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1. Introduction. Semi-parallel submanifolds of space forms have been extensively
studied over the past decades. (See [11] and the references therein.) In particular, a local
classification of semi-parallel submanifolds with flat normal bundle of space forms was
obtained in [6]. (See also [12].) Recall that an isometric immersion f : Mn → �N

c of a
Riemannian manifold of dimension n into a complete simply connected space form
of constant sectional curvature c and dimension N is called semi-parallel if its second
fundamental form α: TMn × TMn → T⊥Mn with values in the normal bundle satisfies

R(X, Y ) · α := (
[∇X ,∇Y ] − ∇ [X,Y ]

) · α = 0,

for all X, Y ∈ TMn. In particular, this is the case if α is parallel, in the sense that
∇α = 0. Here ∇ stands for the van der Waerden-Bortolotti connection of f , given by

(∇Xα)(V, W ) = ∇⊥
X α(V, W ) − α(∇X V, W ) − α(V,∇X W ),

where ∇ and ∇⊥ denote the Levi-Civita connection of Mn and the normal connection
of f , respectively.

Semi-parallel submanifolds are, intrinsically, semi-symmetric Riemannian
manifolds [14], [15]; that is, their curvature tensor R satisfies

R(X, Y ) · R := ([∇X ,∇Y ] − ∇[X,Y ]) · R = 0

for all X, Y ∈ TMn, which is the integrability condition for the equation ∇R = 0 that
characterizes locally symmetric Riemannian manifolds.

Pseudo-parallel submanifolds were introduced in [1], [2] as natural extensions
of semi-parallel submanifolds and as the extrinsic analogues of pseudo-symmetric
Riemannian manifolds in the sense of Deszcz [5], which generalize semi-symmetric
Riemannian manifolds. An isometric immersion f : Mn → �N

c is said to be pseudo-
parallel if there exists a smooth function φ on Mn such that

R(X, Y ) · α = φ (X ∧ Y ) · α,
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for all X, Y ∈ TMn, where

((X ∧ Y ) · α)(Z, W ) = −α((X ∧ Y )Z, W ) − α((X ∧ Y )W, Z),

the case φ = 0 corresponding to semi-parallel isometric immersions.
The aim of this paper is to provide a complete local classification of pseudo-parallel

submanifolds with flat normal bundle of space forms, extending the classification in
[6] for the semi-parallel case.

2. The result. Given an isometric immersion f : Mn → �N
c with flat normal

bundle (i.e., with vanishing normal curvature tensor), it is well known (cf. [6]) that,
for each point x ∈ Mn, there exist an integer s = s(x) ∈ {1, . . . , n} and a uniquely
determined subset Hx = {η1, . . . , ηs} of T⊥

x Mn such that TxMn is the orthogonal sum
of the nontrivial subspaces

Eηi (x) = {X ∈ TxM : α(X, Y ) = 〈X, Y〉 ηi, ∀ Y ∈ TxM} (1 ≤ i ≤ s).

Thus, the second fundamental form of f has the simple representation

α(X, Y ) =
s∑

i=1

〈Xi, Yi〉 ηi, (2.1)

or equivalently, for any ξ ∈ T⊥
x Mn the shape operator Aξ satisfies

Aξ X =
s∑

i=1

〈ξ, ηi〉Xi, (2.2)

where X �→ Xi denotes orthogonal projection onto Eηi (x). Each ηi ∈ Hx is called a
principal normal vector of f at x, and the rank of Eηi (x) is the multiplicity of ηi. The
Gauss equation takes the form

R(X, Y ) =
s∑

i,j=1

(〈ηi, ηj〉 + c)Xi ∧ Yj, (2.3)

where R denotes the curvature tensor of Mn and, for X, Y ∈ TMn, X ∧ Y stands for
the endomorphism of TMn given by

(X ∧ Y )Z = 〈Z, Y〉X − 〈Z, X〉Y.

Whenever the function Mn → {1, . . . , n} given by x �→ #Hx (number of elements
of Hx) has a constant value s on an open subset U ⊂ Mn, there are smooth normal
vector fields η1, . . . , ηs along U , called the principal normal vector fields of f on U ,
such that Hx = {η1(x), . . . , ηs(x)} for any x ∈ U . Moreover, Eηi = (Eηi (x))x∈U is a C∞-
subbundle of TU for i = 1, . . . , s.

