THE HOMOLOGY OF SINGULAR POLYGON SPACES

YASUHIKO KAMIYAMA

Abstract

Let M_{n} be the variety of spatial polygons $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ whose sides are vectors $a_{i} \in \mathbf{R}^{3}$ of length $\left|a_{i}\right|=1(1 \leq i \leq n)$, up to motion in \mathbf{R}^{3}. It is known that for odd n, M_{n} is a smooth manifold, while for even n, M_{n} has cone-like singular points. For odd n, the rational homology of M_{n} was determined by Kirwan and Klyachko [6], [9]. The purpose of this paper is to determine the rational homology of M_{n} for even n. For even n, let \tilde{M}_{n} be the manifold obtained from M_{n} by the resolution of the singularities. Then we also determine the integral homology of \tilde{M}_{n}.

1. Introduction. Let M_{n} be the variety of spatial polygons $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ whose sides are vectors $a_{i} \in \mathbf{R}^{3}$ of length $\left|a_{i}\right|=1(1 \leq i \leq n)$. Two polygons are identified if they differ only by motions in \mathbf{R}^{3}. The sum of the vectors is assumed to be zero:

$$
\begin{equation*}
a_{1}+a_{2}+\cdots+a_{n}=0 \tag{1.1}
\end{equation*}
$$

It is known that M_{n} admits a Kähler structure such that the complex dimension of M_{n} is $n-3$. For odd n, M_{n} has no singular points. For even $n, P=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a singular point iff all the $a_{i}(1 \leq i \leq n)$ lie on a line in \mathbf{R}^{3} through O [2], [5], [6], [9]. Such singular points are cone-like singularities and have neighborhoods $C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)$, where C denotes the cone and S^{1} acts on both copies of S^{n-3} by complex multiplication [6], [9].

For odd $n, H_{*}\left(M_{n} ; \mathbf{Q}\right)$, the rational homology of M_{n}, was determined by Kirwan and Klyachko [6], [9]. Their strategies are different, but both use theorems in symplectic geometry. Unfortunately, their methods cannot apply to M_{n} for even n, because of the singular points of M_{n}.

Thus the purposes of this paper are (a) and (b) below. For the rest of this paper, we always assume n to be even, and sometimes set $n=2 m$.
(a) We determine $H_{*}\left(M_{n} ; \mathbf{Q}\right)$. Actually we can also determine $H_{q}\left(M_{n} ; \mathbf{Z}\right)(q \geq n-2)$.
(b) Let \tilde{M}_{n} be the manifold obtained from M_{n} by the resolution of the singularities. That is, for every singular point of M_{n}, replace $C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)$ by $D^{n-2} \times_{S^{1}} S^{n-3}$. Then we determine $H_{*}\left(\tilde{M}_{n} ; \mathbf{Z}\right)$.

Our results are as follows. For $H_{*}\left(M_{n} ; \mathbf{Q}\right)$, we begin by proving the following:
THEOREM A. The groups $H_{q}\left(M_{n} ; \mathbf{Z}\right)(q \geq n-2)$ are given by:
(i) $H_{2 i+1}\left(M_{n} ; \mathbf{Z}\right)=0(i \geq m-1)$.

[^0](ii) $H_{2 i}\left(M_{n} ; \mathbf{Z}\right) \cong \mathbf{Z}^{A_{2 i}}(i \geq m-1)$ with $A_{2 i}=\binom{2 m-1}{0}+\binom{2 m-1}{1}+\cdots+\binom{2 m-1}{2 m-3-i}$, where $n=2 m,\binom{a}{b}$ denotes the binomial coefficient, and $\mathbf{Z}^{A_{2 i}}$ denotes the $A_{2 i}$-fold direct sum of \mathbf{Z}.

Next we determine the groups $H_{q}\left(M_{n} ; \mathbf{Q}\right)(1 \leq q \leq n-4)$, which are isomorphic to $H^{q}\left(M_{n} ; \mathbf{Q}\right)$. In order to state the result, we define algebras U, V and a map of algebras $\mu: U \rightarrow V$ as follows. Let U be the algebra over \mathbf{Q} generated by $\alpha_{1}, \ldots, \alpha_{n-1}$ and f, of degree two, subject to the relations $\alpha_{i}^{2}=-f \alpha_{i}$ for $1 \leq i \leq n-1$:

$$
\begin{equation*}
U=\mathbf{Q}\left[\alpha_{1}, \ldots, \alpha_{n-1}, f\right] /\left(\alpha_{i}^{2}=-f \alpha_{i}\right), \quad \operatorname{deg} \alpha_{i}=\operatorname{deg} f=2 \tag{1.2}
\end{equation*}
$$

Next we set

$$
\begin{equation*}
S=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) ; \epsilon_{i}= \pm 1(1 \leq i \leq n-1), \epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n-1}+1=0\right\} \tag{1.3}
\end{equation*}
$$

Thus S consists of $\binom{2 m-1}{m}$-elements. (Recall that $n=2 m$.) For each $\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S$, we denote by $\mathbf{Q}\left[e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}\right]$ a polynomial algebra on one generator $e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$ which has degree two. Then we set

$$
\begin{equation*}
V=\bigoplus_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S} \mathbf{Q}\left[e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}\right] \tag{1.4}
\end{equation*}
$$

Finally we define a map of algebras $\mu: U \longrightarrow V$. In order to do so, it suffices to give $\mu\left(\alpha_{i}\right)(1 \leq i \leq n-1)$ and $\mu(f)$.
(i) For $1 \leq i \leq m-1$, we set

$$
\mu\left(\alpha_{i}\right)=-\sum_{\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S ; \epsilon_{i}=-1\right\}} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)} .
$$

(ii) For $m \leq i \leq 2 m-1$, we set

$$
\mu\left(\alpha_{i}\right)=-\sum_{\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S ; \epsilon_{i}=+1\right\}} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)} .
$$

(iii) We set

$$
\mu(f)=\sum_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}
$$

Now $H^{q}\left(M_{n} ; \mathbf{Q}\right)(1 \leq q \leq n-4)$ are given by the following:
THEOREM B. The map $\mu: U \rightarrow V$ is a morphism of algebras and one has

$$
\begin{gathered}
H^{2 i}\left(M_{n} ; \mathbf{Q}\right) \cong \operatorname{Ker}\left(\mu: U^{2 i} \rightarrow V^{2 i}\right)(2 \leq 2 i \leq n-4), \\
H^{2 i+1}\left(M_{n} ; \mathbf{Q}\right) \cong \operatorname{Coker}\left(\mu: U^{2 i} \rightarrow V^{2 i}\right)(1 \leq 2 i+1<n-4),
\end{gathered}
$$

where U^{q} denotes the subspace of U consisting of elements of degree q.
Theorems A and B give $H_{q}\left(M_{n} ; \mathbf{Q}\right)(q \neq n-3) . H_{n-3}\left(M_{n} ; \mathbf{Q}\right)$ is determined if we give $\chi\left(M_{n}\right)$, the Euler characteristic of M_{n}. We set $n=2 m$.

THEOREM C [2]. $\quad \chi\left(M_{2 m}\right)=-2^{2 m-2}+\binom{2 m}{m}$.
REMARK 1.5. In [2], $\chi\left(M_{2 m}\right)$ is determined by establishing and then solving a recurrence formula for $M_{2 m}$. As this method needs some effort, we give a more direct proof of Theorem C in this paper.

