
Adv. Appl. Prob. 41, 1041–1058 (2009)
Printed in Northern Ireland

© Applied Probability Trust 2009

THE SECRETARY PROBLEM OF MINIMIZING
THE EXPECTED RANK: A SIMPLE SUBOPTIMAL
APPROACH WITH GENERALIZATIONS

ABBA M. KRIEGER,∗ University of Pennsylvania

ESTER SAMUEL-CAHN,∗∗ The Hebrew University of Jerusalem

Abstract

The secretary problem for selecting one item so as to minimize its expected rank, based on
observing the relative ranks only, is revisited. A simple suboptimal rule, which performs
almost as well as the optimal rule, is given. The rule stops with the smallest i such that
Ri ≤ ic/(n + 1 − i) for a given constant c, where Ri is the relative rank of the ith
observation and n is the total number of items. This rule has added flexibility. A curtailed
version thereof can be used to select an item with a given probability P, P < 1. The rule
can be used to select two or more items. The problem of selecting a fixed percentage,
α, 0 < α < 1, of n, is also treated. Numerical results are included to illustrate the
findings.
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1. Introduction

Consider a group of n items that arrive sequentially and are rankable without ties. The
number of items, n, is known. A rank of 1 denotes the best item, a rank of 2 denotes the second
best item, etc. It is assumed that all n! permutations of the ranks {1, . . . , n} are equally likely.

The problem is to establish a rule that decides whether item i is to be chosen based on its
relative rank, Ri , i.e. its rank among the first i items. Just as in the classical secretary problem,
once a decision is made on an item, there is no recourse.

The performance of the rule depends on the absolute rank of item i, An
i , i.e. its rank among

all n items, if it is chosen. In the classical secretary problem the objective is to choose a single
item by means of an optimal stopping rule τn that maximizes P(An

τn
= 1).

Chow et al. [2] considered the problem of finding an optimal stopping rule τn for choosing
one item that minimizes the expected value of the absolute rank of the item selected. They
showed that the optimal stopping rule satisfies

lim
n→∞ E(An

τn
) =

∞∏
j=1

(
1 + 2

j

)1/(j+1)

= 3.869. (1.1)
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This is an astonishing result since it shows that, for example, from one million items we can
sequentially select an item with expected rank less than 4. Note that, since one item must be
chosen, if no item has been chosen among the n − k first items, where k is small relative to n,
we must choose an item among the last k items. Since the last few items have expected absolute
rank (n + 1)/2, the probability of this happening must be at most O(1/n), for the expected
rank of the chosen item not to tend to infinity. The paper by Chow et al. [2] is heavily cited and
has spawned many variations.

The optimal stopping rule in Chow et al. for keeping one item can in principle be determined
by dynamic programming and so in practice is hard to implement for large n. The asymptotic
form of the rule is to pass on the first γ0n items; choose the first item with Ri = 1 after i > γ0n

and up to γ1n, choose the first item with Ri ≤ 2 after γ1n (if none has been chosen before)
and up to γ2n, and so on. The values of the γis can be computed asymptotically. For example,
from Ferguson [4, p. 26], γ0 = 0.2584, γ1 = 0.4476, and γ2 = 0.5640.

We consider finding simple stopping rules that perform well in minimizing the sum of the
expected value of the absolute ranks of the items selected, when one or more items are desired.
In Section 2 we pose a class of rules which are easy to implement, and specifically a rule
that achieves asymptotic expected absolute rank of 3.928, nearly the same as the optimal rule.
The rules that are posed have added flexibility. They allow for stopping rules that select an
item only with high probability of stopping. We can find rules that do substantially better
than the optimal expected absolute rank of 3.89 by slightly relaxing the ‘must’ select an item
only condition. For example, when the probability of stopping is at least 95%, the asymptotic
expected absolute rank is 2.987. We can find rules that do substantially better than (1.1) while
slightly relaxing the ‘must select an item’ only. Yeo and Yeo [7] also considered stopping rules
for secretary problems which do not necessarily stop with probability 1, and included some
asymptotic evaluations. Our approach is different from theirs in that we are considering simple
suboptimal rules that perform well.

In Section 3 we consider the problem of selecting a fixed number, r , of items, r > 1. The
optimal stopping rule can again be determined by dynamic programming. The simple rule we
establish for r = 1 can be adapted to this problem as well, again producing nearly optimal
results.

The above rules fix the number of items selected. Other rules select a random number of
items satisfying a condition on the average number of items retained; for example, the average
number that is retained is a given percentage of n. The problem of sequentially selecting a
group of items on the basis of their relative ranks has recently been described in Krieger et
al. [5]. They considered a class of rules termed ‘percentage rules’ for 0 < p ≤ 1, with the
property that they retain on average an order of np items, most of which are good. Simple
rules that perform asymptotically optimally in terms of the sum of the absolute ranks and retain
(approximately) a fixed given fraction α are described in Section 4. For the rules in [5], as well
as for the rules in Section 4, no prior knowledge of n is needed. In Section 5 we supply tables
illustrating the results obtained in the earlier sections.