The following facts are well known. (See, e.g., Lemma 2.2-(b) and equation 2.5
of [6].)

LEMMA 2.1. Let f : Mn → �N be an isometric immersion with flat normal bundle.
Assume that the number of distinct principal normal vectors of f at any point is constant
on Mn.

(i) Each principal normal vector field ηi is parallel in the normal connection ∇⊥ along
Eηi whenever the rank of Eηi is at least two.
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(ii) For any local sections Xi of Eηi and Xj, Yj of Eηj , i �= j, we have

〈∇Xj Yj, Xi〉(ηj − ηi) = 〈Xj, Yj〉∇⊥
Xi

ηj. (2.4)

The condition for an isometric immersion to be pseudo-parallel takes the following
simple form when it has flat normal bundle.

LEMMA 2.2. Let f : Mn → �N
c be an isometric immersion with flat normal bundle

and let φ ∈ C∞(Mn). Then f is φ-pseudo parallel if and only if, for every x ∈ Mn, the
distinct principal normal vectors η1, . . . , ηs of f at x satisfy

〈ηi, ηj〉 + c = φ(x), 1 ≤ i �= j ≤ s. (2.5)

Proof. A straightforward computation shows that an isometric immersion
f : Mn → �N

c is φ-pseudo-parallel if and only if

R⊥(X, Y )α(Z, W ) = α(R(X, Y )Z, W ) + α(Z, R(X, Y )W )

−φ〈Y, Z〉α(X, W ) + φ〈X, Z〉α(Y, W )

−φ〈Y, W 〉α(Z, X) + φ〈X, W 〉α(Z, Y ) (2.6)

for all X, Y, Z, W ∈ TMn, where R⊥ denotes the normal curvature tensor of f . When
R⊥ vanishes identically it is easily checked using (2.1) and (2.3) that (2.6) reduces
to (2.5). �

As a first consequence of Lemma 2.2 we have the following result.

COROLLARY 2.3. Any isometric immersion f : Mn → �N
c with flat normal bundle

that has exactly two distinct principal normal vector fields η1, η2 is φ-pseudo parallel
with φ = 〈η1, η2〉 + c.

In view of Corollary 2.3, a first step towards the classification of pseudo-parallel
submanifolds with flat normal bundle is to determine the submanifolds with flat normal
bundle that have exactly two distinct principal normal vector fields. With that goal of
independent interest in mind, we first observe that if the principal normal vector
fields of an isometric immersion f : Mn → �N

c with flat normal bundle span a one-
dimensional subbundle Nf

1 of the normal bundle, then it follows from (2.4) that Nf
1

is parallel in the normal connection, unless there are exactly two distinct principal
normal vector fields and one of them is zero and has multiplicity n − 1. Thus, either
f (Mn) is contained in a totally geodesic submanifold �n+1

c ⊂ �N
c or Mn has constant

sectional curvature c (cf. [9, Theorem 1]). Therefore, in the next two propositions we
assume that the two distinct principal normal vector fields are everywhere linearly
independent.

Recall that a hypersurface f : Mn → �n+1
c is a cyclide of Dupin if it has exactly two

distinct eigenvalues everywhere, both of which are constant along the corresponding
eigenbundles. We refer to [4] for the classification of the cyclides of Dupin. The next
result is contained in Proposition 24 of [10], but a direct proof is included here for the
convenience of the reader.