EXAMPLE 1.6. The rational Poincaré polynomials of M_{4}, M_{6} and M_{8} are given by:

$$
\begin{gathered}
P_{\mathbf{Q}}\left(M_{4}, t\right)=1+t^{2} \\
P_{\mathbf{Q}}\left(M_{6}, t\right)=1+t^{2}+5 t^{3}+6 t^{4}+t^{6} \\
P_{\mathbf{Q}}\left(M_{8}, t\right)=1+t^{2}+28 t^{3}+8 t^{4}+14 t^{5}+29 t^{6}+8 t^{8}+t^{10}
\end{gathered}
$$

Note that $M_{4}=S^{2}$.
As an example, we will show how to determine $P_{\mathbf{Q}}\left(M_{8}, t\right)$ in Example 1.6. First we know $H_{q}\left(M_{8} ; \mathbf{Q}\right)(q \geq 6)$ by Theorem A. Next we can determine $H^{q}\left(M_{8} ; \mathbf{Q}\right)(q \leq 4)$ by Theorem B. For example, the fact that $H^{4}\left(M_{8} ; \mathbf{Q}\right)=\mathbf{Q}^{8}$ is proved as follows. By Theorem B, we have that $H^{4}\left(M_{8} ; \mathbf{Q}\right) \cong \operatorname{Ker}\left(\mu: U^{4} \rightarrow V^{4}\right)$. By (1.2), a basis of U^{4} is $\left\{\alpha_{i} \alpha_{j}(1 \leq i<j \leq 7), \alpha_{i} f(1 \leq i \leq 7), f^{2}\right\}$, and hence $\operatorname{dim}_{\mathbf{Q}} U^{4}=29$. By (1.4), a basis of V^{4} is $\left\{e_{\left(\epsilon_{1}, \ldots, \epsilon_{7}\right)}^{2} ;\left(\epsilon_{1}, \ldots, \epsilon_{7}\right) \in S\right\}$, and hence $\operatorname{dim}_{\mathbf{Q}} V^{4}=35$. Now, since $\mu\left(\alpha_{i}\right)$ $(1 \leq i \leq 7)$ and $\mu(f)$ are described by the above basis of V^{4}, we can write $\mu: U^{4} \rightarrow V^{4}$ as a 35×29 matrix. Then it is elementary to prove that $\operatorname{Ker}\left(\mu: U^{4} \rightarrow V^{4}\right) \cong \mathbf{Q}^{8}$. Finally we can determine $H^{5}\left(M_{8} ; \mathbf{Q}\right)$ by Theorem C.

REMARK 1.7. In [6], [9], $H_{*}\left(M_{n} ; \mathbf{Q}\right)$ is determined for odd n. In particular these groups obey Poincaré duality, and $H_{q}\left(M_{n} ; \mathbf{Q}\right)=0$ for odd q. But for even n, Example 1.6 shows that we cannot expect Poincaré duality to hold for M_{n}. Moreover in general, we cannot expect that $H_{q}\left(M_{n} ; \mathbf{Q}\right)=0$ for odd q.

Finally we give $H_{*}\left(\tilde{M}_{n} ; \mathbf{Z}\right)$.
TheOrem D. $\quad H_{*}\left(\tilde{M}_{n} ; \mathbf{Z}\right)$ is a free \mathbf{Z}-module and $P_{\mathbf{Q}}\left(\tilde{M}_{n}, t\right)$, the rational Poincaré polynomial of \tilde{M}_{n}, is given by

$$
\begin{aligned}
& P_{\mathbf{Q}}\left(\tilde{M}_{n}, t\right)=1+n t^{2}+\cdots+\left\{1+(n-1)+\binom{n-1}{2}+\cdots+\binom{n-1}{\min (i, n-3-i)}\right\} t^{2 i} \\
&+\cdots+t^{2 n-6}
\end{aligned}
$$

Thus \tilde{M}_{n} obeys Poincaré duality as expected.
This paper is organized as follows. In Section 2, we give strategies to prove Theorems A and B. Theorems A, B, C and D are proved in Sections 3, 4, 5 and 6 respectively.

Before we leave this section, we note that we can identify M_{n} with the moduli space of semistable configurations with respect to the action of $\operatorname{PSL}(2, \mathbf{C})$. And the latter arise naturally in the theory of vector bundles and torsion free sheaves [8], [9]. Thus our main theorems give information on this theory.

In the paper [4], we will prove some new results on the topology of M_{n} for odd n. For example, we determine $\pi_{q}\left(M_{n}\right)(q \leq n-3)$, then we describe M_{n} in the oriented cobordism ring.
2. Strategies for proofs of Theorems \mathbf{A} and \mathbf{B}. We set $\mathbf{e}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \in \mathbf{R}^{3}$. Recall that M_{n} is defined from the space of spatial polygons by the action of the groups of motions in \mathbf{R}^{3}. Thus for $P=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in M_{n}$, we can always assume that $a_{n}=\mathbf{e}$. More precisely, we define \mathcal{C}_{n} by

$$
\begin{equation*}
\mathcal{C}_{n}=\left\{P=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \in\left(S^{2}\right)^{n-1} ; a_{1}+a_{2}+\cdots+a_{n-1}+\mathbf{e}=0\right\} \tag{2.1}
\end{equation*}
$$

Regard S^{1} as the subgroup of $\mathrm{SO}(3)$ consisting of elements which fix e. Then S^{1} acts naturally on \mathcal{C}_{n}, and it is clear that

$$
\begin{equation*}
M_{n}=C_{n} / S^{1} \tag{2.2}
\end{equation*}
$$

$P=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \in \mathcal{C}_{n}$ is a singular point iff $a_{i}= \pm \mathbf{e}(1 \leq i \leq n-1)$. By the same argument as in the case of M_{n} [5], [8], we can prove that the singular points of \mathcal{C}_{n} have neighborhoods $C\left(S^{n-3} \times S^{n-3}\right)$.

Note that the S^{1}-action on \mathcal{C}_{n} is semifree, i.e., the set of the singular points is exactly the set of the fixed points, and except at the singular points, S^{1} acts freely.

Let $i_{n}: \mathcal{C}_{n} \hookrightarrow\left(S^{2}\right)^{n-1}$ be the inclusion ($c f .(2.1)$). We prove Theorems A and B by the following steps.

STEP 1. First we prove the following proposition.
PROPOSITION 2.3. $\quad\left(i_{n}\right)_{*}: H_{q}\left(\mathcal{C}_{n} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq$ $n-2$.