2. Retaining one item

The optimal rule to retain one item that minimizes the expected value of the absolute rank
can be found using dynamic programming for any n. This rule can be described by a sequence
of integers rn(j), j = 0, . . . , n, with 1 ≤ rn(0) ≤ rn(1) ≤ · · · ≤ rn(n) = n + 1. Let i denote
the index of the item. If i < rn(0) then the item is never accepted. In general, item i is chosen
when its relative rank Ri ≤ j and i < rn(j), provided that no item has been retained earlier.
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In this section we consider simple rules that are easy to implement (i.e. with values of rn(j)

that are readily available). To this end, let c ≥ 1 be a fixed constant, and let the stopping rule
be

tn(c) = inf

{
i : Ri ≤ ic

n + 1 − i

}
. (2.1)

Note that the stopping rule tn(c) satisfies P(tn(c) ≤ n) = 1.
We shall suppress the dependence on c in some of the following notation, where we consider

c as fixed. Let an(k) be the smallest integer greater than or equal to (n + 1)k/(c + k), i.e.

an(k) =
⌈

(n + 1)k

(c + k)

⌉
, k = 1, . . . , n.

Note that, for small values of k (as compared to n), the values of an(k) will be distinct, but, for
large values of k, some consecutive an(k) may coincide. Clearly, tn(c) in (2.1) can be written
as

tn(c) = inf{i : Ri = k for some i ≥ an(k), k = 1, . . . , n}. (2.2)

One of our main interests will be in a ‘curtailed’ version of (2.2), which stops with probability
less than 1. Let ks be a fixed integer with ks < n. Define

tks ,n(c) = inf{i : Ri = k for some i ≥ an(k), k = 1, . . . , ks}. (2.3)

Clearly, tks ,n(c) will stop with probability less than 1. For fixed c and ks , we are interested in
finding the limiting probability of stopping, and the expected absolute rank upon stopping, as
n → ∞. This is used later to determine c and ks to attain a desired probability P of stopping.

Let bn(k) = an(k + 1) − 1 for k = 1, . . . , ks − 1, and let bn(ks) = n. Assume that n is
large, so that bn(k) > an(k) for k = 1, . . . , ks . Let Qn(k) = {Ri > j for all i ≤ bn(j) and all
j = 1, . . . , k}. Thus,

P(Qn(k)) = P(tks ,n(c) > bn(k)) for k = 1, . . . , ks − 1

(where not stopping corresponds to t = ∞) and

Pn(ks, c) = P(tks ,n(c) < ∞) = 1 − P(Qn(ks)), (2.4)

where Qn(ks) is defined by the above expression and Qn(0) is the entire space.

Lemma 2.1. For k ≤ ks , let

f (k) := lim
n→∞ P(Qn(k) | Qn(k − 1)) = lim

n→∞

bn(k)∏
j=an(k)

(
1 − k

j

)
. (2.5)

Then, for k = 1, . . . , ks − 1,

f (k) =
(

k(k + c + 1)

(k + c)(k + 1)

)k

(2.6)

and

f (ks) =
(

ks

ks + c

)ks

. (2.7)
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Proof. To see (2.6), note that

lim
n→∞

(
log

bn(k)∏
j=an(k)

(
1 − k

j

))
= lim

n→∞

bn(k)∑
j=an(k)

log

(
1 − k

j

)

= lim
n→∞

(
−k

bn(k)∑
j=an(k)

1

j

)

= −k lim
n→∞[log bn(k) − log an(k)]

= lim
n→∞ log

(
an(k)

bn(k)

)k

= log

(
k(k + c + 1)

(k + c)(k + 1)

)k

.

Equation (2.7) follows similarly.

Proposition 2.1. We have
P(ks, c) := lim

n→∞ Pn(ks, c)

= lim
n→∞ P(tks ,n(c) < ∞)

= 1 −
ks∏

k=1

f (k)

= 1 − ks !∏ks

k=1(k + c)
. (2.8)

Proof. The proof follows from (2.4), (2.5), and Lemma 2.1.

To compute the expected absolute rank upon stopping, note that

E(An
i | Ri) = n + 1

i + 1
Ri, (2.9)

where An
i is the absolute rank, among n, of the ith observation. It follows that E(An

i | Ri ≤
k) = (n + 1)(k + 1)/2(i + 1). We are interested in computing E(An

tks ,n(c)
| tks ,n(c) < ∞) :=

E(n, ks, c), as well as its limiting value, to be denoted by E(ks, c). Let Vn(k) = P(tks ,n(c) >

bn(k − 1)) for k = 2, . . . , ks and Vn(1) = 1. Note that, for k = 2, . . . , ks , from (2.6),

lim
n→∞ Vn(k) := V (k) =

k−1∏
j=1

f (j) = (k − 1)!∏k−1
j=1(j + c)

(
k + c

k

)k−1

. (2.10)

We now find the conditional (on an item being retained) expected absolute rank, E(n, ks, c),
and its limit as n → ∞, E(ks, c) in (2.11), below.

Theorem 2.1. We have

E(ks, c) =
∑ks

j=1 αj−1βj − ksαks

2 P(ks, c)
, (2.11)
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and when c > 1,

lim
ks→∞ E(ks, c) := E(c) = 1

2

∞∑
j=1

αj−1βj , (2.12)

where

αm = m!∏m
j=1(j + c)

=
[ m∏

j=1

(
1 + c

j

)]−1

and

βm =
(

m + c

m

)m

=
(

1 + c

m

)m

with α0 = 1.

