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On the Polyak–Viro Vassiliev Invariant of
Degree 4

A. Stoimenow

Abstract. Using the Polyak–Viro Gauss diagram formula for the degree-4 Vassiliev invariant, we extend

some previous results on positive knots and the non-triviality of the Jones polynomial of untwisted

Whitehead doubles.

1 Introduction

When some new knot invariants are introduced, one is interested in knowing what
properties of knots they measure. For example, the Alexander polynomial can reflect
the property of a knot to be fibered or slice, while the Jones polynomial reflects more
strongly other properties like being achiral or alternating. Shortly after Vassiliev in-

variants were introduced [Va], it was shown that whenever any finite number of such
invariants admit given values on some knot, they do so also on alternating [S] or slice
[Ng] knots (up to the condition of zero Arf invariant), so that Vassiliev invariants are
useless in detecting these properties.

Contrarily, via the Gauss diagram formulas of Fiedler [Fi, Fi2, FS] and Polyak–
Viro [PV], Vassiliev invariants turned out to have numerous applications to positive

and almost positive knots [St, St2]. In particular, the author [St] showed that the
(properly normalized) Vassiliev invariants of degree 2 and 3 are bounded below by
a multiple of the crossing number of a positive reduced diagram, implying that a
positive knot has only finitely many positive (reduced) diagrams.

In this note we prove a similar type of inequality for the degree-4 Vassiliev invari-
ant given in [PV]. The method of proof is similar to the one in [St], but technically

more difficult, since the formula lacks the configuration of linked pairs of crossings
and contains a negative (coefficient) term, whose contribution must be compensated.

An advantage of the Gauss diagram formulas is that they allow calculation of the
invariant in polynomial time with respect to the crossing number of the diagram,
and thus allow practical computation for very high crossing number, where the cal-

culation of the link polynomials is considerably slower. Based on such a calculation,
we then discuss some applications of the Polyak–Viro formula to untwisted White-
head doubles and the non-triviality of their Jones polynomial. In particular, we will
establish this non-triviality for untwisted Whitehead doubles of knots of up to 15

crossings.
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610 A. Stoimenow

2 Gauss Sums

2.1 Basic Definitions

We use the Alexander–Briggs notation and the Rolfsen [Ro] tables to distinguish be-
tween a knot K and its obverse (mirror image) !K. Projection is the same as diagram,
and this means a knot or link diagram. Diagrams are always assumed to be oriented.

We recall briefly the definition of Gauss sum invariants.

Definition 2.1 ([Fi2]) A Gauss diagram of a knot diagram is an oriented circle with
arrows connecting points on it mapped to a crossing and oriented from the preimage
of the undercrossing (underpass) to the preimage of the overcrossing (overpass).

We will also call the two arrow ends hook and tail.

Example 2.2 As an example, Figure 1 shows the knot 62 in its commonly known
projection and the corresponding Gauss diagram.

12

3

4

5

6
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3

4

5

6

Figure 1: The standard diagram of the knot 62 and its Gauss diagram.

Definition 2.3 The writhe is a number (±1), assigned to any crossing in a link
diagram. A crossing as in Figure 2(a) has writhe 1 and is called positive. A crossing
as in Figure 2(b) has writhe −1 and is called negative.

(a) (b)

Figure 2
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On the Polyak–Viro Vassiliev Invariant of Degree 4 611

Definition 2.4 A knot is called positive if it has a positive diagram, i.e., a diagram
with all crossings positive. A knot is called almost positive if it is not positive, but has

an almost positive diagram, i.e., a diagram with all crossings positive except one.

In addition to their intrinsic knot-theoretical interest, positive knots (or certain
sub- or super-classes of them) have been studied in a variety of contexts, including
singularity theory [A, BoW], algebraic curves [Ru, Ru2], dynamical systems [Wi] and
(in some vague and not yet understood way) in 4-dimensional QFTs [Kr].

A Gauss sum is evaluated by choosing arrows from the Gauss diagram of a knot di-
agram matching a given configuration, and summing for each such matching choice
of arrows a quantity called weight. Usually (if not specified, by default) the weight
is the product of the writhes of the crossings whose arrows match the configuration.

For convenience we will identify a configuration with its evaluation on a fixed speci-
fied diagram.