STEP 2. Let $\overline{\mathcal{C}}_{n}$ be the space obtained from \mathcal{C}_{n} by removing Int $C\left(S^{n-3} \times S^{n-3}\right)$, the interior of $C\left(S^{n-3} \times S^{n-3}\right)$, for every singular point. Since \mathcal{C}_{n} has $\binom{2 m-1}{m}$ singular points, we have

$$
\begin{equation*}
\mathcal{C}_{n}=\bar{C}_{n} \cup\left(\underset{\substack{(2 m-1 \\ m}}{ } C\left(S^{n-3} \times S^{n-3}\right)\right) \tag{2.4}
\end{equation*}
$$

where we set $n=2 m$.
Let $\bar{i}_{n}: \overline{\mathcal{C}}_{n} \hookrightarrow \mathcal{C}_{n}$ be the inclusion:

$$
\begin{equation*}
\bar{C}_{n} \xrightarrow{\bar{i}_{n}} C_{n} \xrightarrow{i_{n}}\left(S^{2}\right)^{n-1} \tag{2.5}
\end{equation*}
$$

Then we prove that $\left(i_{n} \cdot \bar{v}_{n}\right)_{*}: H_{q}\left(\bar{C}_{n} ; \mathbf{Z}\right) \longrightarrow H_{q}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq n-4$.
STEP 3. By using the Serre spectral sequence of the fibration $\overline{\mathcal{C}}_{n} \rightarrow \overline{\mathcal{C}}_{n} / S^{1} \rightarrow \mathbf{C} P^{\infty}$, we calculate $H_{q}\left(\bar{C}_{n} / S^{1} ; \mathbf{Z}\right)(q \leq n-4)$ from Step 2.

STEP 4. By using the isomorphisms

$$
\begin{equation*}
H_{q}\left(M_{n},\{\text { singular points }\} ; \mathbf{Z}\right) \cong H^{2 n-6-q}\left(\bar{C}_{n} / S^{1} ; \mathbf{Z}\right) \tag{2.6}
\end{equation*}
$$

we determine $H_{q}\left(M_{n} ; \mathbf{Z}\right)(q \geq n-2)$ from Step 3 , which is Theorem A.

Next we state the strategies for the proof of Theorem B. Note that if we attach $C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)$ to every boundary component of $\overline{\mathcal{C}}_{n} / S^{1}$, then we obtain M_{n} :

$$
\begin{equation*}
M_{n}=\bar{C}_{n} / S^{1} \cup\left(\bigcup_{\substack{2 m-1 \\ m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right) \tag{2.7}
\end{equation*}
$$

(cf. (2.4)).
STEP 5. From the proof of Step 3, we prove that the ring structure of $H^{*}\left(\overline{\mathcal{C}}_{n} / S^{1} ; \mathbf{Q}\right)$ $(* \leq n-4)$ is isomorphic to that of U. Then we identify the ring structure of $H^{*}\left(\bigcup_{\binom{2 m-1}{m}} S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right)(* \leq n-4)$ with that of V in a suitable manner.

STEP 6. Consider the cohomology Mayer-Vietoris sequence of the pair $\left\{\overline{\mathcal{C}}_{n} / S^{1}, \bigcup_{\substack{(2 m-1 \\ m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right\}\left(c f\right.$. (2.7)). Let $j_{n}: \bigcup_{\binom{2 m-1}{m}} S^{n-3} \times_{S^{1}} S^{n-3} \hookrightarrow \overline{\mathcal{C}}_{n} / S^{1}$ be the inclusion. Then we prove that $\left(j_{n}\right)^{*}: H^{q}\left(\bar{C}_{n} / S^{1} ; \mathbf{Q}\right) \rightarrow H^{q}\left(\bigcup_{\left({ }^{2 m-1}\right)} S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right)$ $(q \leq n-4)$ is equal to $\mu: U^{q} \longrightarrow V^{q}$ in Section 1 , where U^{q} and V^{q} denote the subspaces of U and V consisting of elements of degree q. Thus Theorem B follows.
3. Proof of Theorem A. We prove Theorem A by following Steps 1-4 in Section 2.

Step 1. For Step 1, we need to prove Proposition 2.3. We prove this proposition by the idea of [3]. Recall that we have the inclusion $i_{n}: \mathcal{C}_{n} \hookrightarrow\left(S^{2}\right)^{n-1}$. We write its complement as A_{n}. Thus

$$
\begin{equation*}
A_{n}=\left\{\left(a_{1}, \ldots, a_{n-1}\right) \in\left(S^{2}\right)^{n-1} ; a_{1}+\cdots+a_{n-1}+\mathbf{e} \neq 0\right\} \tag{3.1}
\end{equation*}
$$

We define a function $f_{n}: A_{n} \longrightarrow \mathbf{R}$ by

$$
\begin{equation*}
f_{n}\left(a_{1}, \ldots, a_{n-1}\right)=-\left|a_{1}+\cdots+a_{n-1}+\mathbf{e}\right|^{2} \tag{3.2}
\end{equation*}
$$

Concerning f_{n}, we can prove the following Propositions 3.3 and 3.4 in the same way as in [3]. Since the calculations are easy, we omit the details.

Proposition 3.3. $\quad\left(a_{1}, \ldots, a_{n-1}\right) \in A_{n}$ is a critical point of f_{n} iff $a_{i}= \pm \mathbf{e}(1 \leq i \leq$ $n-1$).

We try to determine the index of $H\left(f_{n}\right)$, the Hessian of f_{n}, at every critical point. We say a critical point $\left(a_{1}, \ldots, a_{n-1}\right)$ is of type (k, l) if \mathbf{e} appears k-times and - \mathbf{e} appears l-times in $\left(a_{1}, \ldots, a_{n-1}\right)$, such that $k+l=n-1$. Note that $k-l+1 \neq 0$ by (3.1). Then we have the following:

Proposition 3.4. The index of $H\left(f_{n}\right)$ at the critical point of type (k, l) is given by

$$
\begin{cases}2 l & k>l \\ 2(k+1) & k<l-1\end{cases}
$$

We note that $k-l+1 \neq 0$.
Now we complete the proof of Proposition 2.3. By Proposition 3.4, we see that the index of $H\left(f_{n}\right)$ at every critical point is less than or equal to $n-2$. Thus A_{n} has the
homotopy type of an $(n-2)$-dimensional CW complex. By Poincaré-Lefschetz duality $H_{q}\left(\left(S^{2}\right)^{n-1}, \mathcal{C}_{n} ; \mathbf{Z}\right) \cong H^{2 n-2-q}\left(A_{n} ; \mathbf{Z}\right)$, we have $H_{q}\left(\left(S^{2}\right)^{n-1}, \mathcal{C}_{n} ; \mathbf{Z}\right)=0(q \leq n-1)$. Hence Proposition 2.3 follows.

This completes Step 1.
STEP 2. We prove the following:
PROPOSITION 3.5.
(i) $H_{2 i}\left(\overline{\mathcal{C}}_{2 m} ; \mathbf{Z}\right) \cong \mathbf{Z}^{A_{2 i}}(0 \leq i \leq m-2)$ with $A_{2 i}=\binom{2 m-1}{i}$.
(ii) $H_{2 i+1}\left(\bar{C}_{2 m} ; \mathbf{Z}\right)=0(0 \leq i \leq m-3)$.

Proof. By Proposition 2.3, $\left(i_{n}\right)_{*}: H_{q}\left(\mathcal{C}_{n} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq n-2$. By applying the Mayer-Vietoris argument to the pair $\left(\overline{\mathcal{C}}_{n}, \cup_{\left(\begin{array}{c}(2 m-1 \\ m\end{array}\right.} C\left(S^{n-3} \times S^{n-3}\right)\right),\left(\overline{(}_{n}\right)_{*}: H_{q}\left(\overline{\mathcal{C}}_{n} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\mathcal{C}_{n} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq$ $n-4$. Thus $\left(i_{n} \cdot \bar{l}_{n}\right)_{*}: H_{q}\left(\bar{C}_{n} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq n-4$. Thus Proposition 3.5 follows.