Proof. We shall compute the expected value E(n, ks, c) by considering in which of the
disjoint intervals [an(k), bn(k)] for k = 1, . . . , ks , and at which value i inside that interval, the
rules stop. It is easily seen that

E(n, ks, c) =
ks∑

k=1

Vn(k)

( bn(k)∑
i=an(k)

[ i−1∏
m=an(k)

(
1 − k

m

)]
k

i

(n + 1)(k + 1)

2(i + 1)

)/
Pn(ks, c). (2.13)

To evaluate the limit, note that, for k ≤ ks , the value of i will be a fraction of n. Thus, denote
i/n = x. The term

i−1∏
m=an(k)

(
1 − k

m

)
= (i − 1 − k) · · · (an(k) − k)

(i − 1) · · · an(k)
.

Dividing the numerator and denominator by n and letting n → ∞ yields (k/(k + c))k in the
numerator and xk in the denominator. Then it follows that, for k < ks ,

lim
n→∞

bn(k)∑
i=an(k)

[ i−1∏
m=an(k)

(
1 − k

m

)]
n + 1

i(i + 1)

=
[

k

k + c

]k ∫ (k+1)/(k+1+c)

k/(k+c)

x−(k+2) dx

=
[

k

k + c

]k[(
k + c

k

)k+1

−
(

k + 1 + c

k + 1

)k+1]/
(k + 1), (2.14)

and, similarly, the corresponding limit for ks is[
ks

ks + c

]ks
∫ 1

ks/(ks+c)

x−(ks+2) dx =
[

ks

ks + c

]ks
[(

ks + c

ks

)ks+1

− 1

]/
(ks + 1). (2.15)

Taking limits of (2.13) by substituting the limits in (2.10), (2.14), and (2.15) and simplifying
somewhat, we obtain

E(ks, c) =
(ks−1∑

k=1

k! k∏k
j=1(j + c)

[(
k + c

k

)k+1

−
(

k + 1 + c

k + 1

)k+1]

+ ks ! ks∏ks

j=1(j + c)

[(
ks + c

ks

)ks+1

− 1

])/
2 P(ks, c), (2.16)
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where P(ks, c) is given in (2.8). We can simplify (2.16) somewhat by opening the square
brackets and canceling to obtain

E(ks, c) =
( ks∑

k=1

(k − 1)!∏k−1
j=1(j + c)

(
k + c

k

)k

− ks ! ks∏ks

j=1(j + c)

)/
2 P(ks, c).

Result (2.11) follows from the definitions of αm and βm.
Note that the negative term in (2.11) for c = 1 equals ks/(ks + 1) < 1 and is a

decreasing function of c. We are interested in E(c) = limks→∞ E(ks, c). Clearly, from (2.8),
limks→∞ P(ks, c) = 1. Since αmmc → constant as m → ∞ and βm → ec as m → ∞, it
follows that, for c > 1, limks→∞ ksαks → 0, and we have (2.12).

When 0 < c ≤ 1, however, the sum in (2.12) is infinite.
An important issue is to show that the rule in (2.2) which is not curtailed behaves like the

limit of the curtailed rule with ks → ∞ as given in (2.12) when n → ∞. It is sufficient to
consider the curtailed rule with n = ks as n → ∞.

Theorem 2.2. Let tn(c) be as in (2.1) with c > 1. Then

lim
n→∞ E An

tn(c) = E(c),

where E(c) is given in (2.12).

Proof. In order to show that the convergence of E(n, ks, c) is uniform in ks as n → ∞, we
need to consider the remainder term from (2.13) (for n > k0 large),

Rn(k0) =
ks∑

k=k0

Vn(k)

( bn(k)∑
i=an(k)

[ i−1∏
m=an(k)

(
1 − k

m

)]
k

i

(n + 1)(k + 1)

2(i + 1)

)
. (2.17)

We want to show that Rn(k0) can be made arbitrarily small by choosing k0 to be sufficiently
large. We consider (2.17) in three parts.

1. For Vn(k), we have

Vn(k) =
k−1∏
j=1

bn(j)∏
m=an(j)

(
1 − j

m

)
<

k−1∏
j=1

(
1 − j

bn(j)

)bn(j)−an(j)

.

But bn(j) − an(j) ≥ (n + 1)c/(c + j + 1)(c + j) − 1. Hence, with k and n fixed for positive
finite constants A, B, and D (used later),

Vn(k) < exp

[
−

k−1∑
j=1

j (c + j + 1)

(n + 1)(j + 1)

(
(n + 1)c

(c + j + 1)(c + j)
− 1

)]

< A exp

[
− c

k−1∑
j=1

j

(j + 1)(c + j)

]

= A exp

[
− c

(k−1∑
j=1

1

c + j
−

k−1∑
j=1

1

(j + 1)(c + j)

)]

< B exp[−c log(c + k − 1)]
= B(c + k − 1)−c. (2.18)
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2. Next we consider the middle term in (2.17), which refers to the probability of obtaining a
value in [an(k), bn(k)] which would force us to stop for a given k. Note that, for ks , we can
bound this probability trivially by 1. For k < ks , an upper bound is c/(k+1). The upper bound
follows from

bn(k)∑
i=an(k)

i−1∏
m=an(k)

(
1 − k

m

)
k

i

= 1 −
bn(k)∏

m=an(k)

(
1 − k

m

)

≤ 1 −
(

1 − k(c + k)

(n + 1)k

)(n+1)c/(c+k+1)(c+k)

≤
(

k(c + k)

(n + 1)k

)(
(n + 1)c

(c + k)(c + k + 1)

)

= c

c + k + 1

≤ c

k + 1
. (2.19)

3. Finally, we bound the expected absolute rank, for i in [an(k), bn(k)], by

(n + 1)(k + 1)

2(i + 1)
≤ (n + 1)(k + 1)(c + k)

2(n + 1)k
< (c + 1)(k + 1). (2.20)

Substituting (2.18), (2.19), and (2.20) into (2.17) yields

Rn(k0) ≤ D

ks−1∑
k=k0

(c + k − 1)−c + (c + 1)(ks + 1)B(c + ks − 1)−c. (2.21)

It is clear that, for c > 1, the sum in (2.21) converges and the last term involving ks goes to 0 as
ks → ∞. So, for any ε > 0, k0 can be chosen to be suitably large to ensure that Rn(k0) < ε,
as desired.