The simplest (non-trivial) Vassiliev invariant is the Casson invariant v2 = ∇2,
with ∇i = [∇]zi being the coefficient of zi in the Conway polynomial, for which

Polyak–Viro gave the simple Gauss sum formula

(1) v2 = .

Here the point on the circle corresponds to a point on the knot diagram, to be placed
arbitrarily except on a crossing.

Polyak–Viro and also Fiedler gave other formulas for the degree-3 Vassiliev invari-

ant v3. To make precise which variation of the degree-3 Vassiliev invariant we mean,
we have

v3 = − 1

12
V2 −

1

36
V3,

where V is the Jones polynomial [J], and Vi := V (i)(1). (Note that v2 = ∇2 =

− 1
6
V2.) Fiedler’s formula for v3 [Fi2, FS] reads1

(2) 4v3 =

∑

(3,3)

wpwqwr +
∑

(4,2)0

wpwqwr +
1

2

∑

p, q linked

(wp + wq),

where the configurations are

(3, 3) (4, 2)0 p, q linked

Here chords depict arrows which may point in both directions, and wp denotes
the writhe of the crossing p. If two chords a and b intersect, we call the correspond-
ing crossings linked and write a ∩ b (read “a intersects b”). In a linked pair, we call

1Note the factor 4 by which (2) differs from the definition in [St]!
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612 A. Stoimenow

distinguished the crossing whose over-pass is followed by the under-pass of the other
crossing when passing the diagram in the orientation direction.

We note that v3 is asymmetric, i.e., v3(!K) = −v3(K), so that achiral knots have
zero invariant.

2.2 The Main Result

For the invariants of higher degree the formulas are more complicated, and the anal-
ysis becomes more involved. For the degree-4 Vassiliev invariant v4, the Polyak–Viro
formula has the form

(3)

v4 = + 6 + 2 + 3 +

+ 2 + 2 + − +

+ + + 2 + 2 + + .

Here the weights are taken to be the products of the writhes of the single arrows.

For simplicity, denote the diagrams in (3) (without coefficients) by 〈1〉 , . . . , 〈16〉
in order of occurrence. Thus v4 is written as 〈1〉 + 6 〈2〉 + · · · + 〈16〉 with

〈1〉 = , . . . , 〈16〉 = .

As noted in [PV], v4 is symmetric (that is, has the same value on mirror images),
takes the value 3 on the trefoil(s) and 2 on the figure-eight knot. It is also primitive.
However, the values on 3 non-trivial knots are needed to identify the invariant, since

the space of symmetric primitive Vassiliev invariants of degree ≤ 4 is 3-dimensional.
Using the additional value v4 = 25 on 51 (on its usual 5-crossing diagram, all terms
in (3) are zero, except 〈14〉 = 5 and 〈12〉 = 15) and some calculation, one arrives at
the expression

(4) v4 = − V4

144
+ 2∇2

2 −
5

2
∇4 −

V3

24
+
∇2

12
.

Our main aim in this note will be to prove the following theorem.

Theorem 2.5 If D is a positive reduced knot diagram of c crossings, then v4(D) ≥
3c/4.

From the formulas (1) and (2), it is obvious that on a positive diagram v2 and
v3 are non-negative, since the formulas in this case basically count the number of
matching choices of arrows for some of the configurations. By some more detailed
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On the Polyak–Viro Vassiliev Invariant of Degree 4 613

arguments we showed that this number is bounded below by a positive multiple of
the crossing number of the diagram [St]. To prove Theorem 2.5, a similar analysis

is necessary. It is more difficult than for the Vassiliev invariants of lower degree,
because linked pairs are not counted and the contribution of a negative (coefficient)
term occurs. For this reason and because of the large number of terms, it appears
difficult to prove a reasonable estimate of v4 on almost positive knots. (In a diagram

with a negative crossing there are too many configurations of negative contribution
to account for.)