This completes Step 2.
STEP 3. We prove the following:
PROPOSITION 3.6.
(i) $H_{2 i}\left(\overline{\mathcal{C}}_{2 m} / S^{1} ; \mathbf{Z}\right) \cong \mathbf{Z}^{A_{2 i}}(0 \leq i \leq m-2)$ with $A_{2 i}=\binom{2 m-1}{0}+\binom{2 m-1}{1}+\cdots$ $+\binom{2 m-1}{i}$.
(ii) $H_{2 i+1}\left(\overline{\mathcal{C}}_{2 m} / S^{1} ; \mathbf{Z}\right)=0(0 \leq i \leq m-3)$.

Proof. Consider the Serre spectral sequence of the fibration $\overline{\mathcal{C}}_{n} \rightarrow \overline{\mathcal{C}}_{n} / S^{1} \rightarrow \mathbf{C} P^{\infty}$. By Proposition 3.5, for dimensional reasons we have $E_{2}^{s, t} \cong E_{\infty}^{s, t}(s+t \leq 2 m-4)$. Hence Proposition 3.6 follows.

This completes Step 3.
STEP 4. Since $M_{n}=\bar{C}_{n} / S^{1} \cup\left(\bigcup_{\binom{2 m-1}{m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right)$ (cf. (2.7)), we have the following isomorphisms:

$$
\begin{aligned}
H_{q}\left(M_{n},\{\text { singular points }\} ; \mathbf{Z}\right) & \cong \tilde{H}_{q}\left(M_{n} /\{\text { singular points }\} ; \mathbf{Z}\right) \\
& \cong \tilde{H}_{q}\left(\overline{\mathcal{C}}_{n} / S^{1} / \partial\left(\bar{C}_{n} / S^{1}\right) ; \mathbf{Z}\right) \\
& \cong H_{q}\left(\bar{C}_{n} / S^{1}, \partial\left(\bar{C}_{n} / S^{1}\right) ; \mathbf{Z}\right) \\
& \cong H^{2 n-6-q}\left(\bar{C}_{n} / S^{1} ; \mathbf{Z}\right)
\end{aligned}
$$

where $\partial\left(\overline{\mathcal{C}}_{n} / S^{1}\right)$ denotes the boundary of $\overline{\mathcal{C}}_{n} / S^{1}$, and the fourth isomorphism is PoincaréLefschetz duality.

Now Theorem A follows from Proposition 3.6.
4. Proof of Theorem B. We prove Theorem B by Steps 5 and 6 in Section 2.

STEP 5. (A) First we give an identification of $H^{*}\left(\bigcup_{\binom{2 m-1}{m}} S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right)(* \leq$ $n-4)$ with V. Recall that $M_{n}=\bar{C}_{n} / S^{1} \cup\left(\bigcup_{\substack{2 m-1 \\ m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right)(c f$. (2.7)), and every $C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)$ corresponds to a singular point of M_{n}. A singular point of M_{n} is represented by some $P=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \in\left(S^{2}\right)^{n-1}$ such that $a_{i}= \pm \mathbf{e}$ and $a_{1}+\cdots+$ $a_{n-1}+\mathbf{e}=0$ (cf. Section 2). Set

$$
\begin{equation*}
a_{i}=\epsilon_{i} \mathbf{e}(1 \leq i \leq n-1) \tag{4.1}
\end{equation*}
$$

Then $\epsilon_{i}= \pm 1$. Note that $a_{1}+\cdots+a_{n-1}+\mathbf{e}=0$ implies $\epsilon_{1}+\cdots+\epsilon_{n-1}+1=0$.
Thus every boundary component of $\overline{\mathcal{C}}_{n} / S^{1}$ (which is homeomorphic to $S^{n-3} \times_{S^{1}} S^{n-3}$) is labeled by $\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)$ such that $\epsilon_{1}+\cdots+\epsilon_{n-1}+1=0$. Since $H^{2}\left(S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right) \cong$ $H^{2}\left(\mathbf{C} P^{m-2} ; \mathbf{Q}\right)$, we denote the generator of the the left side by $\mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$.

Then it is clear that $H^{*}\left(\bigcup_{\substack{(2 m-1 \\ m}} S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right)(* \leq n-4)$ is isomorphic to V, where V is defined in Section 1.
(B) Next we give an identification of $H^{*}\left(\bar{C}_{n} / S^{1}, \mathbf{Q}\right)(* \leq n-4)$ with U. First we construct the generators of $H_{2}\left(\bar{C}_{n} / S^{1}, \mathbf{Q}\right)$, which we denote by $\left\{h_{1}, \ldots, h_{n-1}, y\right\}$.
(i) Construction of $\left\{h_{1}, \ldots, h_{n-1}\right\}$.

The proof of Proposition 3.5 shows that $\left(i_{n} \cdot \bar{\imath}_{n}\right)_{*}: H_{2}\left(\bar{C}_{n} ; \mathbf{Q}\right) \rightarrow H_{2}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right)$ is an isomorphism. Denote the standard generators of $H_{2}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right)$ by $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$. (More precisely, let $\sigma \in H_{2}\left(S^{2} ; \mathbf{Q}\right)$ be the canonical generator. Set $\sigma_{i}=1 \times \cdots \times 1 \times$ $\sigma \times 1 \times \cdots \times 1$, where the i-th element is σ.) Then set

$$
\begin{equation*}
h_{i}=\left(p_{n}\right)_{*}\left(\left(i_{n} \cdot \bar{i}_{n}\right)_{*}\right)^{-1}\left(\sigma_{i}\right), \tag{4.2}
\end{equation*}
$$

where $p_{n}: \overline{\mathcal{C}}_{n} \rightarrow \overline{\mathcal{C}}_{n} / S^{1}$ is the projection (cf. (4.4)).
(ii) Construction of y.

Consider the boundary component of $\overline{\mathcal{C}}_{n} / S^{1}$, which corresponds to $(1, \ldots, 1,-1, \ldots$, $-1)$, i.e., $\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)$ such that $\epsilon_{i}=+1(1 \leq i \leq m-1)$ and $\epsilon_{i}=-1(m \leq i \leq 2 m-1)$. Since $H_{2}\left(S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right) \cong H_{2}\left(\mathbf{C} P^{m-2} ; \mathbf{Q}\right)$, we denote the generator of the left side by x (cf. the definition of $\left.\mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}\right)$.

Let $k: S^{n-3} \times_{S^{1}} S^{n-3} \hookrightarrow \overline{\mathcal{C}}_{n} / S^{1}$ be the inclusion, where $S^{n-3} \times_{S^{1}} S^{n-3}$ denotes the boundary component which corresponds to $(1, \ldots, 1,-1, \ldots,-1)$. Set

$$
\begin{equation*}
y=k_{*}(x) \tag{4.3}
\end{equation*}
$$

(cf. (4.4)).

$$
\begin{align*}
& \bar{C}_{n} \xrightarrow{\bar{i}_{n}} \quad \mathcal{C}_{n} \\
& p_{n} \downarrow \tag{4.4}
\end{align*}
$$

Now it is easy to show that $\left\{h_{1}, \ldots, h_{n-1}, y\right\}$ is a basis of $H_{2}\left(\bar{C}_{n} / S^{1} ; \mathbf{Q}\right)$. By taking the dual basis, we get a basis of $H^{2}\left(\bar{C}_{n} / S^{1} ; \mathbf{Q}\right)$, which we denote by $\left\{\alpha_{1}, \ldots, \alpha_{n-1}, f\right\}$.