We have a class of rules that depends on the value of c. Since we are free to choose any c,
the issue is to find the value of c that minimizes E(c) in (2.12). The following theorem shows
that this minimum exists and is unique.

Theorem 2.3. E(c) = 1
2

∑∞
i=1 αi−1βi is a strictly convex function of c.

Proof. Let gi = log(αi−1βi). Then, E(c) = 1
2

∑∞
i=1 egi , E′(c) = 1

2

∑∞
i=1 egi g′

i , and
E′′(c) = 1

2

∑∞
i=1 egi [(g′

i )
2 + g′′

i ].
It is therefore sufficient to show that (g′

i )
2 + g′′

i ≥ 0 for all i with at least one inequality
strict. It is straightforward to show that it is true for i = 1 since g1 = log(c + 1). For i > 1,

gi = i log(c + i) − i log i +
i−1∑
j=1

log j −
i−1∑
j=1

log(c + j).

Hence,

g′
i = i

c + i
−

i−1∑
j=1

1

c + j
= 1 − ∑i−1

j=1(hi,j − 1)

c + i
,
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where hi,j = (c + i)/(c + j) > 1 for 1 ≤ j ≤ i − 1. Similarly,

g′′
i = −i

(c + i)2 +
i−1∑
j=1

1

(c + j)2 = −1 + ∑i−1
j=1(h

2
i,j − 1)

(c + i)2 .

Hence,

(c + i)2((g′
i )

2 + g′′
i ) =

(
1 −

i−1∑
j=1

(hi,j − 1)

)2

− 1 +
i−1∑
j=1

(hi,j − 1)(hi,j + 1)

= 1−2
i−1∑
j=1

(hi,j − 1) +
( i−1∑

j=1

(hi,j − 1)

)2

−1 +
i−1∑
j=1

(hi,j − 1)(hi,j + 1)

> 0.

The inequality holds because hi,j + 1 > 2.

In Section 5 we list some values of the expected rank of the optimal rule, and compare them
with the corresponding values of our simple rule, both when the latter stops with probability 1,
and with a given probability less than 1. We find, numerically, the optimal c values, which
when stopping with probability 1 is about 2.4 and is not very sensitive to n, as seen in Tables 1
and 2 in Section 5.

3. Retaining more than one item

In this section we consider the performance of the simple rules given by (2.3), where we
allow the rules to continue until a given number of items, r , are retained. To this end, we
extend (2.8) for P(ks, c), which provides the probability that at least one item is retained when
n → ∞, to the entire distribution for the number of items that these rules retain, asymptotically
in n. Equation (2.11), which provides the expected absolute rank for the item that is retained
by this rule is extended to the corresponding value when r > 1. Finally, a discussion of the
implementation of the optimal dynamic rule and its behavior (in terms of the relative rank that
is required for retention as a function of the item number) for fixed n is provided.

Let Zn denote the number of items that could be retained using the simple rule. Clearly,
Zn = ∑n

i=1 Ii , where I1, . . . , In is a sequence of independent 0, 1 random variables with P(Ii =
1) = pin = min(�ic/(n + 1 − i)�, ks)/i, where �x� is the largest integer less than or equal
to x. Then Zn converges uniformly to a Poisson random variable (cf. [1, p. 3]). Let p(n) =
max pin, i = 1, . . . , n. Then

P(Zn = r) = e−λnλr
n

r! exp[O(λnp(n), r
2λ−1

n p(n))],
where λn = ∑n

i=1 pin.
It remains to find the parameter λ∗ of the limiting Poisson distribution as n → ∞. Following

arguments similar to those in the previous section,

λ∗ = lim
n→∞

ks∑
k=1

bn(k)∑
i=an(k)

k

i
= −

ks∑
k=1

k log f (k) = −
ks∑

k=1

log

(
k

k + c

)
.

Specifically, Proposition 3.1, below, follows from [1].
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Proposition 3.1. We have

lim
n→∞ P(Zn = r) = e−λ∗ λ∗r

r! .

The probability of retaining one item as n → ∞ is 1 − limn→∞ P(Zn = 0) = 1 − e−λ∗
,

which agrees with (2.8).
We now turn to the limiting expected sum of the absolute ranks, denoted by E2(ks, c), for

keeping r = 2 items, conditional on two items being kept, for simple rules given by (2.3) and
fixed ks as n → ∞. Let A2(ks, c) be the limiting expected absolute rank of the second item
that is kept, assuming that the first two available items (by the rule) are kept. Then the expected
absolute sum of ranks from the two items kept (conditional on two items being kept) is

E2(ks, c) = F̄ (0) E(ks, c) + A2(ks, c)

F̄ (1)
, (3.1)

where F̄ (x) = 1 − F(x) and F is the cumulative distribution function of a Poisson random
variable with parameter λ∗.