2.3 Two Examples

There are examples of knots for which the new inequality is violated, but those for the
Vassiliev invariants of degree 2 and 3 shown in [St] are not. Particularly interesting
is the knot 161377111 in Figure 3. It has v2 = 7 and v3 = 7, so that with c = 16

we have v2 ≥ c
4

and v3 ≥
⌊

c−1
2

⌋
. However, v4 = 9 < 3

4
c. The knot has the positive

Conway polynomial∇(
√

z) = [1] 7 13 9 2 and the (more general) condition of [CM]
involving the skein polynomial is also satisfied. The knot also satisfies the equalities

(5) min deg V = min degv P/2 = max degz P/2 = min dega F/2 = g,

with P being the skein and F the Kauffman polynomial. (The genus g = 5 was
determined using [St3].)

The only alternative methods to show non-positivity for this example are the
property max deg∇ = max degz P [Cr], the condition min cf aF = min cf lP [Yo],
and the condition on the positivity of the “critical line” coefficients [F]zlam with m− l

minimal [Th] (following since positive diagrams are A-adequate). However, these

conditions, and also those in (5), involve invariants which are of exponential com-
plexity and are therefore hard to apply for more complicated knots. For example, v4

takes just a few seconds on diagrams of about 65 crossings, while the calculation of
the skein polynomial using the skein method may take up to several days! The genus

cannot even always be determined in general, except by the work of Haken, which
has proved impracticably complicated.

One can find other examples, such as 122089, for which the equalities in (5) and
the above three conditions violated by 161377111 are satisfied (in this case g = 2 was

verified in [St4]), but ours is not.
Thus our criterion is new, and sometimes more effective.

3 Proof of Theorem 2.5

Before we start with the proof, we recall a property and a move of positive diagrams,
introduced in [St].

Lemma 3.1 (Extended Even Valence eev(c), see [St]) In the Gauss diagram of a knot

diagram D, any arrow c is intersected by an even number of other arrows. If D is positive,

exactly one-half of the arrows intersecting c are distinguished in the linked pair with c

(and the other half are not).
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614 A. Stoimenow

161377111 122089

Figure 3: Two knots on which our criterion is rather effective.

Alternatively, we also say that exactly one-half of the arrows intersecting c intersect
it in one or the other direction.

Definition 3.2 The loop move from a knot diagram A to a diagram B, consists in

choosing a segment of the line in A between the two passings of a crossing c, such that
it has no self-crossings, removing this segment by switching some of the crossings on
it (for A positive exactly one-half), and eliminating all reducible crossings thereafter.

c
−→

c
−→

c
−→ .

On the Gauss diagram, the loop move means choosing an arrow c such that one
of the half-arcs into which the ends of c separate the circle contains no endpoints of

arrows b 6∩ c, then removing c and all a ∩ c, and finally to deleting all chords b which
have become isolated after this removal (these are the chords b 6∩ c, such that for all
a ∩ b, also a ∩ c).

Since the loop move transforms a knot diagram into another knot diagram, its

Gauss diagram version preserves the realizability of the Gauss diagram (by a knot
diagram). Also, the move preserves the positivity of a knot diagram (and its Gauss
diagram).

Proof of Theorem 2.5 We split the proof into three steps, each one estimating the
contribution of an appropriate part of the Gauss sum (3), and include some interme-
diate statements as lemmas.

Step 1: We first show that v4 ≥ 0. For this we need to account for the negative (coef-
ficient) term 〈9〉. Consider the sum 2 〈6〉+ 2 〈7〉+ 〈8〉− 〈9〉 and symmetrize with re-
spect to mirror image, noting that v4 is invariant under this symmetrization. For the
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On the Polyak–Viro Vassiliev Invariant of Degree 4 615

Gauss diagram, mirroring the knot diagram means reversing all arrows and negating
the writhe. However, in a positive diagram all weights before and after negating the

writhe remain positive, so we can ignore negating the writhe. Then we obtain

(6)
1

2




2 + 2 + − +

2 + 2 + −




.

Here we replaced the double arrow in 〈8〉 and its arrow-reversed counterpart by a
single arrow, since the knot diagram is positive (and the weight does not change),
and the Gauss diagrams gain no symmetries after the replacement (contrarily to 〈12〉,
which would gain a cyclic symmetry of order 3, and whose coefficient would have to

be multiplied by 3 accordingly).

We define now the upper index U (a, b) of two linked chords a and b as follows.