Recall that the proof of Proposition 3.5 produces a S^{1}-equivariant map $i_{n} \cdot \bar{\imath}_{n}: \bar{C}_{n} \longrightarrow$ $\left(S^{2}\right)^{n-1}$ which is $(n-4)$-connected. Therefore, the homomorphism

$$
\begin{equation*}
H_{S^{1}}^{*}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right) \xrightarrow{\left(i_{n} \cdot \bar{\tau}_{n}\right)^{*}} H_{S^{1}}^{*}\left(\bar{C}_{n} ; \mathbf{Q}\right) \cong H^{*}\left(\bar{C}_{n} / S^{1} ; \mathbf{Q}\right) \tag{4.5}
\end{equation*}
$$

is an isomorphism for $* \leq n-4$, where $H_{S^{1}}^{*}$ denotes equivariant cohomology. Recall that $H_{S^{1}}^{*}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right)$ was determined by Kirwan [7]. In our choice of generators $\alpha_{1}, \ldots, \alpha_{n-1}$ and f, the structure of $H_{S^{1}}^{*}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right)$ together with (4.5) tell us that $H^{*}\left(\overline{\mathcal{C}}_{n} / S^{1}, \mathbf{Q}\right)(* \leq$ $n-4)$ is generated by $\alpha_{1}, \ldots, \alpha_{n-1}$ and f with the relations $\alpha_{i}^{2}=-f \alpha_{i}(1 \leq i \leq n-1)$. Hence $H^{*}\left(\bar{C}_{n} / S^{1}, \mathbf{Q}\right)(* \leq n-4)$ is isomorphic to U.

This completes Step 5.
STEP 6. Consider the Mayer-Vietoris sequence of the pair $\left\{\bar{C}_{n} / S^{1}\right.$, $\left.\bigcup_{\substack{2 m-1 \\ m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right\}\left(c f\right.$. (2.7)). Let $j_{n}: \bigcup_{\substack{\left(\begin{array}{c}m-1 \\ m\end{array}\right)}} S^{n-3} \times_{S^{1}} S^{n-3} \hookrightarrow \overline{\mathcal{C}}_{n} / S^{1}$ be the inclusion. We need to know $\left(j_{n}\right)^{*}: H^{q}\left(\bar{C}_{n} / S^{1} ; \mathbf{Q}\right) \rightarrow H^{q}\left(\bigcup_{\binom{2 m-1}{m}} S^{n-3} \times_{S^{1}} S^{n-3} ; \mathbf{Q}\right)(q \leq n-4)$.

By Step 5, we can regard $\left(j_{n}\right)^{*}$ as $\left(j_{n}\right)^{*}: U \longrightarrow V$. In order to describe this homomorphism, it suffices to determine $\left(j_{n}\right)^{*}\left(\alpha_{i}\right)(1 \leq i \leq n-1)$ and $\left(j_{n}\right)^{*}(f)$. We recall that $S=$ $\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) ; \epsilon_{i}= \pm 1(1 \leq i \leq n-1), \epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n-1}+1=0\right\}$ (cf. (1.3)). Note that Theorem B follows from the next result:

PROPOSITION 4.6.
(i) For $1 \leq i \leq m-1,\left(j_{n}\right)^{*}\left(\alpha_{i}\right)=-\Sigma_{\left\{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S ; \epsilon_{i}=-1\right\}} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$.
(ii) For $m \leq i \leq 2 m-1,\left(j_{n}\right)^{*}\left(\alpha_{i}\right)=-\Sigma_{\left\{\left(\epsilon_{1}, \ldots ., \epsilon_{n-1}\right) \in S ; \epsilon_{i}=+1\right\}} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$.
(iii) $\left(j_{n}\right)^{*}(f)=\Sigma_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in S} e_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$.

PROOF. Instead of proving these formulae, we prove similar formulae in $\left(S^{2}\right)^{n-1}$. More precisely, let S^{1} act on $\left(S^{2}\right)^{n-1}$ in the same way as on $\mathcal{C}_{n} . P=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \in$ $\left(S^{2}\right)^{n-1}$ is a fixed point iff $a_{i}= \pm \mathbf{e}(1 \leq i \leq n-1)$. We remove a small open disc around every fixed point, and denote this space by $\overline{\mathcal{D}}_{n}$. Then we have the following commutative diagram:

where all arrows are the inclusions.
By the definition of $\alpha_{i}(1 \leq i \leq n-1), f \in H^{2}\left(\overline{\mathcal{C}}_{n} / S^{1} ; \mathbf{Q}\right)$ and $\mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)} \in$ $H^{2}\left(\partial\left(\bar{C}_{n} / S^{1}\right) ; \mathbf{Q}\right)$, where $\partial\left(\overline{\mathcal{C}}_{n} / S^{1}\right)$ denotes the boundary of \bar{C}_{n} / S^{1}, it suffices to prove Proposition 4.6(i)-(iii) in $\overline{\mathcal{D}}_{n} / S^{1}$. That is, we define $\alpha_{i}^{\prime}(1 \leq i \leq n-1)$, $f^{\prime} \in$ $H^{2}\left(\overline{\mathcal{D}}_{n} / S^{1} ; \mathbf{Q}\right)$ and $\mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}^{\prime} \in H^{2}\left(\partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) ; \mathbf{Q}\right)$ in the same way as for $\alpha_{i}, f, \mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}$. Then we can prove that $\alpha_{i}^{\prime}, f^{\prime}, \mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}^{\prime}$ satisfy Proposition 4.6(i)-(iii), where in this case, we shall substitute the inclusion j_{n} : $\partial\left(\bar{C}_{n} / S^{1}\right) \hookrightarrow \bar{C}_{n} / S^{1}$ in Proposition 4.6 with the inclusion $j_{n}^{\prime}: \partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) \hookrightarrow \overline{\mathcal{D}}_{n} / S^{1}$. (Note that every boundary component of $\overline{\mathcal{D}}_{n}$ is homeomorphic to $\mathbf{C} P^{2 m-2}$.)