The expected absolute rank from the second item that is kept for fixed n can be written in a
form similar to (2.13) by summing over instances that item k is the first item that is retained.
Similar limiting arguments as n → ∞ yield

A2(ks, c) =
ks∑

k=1

V (k)

([
k2

2(k + 1)

(
c + k

k
− f (k)

c + k + 1

k + 1

)]

+ f (k)
k

2

c + k + 1

k + 1
log f (k)

)

−
ks−1∑
k=1

log f (k)

ks∑
j=k+1

V (j)
j

2

(
c + j

j
− f (j)

c + j + 1

j + 1

)
. (3.2)

Substituting (2.16) and (3.2) into (3.1) yields the desired result.
The rule can be modified so that the value of c until the first item is retained, c1, is different

from the value of c for selecting the second item, c2. The numerical results of Table 5 in
Section 5 show that, for the optimal choice of these c values, c1 > c2. This makes sense as
this implies that the first item will be chosen rather early to allow for a sufficient number of
items from which to make the second choice. This extends to retaining more than two items
by means of different c values.

In order to obtain the optimal rule which selects r items by dynamic programming in an
n-horizon problem, n ≥ r , let (m, j) be the state that the relative rank of item m is being
observed and j additional items are required. Let C(m, j) be the minimum over all stopping
rules of the sum of the expected absolute ranks from the last j items that are retained given that
the state is (m, j). The optimal solution to retain r is then C(1, r). This implies that the optimal
solution for retaining r out of n, r = 1, . . . , n, is obtained by one run of the dynamic program.
Let h(m, j) be the largest relative rank of an item to be retained in the optimal solution given
that the state is (m, j).

The values of C(m, j) and h(m, j) are determined recursively as follows:

h(n, 1) = n and C(n, 1) = n + 1

2
, C(n, j) = ∞ for j > 1.
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Furthermore, since it is preferred to retain item m with Rm = k in state (m, j) if

C(m + 1, j − 1) + (n + 1)k

(m + 1)
≤ C(m + 1, j),

it follows that

h(m, j) =
⌊

(C(m + 1, j) − C(m + 1, j − 1))(m + 1)

n + 1

⌋
.

This implies that

C(m, j) = h(m, j)

m

(
C(m + 1, j − 1) + (n + 1)(h(m, j) + 1)

2(m + 1)

)

+
(

1 − h(m, j)

m

)
C(m + 1, j).

Some values of C(1, r) for various values of n are given in Table 4 in Section 5.

4. Rules that retain a given percentage of items

In this section we consider simple rules which, for a fixed given fraction α, 0 < α < 1,
retain (approximately) the fraction α of the population of ‘good’ items. More specifically, if,
for fixed α, we denote by Ln(α) the number of items retained by the rules considered, we show
that

lim
n→∞

E Ln(α)

n
= α (4.1)

and
Ln(α)

n
→ α a.s. as n → ∞. (4.2)

Let Sn(α) denote the sum of the absolute ranks of the items retained by the rule. Furthermore,
we show that

lim
n→∞ E

Sn(α)

n E(Ln)
= α

2
. (4.3)

Note that this is optimal in the sense that if we could inspect all the items first, and pick the
	αn
 best items, then the sum of the ranks, Bn, would satisfy

lim
n→∞

Bn

n	αn
 = lim
n→∞

	αn
 + 1

2n
= α

2
.

Let 0 < α < 1 be fixed. We omit the index α. Consider the following rule.

Rule 4.1. Keep item j if and only if Rj ≤ 	αj
.

Note that knowledge of n is not required to implement the rule. Let Ij = 1 or 0, according
to whether or not the j th item is kept. Then Ln = ∑n

j=1 Ij , and α ≤ E Ij < α + 1/j, j =
1, . . . , n. Thus,

nα ≤ E Ln < αn + log n + 1, (4.4)

and (4.1) follows. The second limit, (4.2), follows by noting that, by the independence of
the Rj s, the Ij s are independent (almost identically distributed) Bernoulli variables, and by
applying the strong law of large numbers.
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Here Sn = ∑n
j=1 An

j Ij ; thus,

E Sn =
n∑

j=1

E(An
j Ij )

=
n∑

j=1

E(E An
j Ij | Rj )

= (n + 1)

n∑
j=1

1

j (j + 1)

	jα
∑
k=1

k

= n + 1

2

n∑
j=1

	jα
(	jα
 + 1)

j (j + 1)

= n + 1

2
(nα2 + o(n)). (4.5)

Combining (4.4) and (4.5) yields (4.3).
We now show that the sum of the absolute ranks, Sn, suitably normalized, converges a.s.

We first prove a result that shows that the normalized sum of the relative ranks of kept items
converges a.s. to half of the sum of the resulting absolute ranks.

Lemma 4.1. Let Tn = ∑n
i=1 RiIi (i.e. Tn is the sum of the relative ranks from all items kept at

the times that they are kept). Then

Tn

nLn

→ α

4
a.s. as n → ∞. (4.6)

Proof. Let

Ui = RiIi − vi(vi + 1)

2i
,

where vi = 	αi
. Then Ui are independent random variables with mean zero. Let bi = i2.
Since ∞∑

i=1

E

(
U2

i

b2
i

)
<

∞∑
i=1

vi(vi + 1)(2vi + 1)

6i5
< ∞,

it follows from [3, Theorem 2, p. 239] that b−1
n

∑n
i=1 Ui → 0 a.s. as n → ∞. This implies

that Tn/n2 → α2/4 a.s. because n−2 ∑n
i=1[vi(vi + 1)]/(2i) → α2/4. Equation (4.6) follows

from (4.2).