PROPOSITION 2.4. Let f : Mn → �N
c be an isometric immersion with flat normal

bundle. Assume that f has exactly two distinct principal normal vector fields, which are
linearly independent and parallel along the corresponding eigenbundles. Then f = i ◦ g,
where g: M → �n+1

c̃ is a cyclide of Dupin and i: �n+1
c̃ → �N

c is an umbilical inclusion.
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Proof. Equation (2.4) and the assumption that the principal normal vector field ηi

is parallel along Eηi , for i = 1, 2, imply that the first normal bundle Nf
1 of f , i.e., the

normal subbundle spanned by η1 and η2, is parallel in the normal connection. Let ξ be
a unit vector field in Nf

1 orthogonal to η1 − η2. Then ξ is an umbilical normal vector
field by (2.2). Moreover, for 1 ≤ i �= j ≤ 2 we have from (2.4) that

0 = 〈∇⊥
Xi

ηj, ξ 〉 = Xi〈ηj, ξ 〉 − 〈ηj,∇⊥
Xi

ξ 〉 = Xi〈ηi, ξ 〉 − 〈ηj,∇⊥
Xi

ξ 〉
= 〈ηi − ηj,∇⊥

Xi
ξ 〉.

Thus ∇⊥
Xi

ξ ∈ Nf
1 is orthogonal to η1 − η2 and so must vanish. Therefore ξ is parallel

in the normal connection, and we conclude that f (Mn) is contained in an umbilical
submanifold �n+1

c̃ ⊂ �N
c . �

A hypersurface f : Mn → �n+1
c is said to be quasi-umbilic if it has everywhere a

principal curvature of multiplicity at least n − 1. Any quasi-umbilic hypersurface is
conformally flat, and the converse is also true for n ≥ 4. Quasi-umbilic hypersurfaces
f : Mn → �n+1

c with no umbilic points carry a codimension one foliation by umbilical
leaves in both Mn and �n+1

c . (See [3] for a parametric description of such hypersurfaces.)
The next proposition completes, in view of part (i) of Lemma 2.1, the classification

of isometric immersions with flat normal bundle that have exactly two distinct principal
normal vector fields.

PROPOSITION 2.5. Let f : Mn → �N
c , n ≥ 3, be an isometric immersion with flat

normal bundle. Assume that f has exactly two linearly independent principal normal
vector fields η1, η2 and that rank Eη1 = 1. Then f = h ◦ g, where g: Mn → �n+1

c is a
quasi-umbilic hypersurface and h: U ⊂ �n+1

c → �N
c is an isometric immersion with no

totally geodesic points of an open subset U ⊃ g(Mn). Moreover, on the open set of non-
umbilic points of g each leaf of the umbilical foliation of g is mapped into a relative nullity
leaf of h. Conversely, any such isometric immersion f = h ◦ g, with g free of umbilic
points, has flat normal bundle and exactly two linearly independent principal normal
vector fields, one of which is of multiplicity one.

Proof. We first prove the converse. The second fundamental form of f is given by

αf (X, Y ) = h∗αg(X, Y ) + αh(g∗X, g∗Y ),

for all X, Y ∈ TMn. Let ξ be a unit vector field normal to g and let Z be a unit vector
field that spans the orthogonal complement E⊥

λ in TMn of the umbilical distribution Eλ

of g correspondent to its principal curvature λ of multiplicity n − 1. By the assumption
that the relative nullity leaves of h contain the images by g of the leaves of Eλ, we have

αf (X, Y ) = 〈X1, Y1〉η1 + 〈X2, Y2〉η2,

where η1 = αf (Z, Z), η2 = λh∗ξ and X �→ X1 (resp., X �→ X2) denotes orthogonal
projection onto E⊥

λ (resp., Eλ). Since η1 = µh∗ξ + αh(g∗Z, g∗Z), where µ is the
principal curvature of g of multiplicity one, it follows that η1, η2 are linearly
independent everywhere, because h has no totally geodesic points. Moreover, η1 has
multiplicity one, for Z spans Eη1.

Now we prove the direct statement. Let L be the line subbundle of T⊥Mn spanned
by η2. Denote by γ the component of α in L⊥, the orthogonal complement of L
in T⊥Mn. It follows from (2.2) that ker(γ ), the kernel of γ , coincides with Eη2 . In
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particular, since Eη2 has rank n − 1, this implies that the component of α in L satisfies
the Gauss equation for an isometric immersion of Mn into �n+1

c . We claim that it also
satisfies the Codazzi equation. In fact, setting ζ = η2/‖η2‖, this is equivalent to