(7)

a

b

The arrow b separates the circle into two half-arcs. Count the arrows c (with both
ends) on the half-arc of b on which the overpass (arrow hook) of a lies, and which
intersect a in the in the opposite direction to that of b.

a

b
c

In the same way define the lower index u(a, b), only counting arrows c on the half-arc
of b on which the underpass (arrow tail) of a lies.

a

b
c

Now all the configurations in (6) have a distinguished (vertical) arrow, intersecting
(as unique arrow) all other arrows in the configuration. Thus the evaluation of (6)
on D can be split into the sum for any fixed vertical arrow.

Let a be such an arrow, and let b1, . . . , br be the arrows intersecting a, such that
they are distinguished in the linked pair with a (that is, they look like b in (7)). Then

set r ′ = 2r, and let br+1, . . . , br ′ be the arrows intersecting a, such that a is distin-
guished in the pair.

For simplicity denote by 〈〈1〉〉, . . . , 〈〈8〉〉 the diagrams in (6). Now consider (6) ′,
obtained from (6) by reversing the knot orientation. This clearly leaves v4 invariant
too, but for the Gauss diagrams it means to take the mirror image. Accordingly, for
k = 1, . . . , 8 set 〈〈k ′〉〉 to be the mirror image of 〈〈k〉〉. (Arrows that point from left to
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616 A. Stoimenow

right in 〈〈k〉〉 point from right to left in 〈〈k ′〉〉 and vice versa.) Then we have

〈〈1〉〉 + 〈〈2〉〉 =

r∑

i=1

(
U (a, bi)

2

)
〈〈3〉〉 =

r∑

i=1

U (a, bi)

〈〈5〉〉 + 〈〈6〉〉 =

r∑

i=1

(
u(a, bi)

2

)
〈〈7〉〉 =

r∑

i=1

u(a, bi)

〈〈4 ′〉〉 = 〈〈8 ′〉〉 =

r∑

i=1

u(a, bi)U (a, bi).

Five analogous identities with the sums over i = r + 1, . . . , r ′ hold for the mirrored
Gauss diagrams, i.e., reversed knot orientation. Abbreviating ui = u(a, bi) and Ui =

U (a, bi), we obtain then

1

2

(
(6) + (6) ′

)
=

1

4

[ r ′∑

i=1

2

(
Ui

2

)
+ 2

(
ui

2

)
+ Ui + ui − 2Uiui

]

=

1

4

r ′∑

i=1

(Ui − ui)
2 ≥ 0.

Since the other configurations are non-negative, this shows v4 ≥ 0.
As we will need it later, denote the right-hand side in the above estimate

w̃(a) =

1

4

r ′∑

i=1

(
U (a, bi) − u(a, bi)

) 2
,

the sum taken over all chords bi linked with a, distinguished or not.

Now we give a better description of the crossings with w̃(a) > 0.

Lemma 3.3 w̃(a) > 0 if and only if there exist b, c ∩ a in opposite directions with

b 6∩ c. Moreover, in this case w̃(a) ≥ 1
2
.

Proof “⇒”. If w̃(a) > 0, clearly not all ui and Ui vanish. Thus such b, c must exist.

“⇐”. Let such b and c exist, and fix b and c.

(8)

a
b

c

We now construct a family L of chords intersecting a with b, c ∈ L by induction as

follows.
Set b0 = b and b1 = c (this indexing is unrelated to the preceding argument).

Then assume that for some k ≥ 0 and n > 0, Lk,n = {bi : −k ≤ i ≤ n} is already
defined. If U (a, b−k) > 0, set b−k−1 to be one of the chords counted by U (a, b−k),
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On the Polyak–Viro Vassiliev Invariant of Degree 4 617

and if u(a, bn) > 0, set bn+1 to be one of the chords counted by u(a, bn). Otherwise,
if U (a, b−k) = u(a, bn) = 0, set L = Lk,n.

Then any two arrows in L do not intersect, and bi and bi+1 intersect a in opposite
directions. Then at least two of the bi , namely b−k and bn, have U (a, bi) 6= u(a, bi),
and thus w̃(a) ≥ 1

2
.

Denote by ( · )s the symmetrization with respect to both orientation and mirror-
ing. Then we just showed that

(9)
(

2 〈6〉 + 2 〈7〉 + 〈8〉 − 〈9〉
)

s
=

∑

a

w̃(a) ≥
∣∣{a : w̃(a) > 0}

∣∣
2

.