We are now prepared to show the following theorem.

Theorem 4.1. We have
Sn

nLn

→ α

2
a.s. as n → ∞.

Proof. Let Gn be the sum over j = 1, . . . , n of the contribution to the absolute rank An
j

above Rj for the items retained, i.e. Gn = ∑n
j=1(A

n
j − Rj )Ij . Then, by (2.9),

E(Gn | Fn−1) = (Gn−1 + Rn−1In−1)
(n + 1)

n
. (4.7)
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Let Zn = Gn/n(n + 1). Equation (4.7) implies that

E(Zn | Fn−1) = Zn−1(n − 1)n(n + 1)

n(n + 1)n
+ Rn−1In−1

n2 = n − 1

n
Zn−1 + Rn−1In−1

n2 .

Note that, by Lemma 4.1,
∑∞

n=2 In−1Rn−1/n2 → α2/4 a.s. Hence, Gn/n2 a.s. converges by
Theorem 1 of [6]. But, Tn/n2 converges a.s. by Lemma 4.1 and Sn/n2 = (Gn + Tn)/n2.
Therefore, Sn/n2 converges a.s.

To see that the almost-sure limit of Sn/n2 is α2/2, note that Sn ≥ Ln(Ln + 1)/2 and, thus,
by (4.2), lim inf Sn/n2 ≥ α2/2 a.s. Since Sn/n2 is bounded, it follows that

E

(
lim

Sn

n2

)
= lim E

(
Sn

n2

)
= α2

2
,

where the last equality follows from (4.1) and (4.3). Thus, if P(lim Sn/n2 > α2/2) > 0, we
would get a contradiction.

The simple rule discussed above satisfies Ln/	αn
 → 1 a.s. Suppose, however, that it is
desired that a rule keep exactly 	αn
 items. Can this be achieved? Below we exhibit a rule for
which P(Ln = 	αn
) → 1 and for which (4.3) holds. This is achieved by increasing the cutoff
level for which an item is kept by a small amount.

Rule 4.2. Fix 0 < α < 1 and 0 < ω < 0.5. Retain item j if

Rj ≤ 	(α + n−ω)j
, (4.8)

and if 	αn
 items have not already been chosen.

Proposition 4.1. For Rule 4.2,

P(Ln = 	αn
) → 1 as n → ∞. (4.9)

Proof. Let Xn be the number of items j for which (4.8) holds, j = 1, . . . , n. We shall
show that P(Xn ≥ 	αn
) → 1. Let Ij = 1 if (4.8) holds for j and Ij = 0 otherwise. Then
P(Ij = 1) = pnj ≥ pn = α + n−ω. Let Yn be a binomial(n, pn) random variable. Then Xn is
stochastically larger than or equal to Yn. Hence,

lim
n→∞ P(Xn ≥ 	αn
) ≥ lim

n→∞ P(Yn ≥ 	αn
)

= lim
n→∞

(
1 − �

( 	αn
 − npn√
npn(1 − pn)

))

≥ lim
n→∞

(
1 − �

(
1 − n1−ω

√
npn(1 − pn)

))

= 1,

since 0 < ω < 0.5, where � is the standard normal distribution. Thus, (4.9) holds.

Proposition 4.2. Equation (4.3) holds for Rule 4.2.

Proof. We have

E(An
j | Ij = 1) ≤ n + 1

j + 1

(
(α + n−ω)j + 1

2

)
≤ (n + 1)

(
α + n−ω

2
+ 1

2(j + 1)

)
.
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Let j∗
1 , . . . , j∗

s be the at most 	αn
 smallest indices j ≤ n for which (4.8) holds. Thus,
Sn = ∑n

i=1 An
j∗
i
Ij∗

i
. Hence,

E Sn ≤ 	αn
(n + 1)(α + n−ω)

2
+ (n + 1) log(n + 2)

2
.

It follows that E Sn/	αn
n → α/2 as n → ∞, i.e. (4.3) holds.

A result corresponding to Theorem 4.1, for Rule 4.2, follows in a similar way as for Rule 4.1.

5. Numerical results

In this section we demonstrate the results from the previous sections. We first illustrate the
findings from Section 2 where one item is retained. Table 1 presents the expected value of the
absolute rank of the retained item of the optimal rule (based on dynamic programming for each
given n), and the corresponding value and the optimal choice of c for the simple rule, which is
evaluated directly for each given c.

It is apparent from Table 1 that the relative advantage of using the simple rule is greater for
large n. It is interesting that the performance of the simple rule is less sensitive to the value
of n. Hence, when the number of items becomes large, the case where it is hard to implement
dynamic programming, is when the simple rule performs almost as well as the optimal rule.

The choice of c in the simple rule should be taken to be about 2.4. This value of c is nearly
optimal for a wide range of n. Furthermore, the actual performance does not vary much for
different c near 2.4, as seen in Table 2. Note from Table 2 that, for n = 100, c = 2.30 performs
better than c = 2.4, consistent with the findings in Table 1.

In Table 3 we illustrate the performance of the rules which select an item with probability
P < 1, along with their optimal c and ks . It is observed that even for P = 0.99 we do not need

Table 1: Optimal and simple rules for retaining one item.