We summarize the constructions of $\alpha_{i}^{\prime}, f^{\prime}, \mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}^{\prime}$ as follows (cf. Step 5 (A) and (B)). $\left(\mathrm{A}^{\prime}\right) \mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}^{\prime} \in H^{2}\left(\partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) ; \mathbf{Q}\right)$ is defined to be the generator of $H^{2}\left(\mathbf{C} P^{2 m-2} ; \mathbf{Q}\right)$.
$\left(\mathrm{B}^{\prime}\right) \alpha_{1}^{\prime}, \ldots, \alpha_{n-1}^{\prime}, f^{\prime} \in H^{2}\left(\overline{\mathcal{D}}_{n} / S^{1} ; \mathbf{Q}\right)$ are defined to be the duals of $\left\{\left(p_{n}^{\prime}\right)_{*}\left(\sigma_{1}\right), \ldots\right.$, $\left.\left(p_{n}^{\prime}\right)_{*}\left(\sigma_{n-1}\right), y^{\prime}\right\}$, where $p_{n}^{\prime}: \overline{\mathcal{D}}_{n} \longrightarrow \overline{\mathcal{D}}_{n} / S^{1}$ denotes the projection (which corresponds to the projection $p_{n}: \overline{\mathcal{C}}_{n} \rightarrow \overline{\mathcal{C}}_{n} / S^{1}$ in Step $\left.5(\mathrm{~B})(\mathrm{i})\right)$. We shall regard $\sigma_{i}(1 \leq i \leq$ $n-1)$, which are defined in Step $5(\mathrm{~B})(\mathrm{i})$, as elements of $H_{2}\left(\overline{\mathcal{D}}_{n} ; \mathbf{Q}\right)$, since $H_{2}\left(\overline{\mathcal{D}}_{n} ; \mathbf{Q}\right) \cong$ $H_{2}\left(\left(S^{2}\right)^{n-1} ; \mathbf{Q}\right)$.
y^{\prime} is defined in the same way as in (4.3), i.e., $y^{\prime}=\left(k^{\prime}\right)_{*}\left(x^{\prime}\right)$, where $k^{\prime}: \mathbf{C} P^{2 m-2} \hookrightarrow$ $\overline{\mathcal{D}}_{n} / S^{1}$ denotes the inclusion of the boundary component which corresponds to $(1, \ldots, 1$, $-1, \ldots,-1)$, and $x^{\prime} \in H_{2}\left(\mathbf{C} P^{2 m-2} ; \mathbf{Q}\right)$ denotes the generator (cf. (4.7)).

Denote the dual of $\mathbf{e}_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}^{\prime} \in H^{2}\left(\partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) ; \mathbf{Q}\right)$ by $v_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)} \in H_{2}\left(\partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) ; \mathbf{Q}\right)$. We denote the sequence $(1, \ldots, 1,-1, \ldots,-1)$, which was used in Step 5 (B)(ii), by $\left(\epsilon_{1}^{0}, \ldots, \epsilon_{n-1}^{0}\right)$.

Recall that we have an inclusion $j_{n}^{\prime}: \partial\left(\overline{\mathcal{D}}_{n} / S^{1}\right) \hookrightarrow \overline{\mathcal{D}}_{n} / S^{1}(c f .(4.8))$. Now the following lemma is proved easily from the definitions of $v_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)},\left(p_{n}^{\prime}\right)_{*}\left(\sigma_{1}\right), \ldots,\left(p_{n}^{\prime}\right)_{*}\left(\sigma_{n-1}\right)$ and y^{\prime}.

LEMMA 4.9.

$$
\left(j_{n}^{\prime}\right)_{*}\left(v_{\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right)}\right)=y^{\prime}+\sum_{1 \leq s \leq n-1} \delta_{s}\left\{\left(p_{n}^{\prime}\right)_{*}\left(\sigma_{s}\right)\right\},
$$

where $\delta_{s}= \begin{cases}-1 & \epsilon_{s}=-\epsilon_{s}^{0} \\ 0 & \epsilon_{s}=\epsilon_{s}^{0} .\end{cases}$
Now by taking the dual of Lemma 4.9 we have Proposition 4.6.
This completes the proof of Theorem B.
5. Proof of Theorem C. By Theorem A, we know $H_{q}\left(M_{n} ; \mathbf{Q}\right)(q \geq n-2)$. Hence in order to determine $\chi\left(M_{n}\right)$, it suffices to determine $\sum_{q \leq n-3}(-1)^{q} \operatorname{dim} H^{q}\left(M_{n} ; \mathbf{Q}\right)$.

Recall that we have an inclusion $i_{n}: \mathcal{C}_{n} \hookrightarrow\left(S^{2}\right)^{n-1}$. Hence we also have an inclusion $M_{n} \hookrightarrow\left(S^{2}\right)^{n-1} / S^{1}$. We assume the truth of the following Propositions 5.1 and 5.2 for the moment. As in the proof of Proposition 2.3 in Section 3 Step 1, we set $A_{n}=\left(S^{2}\right)^{n-1}-C_{n}$.

Proposition 5.1. For $q \leq 2 m-3$, we have

$$
\begin{aligned}
& H_{c}^{q}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right) \\
& \quad \cong \begin{cases}\mathbf{Q}^{A_{2 i}} \text { with } A_{2 i}=2^{2 m-1}-\binom{2 m-1}{m} & q=2 i+1(1 \leq i \leq m-2) \\
0 & q=2 i(0 \leq i \leq m-1) \text { or } q=1\end{cases}
\end{aligned}
$$

where H_{c}^{*} denotes cohomology with compact supports.
Proposition 5.2. $\quad \tilde{H}_{*}\left(\left(S^{2}\right)^{N} / S^{1} ; \mathbf{Q}\right)$ is given by

$$
\tilde{H}_{q}\left(\left(S^{2}\right)^{N} / S^{1} ; \mathbf{Q}\right) \cong \begin{cases}\mathbf{Q}^{b_{q}^{N}} & q=2 i+1(1 \leq i \leq N-1) \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
b_{q}^{N}=\binom{N-1}{\frac{q-1}{2}}+2\binom{N-2}{\frac{q-1}{2}}+2^{2}\binom{N-3}{\frac{q-1}{2}}+\cdots+2^{\frac{2 N-q-1}{2}}\binom{\frac{q-1}{2}}{\frac{q-1}{2}}
$$

Proof of Theorem C. Recall the long exact sequence of cohomology with compact supports of the pair $\left(\left(S^{2}\right)^{2 m-1} / S^{1}, M_{2 m}\right)$:

$$
\begin{aligned}
\cdots & \rightarrow H_{c}^{q}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right) \rightarrow H^{q}\left(\left(S^{2}\right)^{2 m-1} / S^{1} ; \mathbf{Q}\right) \rightarrow H^{q}\left(M_{2 m} ; \mathbf{Q}\right) \\
& \rightarrow H_{c}^{q+1}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right) \rightarrow \cdots
\end{aligned}
$$

Since $H_{c}^{2 m-2}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right)=0$ by Proposition 5.1, exactness shows that

$$
\begin{align*}
\sum_{q \leq 2 m-3}(-1)^{q} \operatorname{dim} H^{q}\left(M_{2 m} ; \mathbf{Q}\right)= & \sum_{q \leq 2 m-3}(-1)^{q} \operatorname{dim} H^{q}\left(\left(S^{2}\right)^{2 m-1} / S^{1} ; \mathbf{Q}\right) \\
& -\sum_{q \leq 2 m-3}(-1)^{q} \operatorname{dim} H_{c}^{q}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right) \tag{5.3}
\end{align*}
$$

By Proposition 5.2, we have

$$
\left.\begin{array}{rl}
\sum_{q \leq 2 m-3} & (-1)^{q} \operatorname{dim} H^{q}\left(\left(S^{2}\right)^{2 m-1} / S^{1} ; \mathbf{Q}\right) \\
\quad= & 1-b_{3}^{2 m-1}-b_{5}^{2 m-1}-\cdots-b_{2 m-3}^{2 m-1}
\end{array}\right\} \begin{gathered}
1-\left\{\binom{2 m-2}{1}+2\binom{2 m-3}{1}+\cdots+2^{2 m-3}\binom{1}{1}\right\} \\
-\left\{\binom{2 m-2}{2}+2\binom{2 m-3}{2}+\cdots+2^{2 m-4}\binom{2}{2}\right\} \tag{5.4}\\
\vdots \\
-\left\{\binom{2 m-2}{m-2}+2\binom{2 m-3}{m-2}+\cdots+2^{m}\binom{m-2}{m-2}\right\}
\end{gathered} .
$$