A∇⊥
X ζ Y = A∇⊥

Y ζ X, for all X, Y ∈ TMn,

which follows from the fact that ζ is parallel along Eη2 = ker(γ ), as follows from
Lemma 2.1-(i), and ∇⊥

X ζ ∈ L⊥ for all X ∈ TMn.
We obtain from Theorem 5 in [7] that f = h ◦ g, where g: Mn → �n+1

c is an
isometric immersion with shape operator Aζ and h: U ⊂ �n+1

c → �N
c is an isometric

immersion of an open subset U ⊃ g(Mn). It follows from (2.2) that g has principal
curvatures 〈ζ, η1〉 and 〈ζ, η2〉, whence it is quasi-umbilic. Since η1 and η2 are everywhere
linearly independent, h can have no totally geodesic points. Finally, that the relative
nullity leaves of h contain the leaves of the umbilical foliation of g on the subset of
nonumbilic points of g follows from the proof of Theorem 5 in [7]. �

The study of pseudo parallel submanifolds with flat normal bundle having more
than two distinct principal normal vector fields is simplified by the next result.

LEMMA 2.6. Let f : Mn → �N
c be a φ-pseudo parallel isometric immersion with flat

normal bundle of a connected Riemannian manifold. Assume that the number of distinct
principal normal vectors η1, . . . , ηs of f at any point is a constant s ≥ 3. Then φ is
constant.

Proof. Taking the inner product of both sides of (2.4) with ηk, k �= i, j, it follows,
using Lemma 2.2, that

〈∇⊥
Xi

ηj, ηk〉 = 0, i �= j �= k �= i.

Therefore, for i = 1, . . . , s, taking j, k �= i with 1 ≤ j �= k ≤ s yields

Xi(φ) = Xi〈ηj, ηk〉 = 〈∇⊥
Xi

ηj, ηk〉 + 〈ηj,∇⊥
Xi

ηk〉 = 0. �

Recall that all warped product representations of space forms, that is, isometries
of warped products of Riemannian manifolds onto open subsets of space forms, were
classified in [13]. They are essentially restrictions of explicitly constructible isometries
ψ : N0 ×σ1 N1 ×σ2 · · · ×σl N
 → �N

c onto open dense subsets of �N
c , where N1, . . . , N


are complete spherical submanifolds of �N
c through a common point p̄ ∈ �N

c , whose
mean curvature vectors a1, . . . , a
 at p̄ in the flat ambient space �0 ⊃ �N

c are pairwise
orthogonal, and N0 is an open subset of a totally geodesic submanifold of �N

c through
p̄ whose tangent space at p̄ contains a1, . . . , a
. We refer to [13] for details. Given an
isometric immersion f0: V → N0, the map f : V ×ρ1 N1 ×ρ2 · · · ×ρl N
 → �N

c defined
by f (x0, . . . , x
) = ψ(f0(x0), x1, . . . , x
), where ρi = σi ◦ f0: V → �+, 1 ≤ i ≤ 
, is
also an isometric immersion, called in [6] the multi-rotational submanifold with profile
f0 determined by ψ .

According to [6], [8], an isometric immersion f : U ⊂ �m
k → �N

0 into either
Euclidean or Lorentzian space is said to satisfy the k-helix property with respect to the
orthogonal vectors w1, . . . , w
 ∈ �N

0 if the height functions hwj (x) = 〈f (x), wj〉 are the
restrictions to U of linear functions in the flat space �0 ⊃ �m

k with pairwise orthogonal
gradient vector fields, which for k �= 0 are nonzero and have vanishing independent
term.

We are now in a position to state and prove our main result.
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THEOREM 2.7. Let f : Mn → �N
c be a φ-pseudo parallel isometric immersion with

flat normal bundle. Then either n = 2 and φ = K on the open subset of non-umbilic points
of f , where K is the Gaussian curvature of M2, or there exists an open dense subset M̃ of
Mn, where one of the following holds locally:

(i) f |M̃ is umbilical;
(ii) f |M̃ = i ◦ g, where g: M̃ → �n+1

c̃ is a cyclide of Dupin and i: �n+1
c̃ → �N

c is
either an umbilical or a totally geodesic inclusion;