Optimal Simple rule
n expected rank expected rank Optimal c

100 3.6032 3.7348 2.30
1000 3.8324 3.9062 2.36

10 000 3.8649 3.9258 2.41
100 000 3.8690 3.9279 2.41

1 000 000 3.8695 3.9281 2.42

Table 2: Sensitivity of the one-choice simple rule to c.

n
c

100 1000 10 000 100 000 1 000 000

2.00 3.7706 4.0019 4.0397 4.0450 4.0457
2.10 3.7550 3.9543 3.9857 3.9894 3.9899
2.20 3.7418 3.9251 3.9513 3.9543 3.9546
2.30 3.7348 3.9109 3.9325 3.9349 3.9352
2.40 3.7405 3.9066 3.9259 3.9280 3.9282
2.50 3.7540 3.9111 3.9292 3.9311 3.9313
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Table 3: One item selected with given P, optimal c and ks , conditional expected absolute rank, and the
actual value of P obtained.

Actual Expected absolute
P probability c ks rank

n = 100

0.50 0.5051 1.06 1 1.5049
0.60 0.6061 1.58 1 1.7549
0.70 0.7013 1.15 2 1.8982
0.80 0.8032 1.25 3 2.2058
0.90 0.9013 1.61 4 2.6028
0.95 0.9506 1.74 6 2.9378
0.99 0.9906 2.16 11 3.4140

n = 1000

0.50 0.5015 1.01 1 1.5025
0.60 0.6016 1.51 1 1.7536
0.70 0.7021 1.14 2 1.9176
0.80 0.8010 1.22 3 2.2254
0.90 0.9001 1.60 4 2.6346
0.95 0.9502 1.96 5 2.9817
0.99 0.9901 2.15 11 3.4964

n = 10 000

0.50 0.5025 1.01 1 1.5049
0.60 0.6016 1.51 1 1.7548
0.70 0.7023 1.14 2 1.9193
0.80 0.8011 1.22 3 2.2277
0.90 0.9004 1.60 4 2.6391
0.95 0.9502 1.96 5 2.9868
0.99 0.9900 2.15 11 3.5035

n = 100 000

0.50 0.5025 1.01 1 1.5050
0.60 0.6016 1.51 1 1.7550
0.70 0.7000 1.13 2 1.9142
0.80 0.8011 1.22 3 2.2279
0.90 0.9005 1.60 4 2.6395
0.95 0.9502 1.96 5 2.9873
0.99 0.9900 2.15 11 3.5043

n = 1 000 000

0.50 0.5025 1.01 1 1.5050
0.60 0.6016 1.51 1 1.7550
0.70 0.7000 1.13 2 1.9142
0.80 0.8011 1.22 3 2.2280
0.90 0.9005 1.60 4 2.6396
0.95 0.9502 1.96 5 2.9874
0.99 0.9900 2.15 11 3.5044
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Table 4: Expected absolute rank/(r(r + 1)/2) obtained by the optimal rule for keeping r .

n
r

100 1000 10 000 100 000 1 000 000

1 3.6032 3.8324 3.8649 3.8690 3.8695
2 2.7937 2.9781 3.0039 3.0072 3.0076
3 2.3774 2.5386 2.5612 2.5640 2.5644
4 2.1216 2.2688 2.2893 2.2919 2.2922
5 1.9476 2.0851 2.1042 2.1066 2.1069
6 1.8209 1.9513 1.9694 1.9716 1.9719
7 1.7242 1.8491 1.8664 1.8686 1.8688
8 1.6475 1.7683 1.7850 1.7871 1.7873
9 1.5849 1.7026 1.7188 1.7208 1.7211

10 1.5331 1.6481 1.6639 1.6659 1.6661

Table 5: Two items selected with probability 1 for equal c and unequal c1 and c2, optimal c, c1, and c2,
and the expected absolute rank (EAR)/3.

EAR/3 EAR/3 EAR/3
n c c1 c2 (equal) (unequal) (optimal)

100 3.21 3.81 2.16 3.0857 2.8667 2.7937
1000 3.19 3.79 2.20 3.2198 3.0078 2.9798

10 000 3.15 3.80 2.22 3.2342 3.0259 3.0039

ks bigger than 11, for all n ≤ 106. It is noted that, for n ≥ 1000, the optimal values of c and
ks do not change with n (up to the precision given).

Table 4 lists the optimal sum of the ranks for keeping r , standardized by r(r + 1)/2 (which
is the lowest possible attainable sum of r ranks). These values were obtained by the dynamic
programming described in Section 3.

In Table 5 we list the performance of the simple rule which selects two items, with one
c value and with c1 �= c2, respectively. It is seen that c1 �= c2 yields a large improvement. The
optimal values are listed for comparison.

In Table 6 we list the corresponding conditional values when a selection is only required
with given probability P. The same c is used for both choices. A comparison with the
corresponding values in Table 3 shows that the second term improves the average (when divided
by r(r + 1)/2 = 3).

Finally, in Table 7 we show the performance of Rule 4.1 for α = 0.1, 0.2, 0.3, 0.4, and
0.5 and n = 100, 1000, 10 000. This is the only table that is based on simulations, with 1000
replications for each n and α. Since the probability of retaining an item is usually greater than
α and at least equal to α, it is not surprising that the average number kept, when standardized by
nα, is somewhat greater than 1. This effect is larger for small values of n. Similarly, the average
absolute rank standardized by n/2 times the number kept, is slightly above α, especially when
n is small.
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Table 6: Two items selected with given P, optimal ks , and the conditional expected absolute rank (EAR)/3.

