$ denotes the inclusion.

Consider the Mayer-Vietoris sequence of the pair $\{C_{2m}/S^1, \bigcup_{\binom{2m-1}{m}} D^{2m-2} \times_{S^1} S^{2m-3}\}$ (cf. (6.2)). The above assertion concerning i_* shows that the sequences

$$\begin{split} 0 & \longrightarrow H_q\Big(\bigcup_{\binom{2m-1}{m}} S^{2m-3} \times_{S^1} S^{2m-3}; \mathbf{Z}\Big) \\ & \longrightarrow H_q(\mathcal{C}_{2m}/S^1; \mathbf{Z}) \oplus H_q\Big(\bigcup_{\binom{2m-1}{m}} D^{2m-2} \times_{S^1} S^{2m-3}; \mathbf{Z}\Big) \longrightarrow H_q(\tilde{M}_{2m}; \mathbf{Z}) \longrightarrow 0 \end{split}$$

are split short exact sequences for $q \leq 2m-4$. Hence $H_q(\tilde{M}_{2m}; \mathbf{Z}) \cong H_q(\mathcal{C}_{2m}/S^1; \mathbf{Z})$ $(q \leq 2m-4)$.

Now Proposition 6.3 follows from Proposition 3.6.

By Proposition 6.3 together with the Poincaré duality and the universal coefficient theorem, we can determine $H_q(\tilde{M}_{2m}; \mathbf{Z})$ ($q \ge 2m-2$). We can also prove the fact that $H_{2m-3}(\tilde{M}_{2m}; \mathbf{Z})$ is torsion-free. Hence in order to complete the proof of Theorem D, we need to prove the following:

LEMMA 6.4.
$$H_{2m-3}(\tilde{M}_{2m}; \mathbf{Q}) = 0$$
.

PROOF. By (6.1), we have $\chi(M_{2m}) = \chi(C_{2m}/S^1) + \binom{2m-1}{m}$. By (6.2), we have $\chi(\tilde{M}_{2m}) = \chi(C_{2m}/S^1) + \binom{2m-1}{m}(m-1)$. Hence by using Theorem C, we have

(6.5)
$$\chi(\tilde{M}_{2m}) = -2^{2m-2} + m \binom{2m-1}{m}.$$

On the other hand, our information on $H_q(\tilde{M}_{2m}; \mathbf{Z})$ $(q \neq 2m - 3)$ tells us that

$$\sum_{q} (-1)^{q} \dim H_{q}(\tilde{M}_{2m}; \mathbf{Q})$$

$$= 2 \left[\sum_{i=0}^{m-2} \left\{ \binom{2m-1}{0} + \binom{2m-1}{1} + \dots + \binom{2m-1}{i} \right\} \right] - \dim H_{2m-3}(\tilde{M}_{2m}; \mathbf{Q})$$

$$= -2^{2m-2} + m \binom{2m-1}{m} - \dim H_{2m-3}(\tilde{M}_{2m}; \mathbf{Q}).$$

Hence we have $H_{2m-3}(\tilde{M}_{2m}; \mathbf{Q}) = 0$ by (6.5).

This completes the proof of Lemma 6.4, and hence also that of Theorem D.

ACKNOWLEDGMENTS. I would like to thank M. Tezuka for introducing the paper [9] to me. I would also like to thank the referee for giving detailed suggestions on how to improve the original paper.

REFERENCES

- A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections. Ann. of Math. 69(1959), 713–717.
- 2. Y. Kamiyama, Topology of equilateral polygon linkages. Topology Appl. 68(1996), 13–31.
- **3.** Y. Kamiyama and M. Tezuka, *Topology and geometry of equilateral polygon linkages in the Euclidean plane*. Preprint.
- **4.** Y. Kamiyama, *Remarks on the topology of spatial polygon spaces*. Preprint.
- 5. M. Kapovich and J. Millson, *The symplectic geometry of polygons in the Euclidean space*. J. Differential Geom. **44**(1996), 479–513.
- F. Kirwan, The cohomology of quotients in symplectic and algebraic geometry. Math. Notes 31, Princeton University Press, Princeton, NJ, 1984.
- 7. _____, The cohomology rings of moduli spaces of bundles over Riemann surfaces. J. Amer. Math. Soc. 5(1992), 853–906.
- 8. A. Klyachko, *Equivariant vector bundles on toric varieties*. Math. USSR Izv. 53(1989), 1001–1039 (Russian).
- 9. ______, Spatial polygons and stable configurations of points in the projective line. Algebraic geometry and its applications, Aspects of Math. 25(1994), 67–84.

Department of Mathematics University of the Ryukyus Nishihara-Cho Okinawa 903-01 Japan

email: kamiyama@sci.u-ryukyu.ac.jp