Step 2: Now we consider the arrows a with w̃(a) = 0. Clearly all chords c ∩ a with c

distinguished must intersect all chords b ∩ a with b non-distinguished

a
c

a

b.

If we have c and b intersecting in such a way that

(10)

a

,

then (a, b, c) ∈ 〈12〉 in (3). (Note that in a positive diagram,

=

1

3
,

but it is convenient to retain the distinction of the double arrow as we will soon see.)
Thus consider the case where no b and c with (10) occur. Then we have a picture

like this:

(11)

a
}

}

AB

with

(12) A := {b : b ∩ a, a distinguished} and B := {b : b ∩ a, b distinguished}.

Here we drew only a and all b ∩ a. Because of eev(a) we have |A| = |B|.
Consider the arrow c in B whose arrow hook is closest to the arrow hook of a.

Since |A| + 1 arrows (a including) intersect c in one direction, and from the arrows
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618 A. Stoimenow

drawn at most |B| − 1 intersect c in the other direction, by eev(c) there is at least one
other chord d not drawn in (11) (that is, d 6∩ a), with d ∩ c in the direction opposite

to a.

Assume (without loss of generality up to mirroring the diagram and interchanging

A and B), that d is on the left of a in (11):

a

AB

d

c

We have drawn d also to intersect arrows in A, as we will now justify.

Lemma 3.4 d intersects arrows in A and B.

Proof Assume d intersects arrows only in B, but not in A. Then all arrows d ′ 6∩ d

on the opposite side of d to a also intersect (possibly arrows in B, but) no arrows in
A. By performing loop moves at a suitable choice of such d ′ we can achieve that they
all disappear, that is, there is no d ′ 6∩ d on the opposite side of d to a. Call this new

positive diagram D ′ ′. Applying in D ′ ′ a loop move on d gives a positive diagram D ′.

We had |A| = |B| in D, and the moves from D to D ′ did not affect A, but at least

the loop move on d deleted (at least) one arrow from B. (We take A and B in D ′ to
be defined as in (12), in the same way as for D.) But then |B| < |A| in D ′, and thus
eev(a) is violated, a contradiction to D ′ being positive.

It follows from the lemma that there exist c ∈ A, e ∈ B or e ∈ A, c ∈ B, such that

d ∩ c, e and d ∩ c in the opposite direction to a. Then (a, c, d, e) ∈ 〈4〉 ∪ 〈5〉.
In summary, we showed in Step 2 that if w̃(a) = 0, then a participates in at least

one of the configurations 〈12〉, 〈4〉 or 〈5〉 of (3). In case a participates in 〈12〉, con-
sider the configuration in which a is the double arrow. Thus we have assigned to a a
configuration, which we call matching configuration for a.

We have that the changes of both orientation (mirroring the Gauss diagram) and
mirroring (reversing the arrows) preserve 〈12〉, and interchange 〈4〉 and 〈5〉. Any
configuration 〈4〉 ∪ 〈5〉 is realized as matching configuration at most twice (a is one

of the two arrows that intersect only two of the remaining three arrows in the con-
figuration, and not all three), and after symmetrization appears with coefficient 2.
〈12〉 is realized for at most one a (it must be the double arrow) and appears with
coefficient 1.

Denote for simplicity by 〈12〉w̃>0 and 〈12〉w̃=0 the number of configurations of
type 〈12〉 in which the double arrow a has w̃(a) > 0, resp., w̃(a) = 0. Then we have

(13)
(

3 〈4〉 + 〈5〉 + 〈12〉w̃=0

)
s
≥

∣∣{a : w̃(a) = 0}
∣∣ .
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Step 3: We come back to the arrows a with w̃(a) > 0 because we can estimate
another contribution of theirs to the Gauss sum, which is different from w̃.

Lemma 3.5 Any a with w̃(a) > 0 participates in 〈1〉, 〈2〉, 〈3〉, or 〈12〉.

Proof Choose chords c and b with (8) from Lemma 3.3. If all d with d∩b, c intersect
b, c in the same direction as a, analogously to the proof of Lemma 3.4, loop moves at

b, and possibly previously on some chords b ′ 6∩ b on the opposite side of b to that of
c would create a positive diagram with violated condition eev(c).