Actual
n P probability c ks EAR/3

100 0.50 0.5365 2.04 2 1.9407
0.60 0.6030 2.48 2 2.0179
0.70 0.7037 2.20 3 2.0724
0.80 0.8024 2.31 4 2.2093
0.90 0.9007 2.42 6 2.4414
0.95 0.9502 2.62 8 2.6107
0.99 0.9903 3.06 13 2.8939

1000 0.50 0.5019 1.82 2 1.9436
0.60 0.6003 1.66 3 2.0209
0.70 0.7009 2.18 3 2.1091
0.80 0.8013 2.32 4 2.2568
0.90 0.9004 2.48 6 2.4940
0.95 0.9503 2.70 8 2.6919
0.99 0.9901 2.95 15 2.9935

10 000 0.50 0.5016 1.82 2 1.9468
0.60 0.6002 1.66 3 2.0235
0.70 0.7002 2.18 3 2.1119
0.80 0.8009 2.32 4 2.2607
0.90 0.9007 2.49 6 2.5011
0.95 0.9504 2.71 8 2.7002
0.99 0.9902 2.96 15 3.0023

Table 7: The average absolute rank normalized by [the number of items kept times n/2], (A), the average
number of items kept normalized by nα, (B), and their standard deviations for Rule 4.1 and selecting a

proportion α.

n α (A) Standard deviation of (A) (B) Standard deviation of (B)

100 0.1 0.1760 0.065 00 1.2291 0.3305
100 0.2 0.2579 0.056 04 1.1114 0.2101
100 0.3 0.3457 0.053 06 1.0582 0.1621
100 0.4 0.4457 0.052 76 1.0469 0.1253
100 0.5 0.5572 0.050 41 1.0572 0.0967

1000 0.1 0.1127 0.013 51 1.0386 0.0964
1000 0.2 0.2092 0.014 35 1.0171 0.0651
1000 0.3 0.3078 0.016 36 1.0102 0.0514
1000 0.4 0.4080 0.015 66 1.0095 0.0376
1000 0.5 0.5091 0.016 92 1.0098 0.0327

10 000 0.1 0.1017 0.003 25 1.0055 0.0302
10 000 0.2 0.2013 0.003 96 1.0025 0.0195
10 000 0.3 0.3012 0.004 76 1.0019 0.0156
10 000 0.4 0.4012 0.004 95 1.0015 0.0123
10 000 0.5 0.5012 0.005 02 1.0014 0.0100
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6. Concluding remarks

The main thrust of the paper is to find simple rules that perform nearly optimally. A referee
provided an alternative elegant approach to deriving the asymptotic results that appear in
Sections 2 and 3. This derivation motivates extensions to other rules that are perhaps less
simple.

Consider what happens in the limit as the number of items, n, goes to infinity. Assume that the
times that the observations are observed are equally spaced on the interval (0, 1]. Let Ni(s, t)

denote the number of items that have relative rank i on the time interval (s, t), 0 < s < t ≤ 1.
The referee observed that Ni(s, t) has a Poisson distribution with mean

mi(s, t) =
∫ t

s

1

x
dx = log

(
t

s

)
.

Hence, the distribution of Ni(s, t) does not depend on i.
Using the above leads to an alternative approach for obtaining the asymptotic results that

appear in Sections 2 and 3. For example, consider the curtailed rule that is defined by 0 < t1 ≤
t2 ≤ · · · ≤ tks ≤ 1 for a given ks . This rule chooses an item if it has a relative rank i, provided
that it arrives after time ti and the number of items that are already retained is not equal to the
given quota of r . If the objective is to retain one item then it is easily seen that the expected
absolute rank conditional on retaining one item is

E(ks) =
∑ks

k=1 V (k)/tk − ks(1 − P(ks))

2 P(ks)
, (6.1)

where V (1) = 1, V (k) = t1 · · · tk−1/tk−1
k for 1 < k ≤ ks , and the probability of stopping is

P(ks) = 1 − t1t2 · · · tks .
The simple rule in Section 2 is of the form tk = k/(k + c), 1 ≤ k ≤ ks . To illustrate an

extension based on the observation of the referee, assume that ks = 2 and consider minimizing
E(ks) subject to a probability of p that one item is not retained. The optimal choices of t1 and
t2 are found by minimizing

f (t1, t2) = 1/t1 + t1/t2
2 − 2t1t2

2(1 − t1t2)

subject to t1t2 = p. It is straightforward to find that the optimal values are t1 = √
p/d and

t2 = √
pd , where d = 31/4 unless

√
pd > 1, in which case t2 = 1 and t1 = p. For the simple

rule in Section 2, the value of tk = k/(k + c) for k = 1, 2. It is straightforward to find that
c = (

√
1 + 8/p − 3)/2 to achieve a probability of p of not retaining two items.

If the probability that an item is not retained is set to be 10%, that is, p = 0.1, for example,
then the optimal values of t1 and t2 are 0.240 and 0.416, respectively, with E(2) = 2.972. In
contrast, for the simple rule described in the paper, c = 3. Hence, t1 = 0.25 and t2 = 0.4
with E(2) = 2.979. The optimization problem becomes more difficult when either r > 1 or
ks > 2. We only illustrate this idea and do not explore it further as the objective of this paper
is to describe simple rules that perform well.
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