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Quantum Electrodynamics in 1+1 Dimensions

8.1 The Abelian Higgs Model

Instantons imply drastic changes in the spectrum of theories with essentially
Abelian gauge invariance in 1 + 1 and 2 + 1 dimensions. We say essentially
Abelian, since we include in this class theories which are spontaneously broken
to a residual U(1) invariance. In 1+1 dimensions we consider the theory defined
by the Lagrangian density [61],

L= (Dμφ)
∗
(Dμφ)− λ

4
(φ∗φ)2− μ2

2
φ∗φ− 1

4e2
FμνF

μν , (8.1)

where

Dμφ= ∂μφ+ iAμφ

Fμν = ∂μAν −∂νAμ. (8.2)

We take Dμφ= ∂μφ+ieAμφ, but we have replaced Aμ→ 1
eAμ. The Lagrangian is

invariant under a local gauge transformation which has a natural multiplication
law corresponding to the group U(1)

φ→ eiΛ(x,t)φ= g(x,t)φ g(x,t) ∈ U(1)

Aμ→ eiΛ(x,t) (Aμ− i∂μ)e−iΛ(x,t) =Aμ−∂μΛ. (8.3)

Then

Dμφ→ ∂μ

(
eiΛ(x,t)φ

)
+ i(Aμ−∂μΛ(x,t))eiΛ(x,t)φ

= eiΛ(x,t)∂μφ+ e
iΛ(x,t)i∂μΛ(x,t)φ+ e

iΛ(x,t)iAμφ− eiΛ(x,t)i∂μΛ(x,t)φ

= eiΛ(x,t)Dμφ. (8.4)

We impose that lim|x|→∞ g(x,t) = 1. This gives an effective topological
compactification of the space since the gauge transformation at spatial infinity
must be the same in all directions.

https://doi.org/10.1017/9781009291248.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.009


144 Quantum Electrodynamics in 1+1 Dimensions

Figure 8.1. The symmetric breaking potential U(|φ|)

There are two cases to consider depending on the sign of μ2. For μ2 > 0 the
quadratic part of the Lagrangian is

L= (∂μφ)
∗
(∂μφ)− μ2

2
φ∗φ− 1

4e2
FμνF

μν (8.5)

with corresponding equations of motion

∂μ∂
μφ+μ2φ= 0

∂μF
μν = 0, (8.6)

which describe a free, massive, scalar particle and a massless vector field, the free,
electromagnetic field. The conserved current corresponding to gauge invariance is

jμ = φ∗∂μφ− (∂μφ∗)φ. (8.7)

External charges that are well separated experience the usual Coulomb force.
This is true in any dimension except in 1+ 1 dimensions, the case that we are
considering first. Here, the Coulomb force is independent of the separation and
it costs an infinite amount of energy to separate two charges to infinity. We
say that charges are confined. Furthermore, there is no photon. There is no
transverse direction for the polarization states of the photon. The spectrum
consists of bound states of particle–anti-particle pairs, which are stable. They
cannot disintegrate since there is no photon.

For the other case with μ2 < 0, the potential (as depicted in Figure 8.1) is of
the symmetry breaking type

U(|φ|) = λ

4
|φ|4− |μ2|

2
|φ|2+C, (8.8)

where the C is adjusted so that the potential vanishes at the minimum. The
minimum is at |φ|2 = |μ2|

λ . We fix the gauge so that Im(φ) = 0, and we write

φ=
|μ|√
λ
+ η (8.9)
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8.2 The Euclidean Theory and Finite Action 145

with η ∈ IR. Then we get the Lagrangian density

L= (∂μ− iAμ)
(
|μ|√
λ
+ η

)
(∂μ+ iAμ)

(
|μ|√
λ
+ η

)

−λ
4

(
|μ|√
λ
+ η

)4

− μ2

2

(
|μ|√
λ
+ η

)2

− 1

4e2
FμνF

μν , (8.10)

which yields the quadratic part

L0 = ∂μη∂
μη+

μ2

λ
AμA

μ+μ2η2− 1

4e2
FμνF

μν . (8.11)

This now corresponds to a scalar particle with a mass of μ√
2

and a vector particle
of mass μ√

λ
e. Then the expectation is that the potential between particles should

drop off exponentially with the usual Yukawa factor

e−
r
M (8.12)

with M = |μ|√
2

or M = |μ|√
λ
e. We will find, surprisingly, that this is again not true in

1+1 dimensions. Instantons change the force between the particles and actually
imply confinement. The only difference between the cases μ2 > 0 and μ2 < 0 is
that the force is exponentially smaller (in �) for the case μ2 < 0; however, it is
still independent of separation.