Thus there is a d with d ∩ b, c in the opposite direction to a. If d ∩ a, then (b, d, a)

or (c, d, a) ∈ 〈12〉. Otherwise, (a, b, c, d) ∈ 〈1〉 ∪ 〈2〉 ∪ 〈3〉.

Define for each a with w̃(a) > 0 as before a matching configuration. If a ∈ 〈12〉,
then set the matching configuration of a to be the one configuration 〈12〉 in which a

is the double arrow. Otherwise, set the matching configuration of a to be one of the
configurations 〈1〉 ∪ 〈2〉 ∪ 〈3〉 in which a participates.

Since any configuration in 〈1〉 ∪ 〈2〉 ∪ 〈3〉 is matching for ≤ 4 arrows a, 〈12〉 is
matching for at most one a (the double arrow), and since the symmetrization pre-

serves 〈1〉 and interchanges 〈2〉 and 〈3〉, we have

(14)
(
〈1〉 + 6 〈2〉 + 2 〈3〉 + 〈12〉w̃>0

)
s
≥

∣∣{a : w̃(a) > 0}
∣∣

4
.

Putting (13), (9), and (14) together, and using the symmetry v4 = (v4)s, we now

obtain

v4 ≥
[(

〈1〉 + 6 〈2〉 + 2 〈3〉 + 〈12〉w̃>0

)
+

(
3 〈4〉 + 〈5〉 + 〈12〉w̃=0

)

+
(

2 〈6〉 + 2 〈7〉 + 〈8〉 − 〈9〉
)]

s

≥
∣∣{a : w̃(a) > 0}

∣∣
4

+
∣∣{a : w̃(a) = 0}

∣∣ +

∣∣{a : w̃(a) > 0}
∣∣

2

≥ 3

4
c(D).

The positive 4 crossing diagram of the trefoil shows that the constant 3
4

cannot be
improved (at least without additive correction). Also, because of the same type of
examples given in [St], one cannot obtain a lower bound for v4 in general positive

diagrams D growing faster than O(c(D)).

4 On the Triviality of the Jones Polynomial

We conclude with some applications of the formula (4). From its integrality, evident
from (3), it follows that the Jones polynomial determines ∇4 mod 2. But, in fact, we
have the following:
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620 A. Stoimenow

Proposition 4.1 A knot K with trivial Jones polynomial has 4 | ∇4.

Proof If ∇2 = 0 and 4 ∤ ∇4, then we have for the determinant det K = V (−1) =

∇(2i), that det K = 1 + 16∇4 − 64
(
∇6 − 4∇8 + · · · ) 6≡ 1 mod 64; in particular

det K 6= 1, a contradiction.

Corollary 4.2 If K has ∇ 6= 1 and V = 1, then g(K) ≥ 3.

Proof We have ∇2 = 0, because ∇2 = − 1
6
V2, and if g(K) ≤ 2 and ∇4 6= 0, we have

det K = |16∇4 − 1| 6= 1, a contradiction. Thus either g ≥ 3, or g ≤ 2 and ∇4 = 0,
in which case ∇ = 1.

Corollary 4.3 If VK = 1, then 10 | v4(K).

Proof The only term surviving in (4) is 5
2
∇4, and then we apply Proposition 4.1.

We also have an application to twofold (iterated) untwisted Whitehead doubles.
Let w± denote the untwisted double operation of knots with positive (resp., negative)

clasp, and w±1,±2
= w±2

◦ w±1
.

Proposition 4.4 v4(w±,±(K)) = −8v2(K), v4(w±,∓(K)) = 8v2(K).

Proof We know from [St] that the dualization w∗
± of w± is a nilpotent endomor-

phism of the space of Vassiliev invariants preserving its (degree) filtration. A basis for
the space of Vassiliev invariants of degree ≤ 4 is

(15) 1,∇2, v3,∇2
2,∇4, v4.

If w∗
±(v4) has a non-zero coefficient of v4 in the basis (15), then w∗

± cannot be nilpo-

tent, since it kills any of the invariants in (15) except v4 and v3, but v3 has smaller
degree than v4. Thus

w∗
±(v4) = a±v3 + (terms depending on ∇ only).