(iii) f |M̃ = h ◦ g, where g: M̃ → �n+1
c is a quasi-umbilic hypersurface and h: U ⊂

�n+1
c → �N

c is an isometric immersion of an open subset U ⊃ g(M̃), as in Proposition
2.5;

(iv) φ = k ∈ � and M̃ has constant sectional curvature k;
(v) φ = 0 and f |M̃ is an extrinsic product of spherical submanifolds of �N

c ;
(vi) φ = k ∈ � and f |M̃ is the restriction of a multi-rotational submanifold

V ×ρ1 N1 ×ρ2 · · · ×ρl Nl → �N
c ≈ N0 ×σ1 N1 ×σ2 · · · ×σl Nl,

where V ⊂ �m
k , m = n − ∑l

i=1 dim Ni ≥ 1, and the profile f0: V → N0 is an isometric
immersion with flat normal bundle satisfying the k-helix property with respect to the
mean curvature vectors a1, . . . , al of N1, . . . , Nl in the flat space �0 ⊃ �N

c .

Proof. If n = 2 then, on the open subset of non-umbilic points of f , there are
exactly two distinct principal normal vector fields η1 and η2, with 〈η1, η2〉 + c = K ,
and the result follows from Corollary 2.3. From now on we assume that n ≥ 3. Let
U1 ⊂ Mn be the interior of the subset where f has only one principal normal vector.
Then f |U1 is umbilical. Now let U2 ⊂ Mn be the interior of the subset where f has
exactly two distinct principal normal vectors. By Lemma 2.1-(i), Propositions 2.4 and
2.5, and the comments after Corollary 2.3, we have that f |U2 is locally as in either of
cases (ii), (iii) or (iv) (the latter occurring for k = c on open subsets where the principal
normal vector fields span a one-dimensional nonparallel normal subbundle). Finally,
let V ⊂ Mn be the open subset where the number of distinct principal normal vectors
of f is at least 3. By Lemma 2.6 we have that φ is constant on each connected open
subset of V where the number of principal normal vectors is constant. Thus, on any
such subset f is an isometric immersion whose principal normal vector fields have
constant inner products in the sense of [8] (the constant being φ − c). Therefore, by
Theorem 24 of [8] there exists an open dense subset U3 of V such that f |U3 is locally as
in cases (iv), (v) or (vi). We conclude that the statement holds on the open dense subset
M̃ = ⋃3

i=1 Ui. �
REMARKS 2.8. (1) Let us discuss when an isometric immersion f , as in either of

the cases in Theorem 2.7, is semi-parallel. First, a surface with flat normal bundle and
no umbilic points is semi-parallel if and only if it is flat. An umbilical submanifold of
arbitrary dimension is φ-pseudo-parallel for any smooth function φ, in particular it is
also semi-parallel. Now, f as in case (ii) is semi-parallel if and only if c̃ �= 0 and g is an
extrinsic product of two spherical submanifolds of �n+1

c̃ , or c̃ = 0 and g is an extrinsic
product of either a round sphere or a round cone and a linear subspace. In case (iii),
f is semi-parallel if and only if h is totally geodesic and g is a rotational hypersurface
over a curve in a two-dimensional totally geodesic geodesic submanifold �2

c of �n+1
c ,

which is either a straight line in �2 if c = 0 (in which case f is a round cone) or a helix
in the underlying three-dimensional flat space �3

0 ⊃ �2
c ; i.e., either Euclidean space �3

or Lorentzian space �3, according as c > 0 or c < 0, respectively. Clearly, f as in (iv) is
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semi-parallel if and only if k = 0; that is, Mn is flat, whereas f is always semi-parallel
(in fact parallel) in case (v). Finally, in (vi) the semi-parallel case occurs when k = 0;
that is, when f is a multi-rotational submanifold whose profile is a flat submanifold
with flat normal bundle satisfying the helix property.

(2) It was proved in [1] that a φ-pseudo-parallel isometric immersion f : Mn →
�n+2

c has automatically flat normal bundle at any point where its mean curvature vector
H does not vanish. Moreover, if H(p) = 0 and φ(p) ≥ c, then f is totally geodesic at p.
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