8.2 The Euclidean Theory and Finite Action

To see this result, we must analyse the Euclidean theory. Here the Lagrangian
density is

L=
1

4e2
FμνF

μν +(Dμφ)
∗
(Dμφ)+

λ

4

(
φ∗φ−a2

)2 (8.13)

adding a constant, where a = |μ|√
λ
. These are three positive terms. For a

configuration of finite Euclidean action, each term must give a finite contribution
when integrated over IR2. This implies that φ∗φ→ a2, Dμφ→ 0 and Fμν → 0

faster than 1
r .

φ∗φ→ a2 ⇒ lim
r→∞φ= g(θ)a

Fμν → 0⇒ iAμ→ g̃∂μ (g̃)
−1

+ o

(
1

r2

)
= i∂μΛ

for g̃ = eiΛ

Dμφ→ 0⇒ ∂μg(θ)a+ g̃∂μ (g̃)
−1
g(θ)a

=
(
−g(θ)∂μg−1(θ)+ g̃∂μ (g̃)

−1
)
g(θ)a= 0. (8.14)

This is satisfied if g(θ) = g̃. Thus the configurations with finite Euclidean
action are characterized by g(θ). g(θ) defines a mapping of the circle at infinity
parametrized by θ into the group U(1), which is just the unit circle as in
Figure 8.2.
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146 Quantum Electrodynamics in 1+1 Dimensions

Circle at ∞ Circle in U(1)

Figure 8.2. Mapping the spatial circle at ∞ to the circle in U(1)

8.2.1 Topological Homotopy Classes

The space of such maps separates into homotopically inequivalent classes. These
classes are characterized by the winding number of the map. A map from one
class cannot be continuously deformed to any other map from another class. It is
intuitively obvious that there are an infinite number of classes each corresponding
to a winding number. We can take

g0(θ) = 1 n= 0

g1(θ) = eiθ n= 1

·
·
·

gν(θ) = eiνθ n= ν. (8.15)

Given g(θ) we can extract ν by the formula

ν =
i

2π

∫ 2π

0

dθg(θ)
d

dθ
g−1(θ). (8.16)

If g(θ) = eiνθ, d
dθg

−1(θ) =−iνg−1(θ) thus

ν =
i

2π

∫ 2π

0

g(θ)(−iν)g−1(θ) =
ν

2π
2π = ν. (8.17)

If we make an arbitrary, infinitesimal change in g(θ),

g(θ)→ eiεΛ(θ)g(θ) = g(θ)+ iεΛ(θ)g(θ) (8.18)

with Λ(θ) of compact support in [0,2π),

δg(θ) = iΛ(θ)g(θ)

δ

(
g(θ)

d

dθ
g−1(θ)

)
= iΛ(θ)g(θ)

d

dθ
g−1(θ)+ g(θ)

d

dθ

(
−iΛ(θ)g−1(θ)

)
= iΛ(θ)g(θ)

d

dθ
g−1(θ)− iΛ(θ)g(θ) d

dθ
g−1(θ)− i d

dθ
Λ(θ)

=−i d
dθ

Λ(θ). (8.19)
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Thus

δν =
i

2π

∫ 2π

0

dθδ

(
g(θ)

d

dθ
g−1(θ)

)
=

i

2π
(−i)

∫ 2π

0

dθ
d

dθ
Λ(θ)

=
1

2π
(Λ(2π)−Λ(0)) = 0. (8.20)

Thus for each class, ν is an invariant under arbitrary continuous deformation.
Furthermore, if g(θ) = gν1(θ)gν2(θ), then

ν =
i

2π

∫ 2π

0

dθgν1(θ)gν2(θ)
d

dθ

(
g−1
ν2

(θ)g−1
ν1

(θ)
)

=
i

2π

∫ 2π

0

dθgν1(θ)

(
gν2(θ)

d

dθ
g−1
ν2

(θ)

)
g−1
ν1

(θ)+ gν1(θ)
d

dθ
g−1
ν1

(θ)

= ν1+ ν2. (8.21)

Finally, using iAμ = g∂μg
−1+ o

(
1
r2

)
ν =

i

2π

∫ 2π

0

dθg(θ)
d

dθ
g−1(θ) =

i

2π

∫ 2π

0

dθrir̂μεμνAν =− 1

2π

∮
r=∞

dxμAμ

=− 1

2π

∫
d2x∂μεμνAν =− 1

4π

∫
d2xεμνFμν =−

(
Φ

2π

)
, (8.22)

giving that the flux is quantized in units of 2π. In each homotopy class, the
configuration of minimum action must be stationary and hence satisfy the
Euclidean equations of motion. Because the solutions with different ν cannot
be obtained from each other by continuous deformation, there should be an
infinite action barrier between each class.