While by Proposition 5.1, we have

$$
\sum_{q \leq 2 m-3}(-1)^{q} \operatorname{dim} H_{c}^{q}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right)=-(m-2)\left\{2^{2 m-1}-\binom{2 m-1}{m}\right\}
$$

Hence by (5.3), we have

$$
\begin{align*}
\sum_{q \leq 2 m-3}(-1)^{q} \operatorname{dim} H^{q}\left(M_{2 m} ; \mathbf{Q}\right) & =(5.4)+(m-2)\left\{2^{2 m-1}-\binom{2 m-1}{m}\right\} \tag{5.5}\\
& =-2^{2 m-3}-\frac{m-4}{2}\binom{2 m-1}{m}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\sum_{q \geq 2 m-2}(-1)^{q} \operatorname{dim} H^{q}\left(M_{2 m} ; \mathbf{Q}\right) & =\sum_{i=0}^{m-2}\left\{\binom{2 m-1}{0}+\binom{2 m-1}{1}+\cdots+\binom{2 m-1}{i}\right\} \tag{5.6}\\
& =-2^{2 m-3}+\frac{m}{2}\binom{2 m-1}{m}
\end{align*}
$$

by Theorem A.
Now we have

$$
\begin{aligned}
\chi\left(M_{2 m}\right) & =(5.5)+(5.6) \\
& =-2^{2 m-2}+\binom{2 m}{m} .
\end{aligned}
$$

This completes the proof of Theorem C assuming the truth of Propositions 5.1 and 5.2.

Proof of Proposition 5.1. As in the case of \mathcal{C}_{n}, the S^{1}-action on $A_{2 m}$ is semifree (cf. Section 2), and the fixed point set Σ is

$$
\Sigma=\left\{\left(a_{1}, \cdots, a_{n-1}\right) \in\left(S^{2}\right)^{n-1} ; a_{i}= \pm \mathbf{e}(1 \leq i \leq n-1), a_{1}+\cdots+a_{n-1}+\mathbf{e} \neq 0\right\}
$$

which consists of $\left(2^{2 m-1}-\binom{2 m-1}{m}\right)$-points. Set

$$
B_{2 m}=A_{2 m}-\Sigma
$$

Recall that $A_{2 m}$ has the homotopy type of a 2($m-1$)-dimensional CW complex ($c f$. Proposition 3.4). Hence the Mayer-Vietoris argument gives the following information on $H^{q}\left(B_{2 m} ; \mathbf{Q}\right)(q \geq 2 m-1)$:
(5.7)

$$
\begin{aligned}
& H^{q}\left(B_{2 m} ; \mathbf{Q}\right) \\
& \quad \cong \begin{cases}\mathbf{Q}^{A_{2 i}} \text { with } A_{2 i}=2^{2 m-1}-\binom{2 m-1}{m} & q=4 m-3 \\
0 & 2 m-1 \leq q \leq 4 m-4 \text { or } q \geq 4 m-2\end{cases}
\end{aligned}
$$

Next, by the Serre spectral sequence of the fiber bundle $S^{1} \rightarrow B_{2 m} \rightarrow B_{2 m} / S^{1}$, we have the following information on $H^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right)(q \geq 2 m-1)$ from (5.7):
(5.8)

$$
\begin{aligned}
& H^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right) \\
& \quad \cong \begin{cases}\mathbf{Q}^{A_{2 i}} \text { with } A_{2 i}=2^{2 m-1}-\binom{2 m-1}{m} & q=2 i(m \leq i \leq 2 m-2) \\
0 & q \geq 2 m-1 \text { and } q \neq 2 i(m \leq i \leq 2 m-2)\end{cases}
\end{aligned}
$$

Since $B_{2 m} / S^{1}$ is smooth, we have by Poincaré duality $H_{c}^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right) \cong$ $H_{4 m-3-q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right)$. Hence we have the following information on $H_{c}^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right)(q \leq$ $2 m-2$) from (5.8):

$$
H_{c}^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right) \cong \begin{cases}\mathbf{Q}^{A_{2 i}} \text { with } A_{2 i}=2^{2 m-1}-\binom{2 m-1}{m} & q=2 i+1(0 \leq i \leq m-2) \tag{5.9}\\ 0 & q=2 i(0 \leq i \leq m-1)\end{cases}
$$

Now by using the long exact sequence of cohomology with compact supports of the pair $\left(A_{2 m} / S^{1}, \Sigma\right)$:

$$
\cdots \rightarrow H_{c}^{q}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right) \longrightarrow H_{c}^{q}\left(A_{2 m} / S^{1} ; \mathbf{Q}\right) \longrightarrow H^{q}(\Sigma ; \mathbf{Q}) \longrightarrow H_{c}^{q+1}\left(B_{2 m} / S^{1} ; \mathbf{Q}\right) \longrightarrow \cdots,
$$

we can prove Proposition 5.1.
This completes the proof of Proposition 5.1.
Proof of Proposition 5.2. We prove Proposition 5.2 by induction on N. For $P=$ $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in\left(S^{2}\right)^{N} / S^{1}$, we can assume that $a_{1}^{2} \geq 0$ and $a_{1}^{3}=0$, where we set $a_{1}=\left(\begin{array}{l}a_{1}^{1} \\ a_{1}^{2} \\ a_{1}^{3}\end{array}\right)$. More precisely, set

$$
S^{+}=\left\{a=\left(\begin{array}{c}
a^{1} \\
a^{2} \\
a^{3}
\end{array}\right) \in S^{2} ; a^{2} \geq 0, a^{3}=0\right\}
$$

Set $T=S^{+} \times\left(S^{2}\right)^{N-1}$ and let S^{1} act in the obvious way on the subspaces $\{\mathbf{e}\} \times\left(S^{2}\right)^{N-1}$ and $\{-\mathbf{e}\} \times\left(S^{2}\right)^{N-1}$ of T, where \mathbf{e} is defined in Section 2. Write this equivalence relation on T by \sim. Then it is clear that $\left(S^{2}\right)^{N} / S^{1} \cong T / \sim$.

Decompose T / \sim as $L^{+} \cup L^{-}$, where

$$
L^{+}=\left\{\left(\begin{array}{l}
a_{1}^{1} \\
a_{1}^{2} \\
a_{1}^{3}
\end{array}\right) \times a_{2} \times \cdots \times a_{N-1} \in T / \sim ; a_{1}^{1} \geq 0, a_{i} \in S^{2}(2 \leq i \leq N-1)\right\}
$$

(L^{-}is defined similarly.) Since $L^{+} \cap L^{-}$is homeomorphic to $\left(S^{2}\right)^{N-1}$, and $L^{ \pm}$is homotopically equivalent to $\left(S^{2}\right)^{N-1} / S^{1}$, we can calculate $\tilde{H}_{*}\left(\left(S^{2}\right)^{N} / S^{1} ; \mathbf{Q}\right)$ from the MayerVietoris sequence of the pair $\left\{L^{+}, L^{-}\right\}$by induction on N.