Therefore,

w∗
±1,±2

v4 = a±1
w∗
±2

v3 = ±22a±1
v2

by [St]. To determine a±, it is sufficient to calculate v4(w±,+(K)) for some K with
v2 6= 0. Take the figure-eight knot K = 41 with v2 = −1. Then we find by calculation

(in a few seconds, despite that the diagrams of w±,+(K) have 78 crossings) that

(16) v4[w±,+(41)] = ±8 = 2a± · −1,

whence a± = ∓4.
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Corollary 4.5 If K is the twofold untwisted Whitehead double of a knot, then

8 | v4(K).

Corollary 4.6 If K is the twofold untwisted Whitehead double of a knot with v2 6= 0,

then VK 6= 1.

In particular, by [St, St2] we obtain the following:

Corollary 4.7 The twofold untwisted Whitehead double of a positive or almost positive

knot has non-trivial Jones polynomial.

Remark 4.8 T. Stanford [S2] has found that

∇2(∇2 + 1)

4
+
∇4

2
+

v3

2

is always integral. This statement is equivalent to ∇2(∇2+1)

2
+ ∇4 ≡ v3 mod 2, which

can be established by checking it on a few knots, since the space of (chord, unitriva-
lent, etc.) diagrams has no 2-torsion in degree ≤ 4, and so a degree-4 Vassiliev
invariant mod 2 is the reduction mod 2 of a degree-4 Vassiliev invariant over Z, for

which a basis is well known (see (15)).
Using the integrality of v4, one can obtain from this that

∇2
2

4
+

7∇2

12
− V4

144

is always integral. Thus any knot with trivial Conway polynomial satisfies 144 | V4.

We finish with a simple necessary condition for the untwisted Whitehead double

of a knot to have trivial Jones polynomial.

Proposition 4.9 If w+(K) or w−(K) have trivial Jones polynomial, then v2(K) =

v3(K) = 0.

Proof That v2(K) = 0 follows from [St], since v3(w±(K)) = ±2v2(K). To be shown
is that v3(K) = 0. We have from the proof of Proposition 4.4 that

(17) w∗
+v4 = a+

2∇2 + a+
2,2∇2

2 + a+
4∇4 + a+

3 v3,

w∗
−v4 = a−2 ∇2 + a−2,2∇2

2 + a−4 ∇4 + a−3 v3 .

Since

w∗
+v4(K) = v4(w+(K)) = v4(!w+(K)) = v4(w−(!K)) = w∗

−v4(!K)

= a−2 ∇2(!K) + a−2,2∇2
2(!K) + a−4 ∇4(!K) + a−3 v3(!K)

= a−2 ∇2(K) + a−2,2∇2
2(K) + a−4 ∇4(K) − a−3 v3(K) ,
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by comparing coefficients with (17), we obtain

a−2 = a+
2 , a−2,2 = a+

2,2, a−4 = a+
4 , a−3 = −a+

3 .

Since we know already that a±3 6= 0, it follows that

v4(w+(K)) 6= v4(w−(K)) ⇐⇒ v3(K) 6= 0 .

But by a simple skein argument at the clasp of the Whitehead double, if one of w+(K)

or w−(K) has trivial Jones polynomial, then both do, and since their (trivial) Conway
polynomials also coincide, v4 vanishes on both doubles. This shows the assertion.

Corollary 4.10 If K is a (prime or composite) knot of ≤ 15 crossings, then w+(K) and

w−(K) have nontrivial Jones polynomial.

Proof By the simple skein argument, it suffices to consider only w+(K), and from

a pair of mirror images only one knot K, as !w+(K) = w−(!K). Among the 322,033
such knots up to 15 crossings (up to mirroring and orientation), there are only 7116
with v2 = v3 = 0, and calculating the polynomials of their Whitehead doubles was
feasible (even if after some time).

Since v2 and v3 are fast to calculate (on each of the aforementioned 78 crossing
diagrams of the twofold untwisted Whitehead doubles of the figure-eight-knot, the
calculation took less than a second), the condition is applicable in practice also to

more complicated examples. It appears that in average about 97% of the knots can
be excluded this way.

Acknowledgement I would like to thank to T. Stanford for some helpful remarks

and discussions.
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