This completes the proof of Proposition 5.2, and hence also that of Theorem C.
6. Proof of Theorem D. Recall that

$$
\begin{equation*}
M_{2 m}=\bar{C}_{n} / S^{1} \cup\left(\bigcup_{\substack{2 m-1 \\ m}} C\left(S^{n-3} \times_{S^{1}} S^{n-3}\right)\right) \tag{6.1}
\end{equation*}
$$

by (2.7), while by the definition of $\tilde{M}_{2 m}$ we have

$$
\begin{equation*}
\tilde{M}_{2 m}=\bar{C}_{n} / S^{1} \cup\left(\bigcup_{\substack{(2 m-1 \\ m}} D^{n-2} \times_{S^{1}} S^{n-3}\right) \tag{6.2}
\end{equation*}
$$

First we prove the following:
PROPOSITION 6.3. For $q \leq 2 m-4$, we have

$$
\begin{aligned}
& H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right) \\
& \quad \cong \begin{cases}\mathbf{Z}^{A_{2 i}} \text { with } A_{2 i}=\binom{2 m-1}{0}+\binom{2 m-1}{1}+\cdots+\binom{2 m-1}{i} & q=2 i(0 \leq i \leq m-2) \\
0 & q=2 i+1(0 \leq i \leq m-3)\end{cases}
\end{aligned}
$$

Proof. By using the Serre spectral sequence of the fiber bundle $S^{2 m-3} \rightarrow S^{2 m-3} \times{ }_{S^{1}}$ $S^{2 m-3} \rightarrow \mathbf{C} P^{m-2}$, we can easily prove that $i_{*}: H_{q}\left(S^{2 m-3} \times_{S^{1}} S^{2 m-3} ; \mathbf{Z}\right) \rightarrow H_{q}\left(D^{2 m-2} \times_{S^{1}}\right.$ $\left.S^{2 m-3} ; \mathbf{Z}\right)$ are isomorphisms for $q \leq 2 m-4$, where $i: S^{2 m-3} \times{ }_{S^{1}} S^{2 m-3} \hookrightarrow D^{2 m-2} \times S^{1} S^{2 m-3}$ denotes the inclusion.

Consider the Mayer-Vietoris sequence of the pair $\left\{\bar{C}_{2 m} / S^{1}, \bigcup_{\substack{(2 m-1 \\ m}} D^{2 m-2} \times{ }_{S^{1}} S^{2 m-3}\right\}$ (cf. (6.2)). The above assertion concerning i_{*} shows that the sequences

$$
\begin{aligned}
0 \rightarrow & H_{q}\left(\bigcup_{\substack{2 m-1 \\
m}} S^{2 m-3} \times S^{1}\right. \\
& \left.S^{2 m-3} ; \mathbf{Z}\right) \\
& \rightarrow H_{q}\left(\bar{C}_{2 m} / S^{1} ; \mathbf{Z}\right) \oplus H_{q}\left(\bigcup_{\substack{\left(\begin{array}{c}
m-1 \\
m
\end{array}\right)}} D^{2 m-2} \times_{S^{1}} S^{2 m-3} ; \mathbf{Z}\right) \rightarrow H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right) \longrightarrow 0
\end{aligned}
$$

are split short exact sequences for $q \leq 2 m-4$. Hence $H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right) \cong H_{q}\left(\bar{C}_{2 m} / S^{1} ; \mathbf{Z}\right)$ ($q \leq 2 m-4$).

Now Proposition 6.3 follows from Proposition 3.6.
By Proposition 6.3 together with the Poincaré duality and the universal coefficient theorem, we can determine $H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right)(q \geq 2 m-2)$. We can also prove the fact that $H_{2 m-3}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right)$ is torsion-free. Hence in order to complete the proof of Theorem D, we need to prove the following:

LEMMA 6.4. $H_{2 m-3}\left(\tilde{M}_{2 m} ; \mathbf{Q}\right)=0$.
Proof. By (6.1), we have $\chi\left(M_{2 m}\right)=\chi\left(\bar{C}_{2 m} / S^{1}\right)+\binom{2 m-1}{m}$. By (6.2), we have $\chi\left(\tilde{M}_{2 m}\right)=\chi\left(\bar{C}_{2 m} / S^{1}\right)+\binom{2 m-1}{m}(m-1)$. Hence by using Theorem C, we have

$$
\begin{equation*}
\chi\left(\tilde{M}_{2 m}\right)=-2^{2 m-2}+m\binom{2 m-1}{m} \tag{6.5}
\end{equation*}
$$

On the other hand, our information on $H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Z}\right)(q \neq 2 m-3)$ tells us that

$$
\begin{aligned}
\sum_{q}(-1)^{q} & \operatorname{dim} H_{q}\left(\tilde{M}_{2 m} ; \mathbf{Q}\right) \\
& =2\left[\sum_{i=0}^{m-2}\left\{\binom{2 m-1}{0}+\binom{2 m-1}{1}+\cdots+\binom{2 m-1}{i}\right\}\right]-\operatorname{dim} H_{2 m-3}\left(\tilde{M}_{2 m} ; \mathbf{Q}\right) \\
& =-2^{2 m-2}+m\binom{2 m-1}{m}-\operatorname{dim} H_{2 m-3}\left(\tilde{M}_{2 m} ; \mathbf{Q}\right)
\end{aligned}
$$

Hence we have $H_{2 m-3}\left(\tilde{M}_{2 m} ; \mathbf{Q}\right)=0$ by (6.5).
This completes the proof of Lemma 6.4, and hence also that of Theorem D.
Acknowledgments. I would like to thank M. Tezuka for introducing the paper [9] to me. I would also like to thank the referee for giving detailed suggestions on how to improve the original paper.

REFERENCES

1. A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections. Ann. of Math. 69(1959), 713717.
2. Y. Kamiyama, Topology of equilateral polygon linkages. Topology Appl. 68(1996), 13-31.
3. Y. Kamiyama and M. Tezuka, Topology and geometry of equilateral polygon linkages in the Euclidean plane. Preprint.
4. Y. Kamiyama, Remarks on the topology of spatial polygon spaces. Preprint.
5. M. Kapovich and J. Millson, The symplectic geometry of polygons in the Euclidean space. J. Differential Geom. 44(1996), 479-513.
6. F. Kirwan, The cohomology of quotients in symplectic and algebraic geometry. Math. Notes 31, Princeton University Press, Princeton, NJ, 1984.
7. __, The cohomology rings of moduli spaces of bundles over Riemann surfaces. J. Amer. Math. Soc. 5(1992), 853-906.
8. A. Klyachko, Equivariant vector bundles on toric varieties. Math. USSR Izv. 53(1989), 1001-1039 (Russian).
9. __, Spatial polygons and stable configurations of points in the projective line. Algebraic geometry and its applications, Aspects of Math. 25(1994), 67-84.

Department of Mathematics
University of the Ryukyus
Nishihara-Cho
Okinawa 903-01
Japan
email: kamiyama@sci.u-ryukyu.ac.jp

[^0]: Received by the editors March 17, 1997.
 AMS subject classification: 14D20, 57N65.
 (C) Canadian Mathematical Society 1998.