8.2.2 Nielsen–Olesen Vortices

The solutions for each ν are known to exist and are called the Nielsen–Olesen
vortices [96]. They are described by two radial functions, for ν = 1

Aμ = εμνrν
Φ(r)

2πr2

φ(r) = eiθf(r). (8.23)

This form implies the equations

− 1

r

d

dr

(
r
d

dr
f(r)

)
+

1

r2

(
1− Φ(r)

2π

)2

f(r)−μ2f(r)+λf3(r) = 0 (8.24)

and

− 1

e2
d

dr

(
1

r

d

dr

Φ(r)

2π

)
+
f2(r)

r

(
Φ(r)

2π
− 1

)
= 0. (8.25)

A solution exists, as depicted in Figure 8.3, with the behaviour for the magnetic
field B(r)

B(r) =
1

2πr

d

dr

Φ(r)

2π
→Ce−erf(r)
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B(r)

f(r)

Figure 8.3. The form of the function f(r) and the magnetic field B(r)

f(r)→ a

Φ(r)→Φ, (8.26)

where Φ(r) has the interpretation of being equal to the magnetic flux inside the
radius r while Φ is the total magnetic flux in the soliton, which is quantized in
units of 2π. The magnetic field is concentrated around the origin and both fields
approach the vacuum configuration exponentially fast with a non-trivial winding
number.

This solution mediates tunnelling between inequivalent classical vacua, which
correspond to classical configurations with zero energy. The energy is given by
(for A0 = 0)

E =

∫
dx

1

2e2
(∂0A1)

2
+(∂0φ)

∗
(∂0φ)+ (D1φ)

∗
(D1φ)+λ

(
φ∗φ−a2

)2
. (8.27)

The simplest zero-energy configuration is φ= a, Aμ = 0. There exists, however,
the freedom to transform this solution by a local gauge transformation that
depends only on space, which keeps the gauge condition A0 = 0 invariant,

φ→ g(x)a A1 →−ig(x)∂1g−1(x). (8.28)

We impose the additional condition, the limx→∞ g(x)→ 1, which is consistent
with our desire to consider a theory with arbitrary local excitations but
asymptotically no excitations. Then we get the effective compactification of the
spatial hypersurface. Topologically it is now just a circle and g(x) again maps
the circle that is space onto the circle in U(1). These maps are characterized by
winding numbers. Thus the classical vacua

φ= gν(x)a

A1 =−igν(x)
d

dx
g−1
ν (x) (8.29)

indexed by ν ∈ Z are homotopically inequivalent. We cannot deform one into
another while staying at E = 0. However, the energy barrier between them is
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4
π

4
3πθ 

θ–2π 

Figure 8.4. The form of the gauge transformation Λ(θ)

not infinite. The Nielsen–Olesen vortices interpolate between these vacua. To
see this we must transform the Nielsen–Olesen vortex into a form suitable for
the description in terms of many vacua, i.e. to the gauge A0 = 0.

We first perform a gauge transformation g(θ) = e−iΛ(θ), which has the limit at
spacetime infinity given by

Λ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ for θ ∈ (0,π/4)

π/4→ 0 for θ ∈ (π/4,π/4+ ε)

0 for θ ∈ (π/4+ ε,3π/4− ε)
0→−5π/4 for θ ∈ (3π/4− ε,3π/4)
(θ− 2π) for θ ∈ (3π/4,2π)

(8.30)

as drawn in Figure 8.4. The corresponding g(θ) is topologically trivial; we can
simply deform the two saw-tooth humps to zero (non-trivial winding number
requires a Λ(θ) discontinuous by 2nπ between its value at θ = 0 and θ =

2π). Therefore, the gauge transformation can be continued everywhere inside
the spacetime and define a gauge transformation at all points. This gauge
transformation (note this is an inverse transformation, Λ→−Λ) takes

Aμ→ Ãμ =Aμ+∂μΛ(θ) (8.31)

and it is easy to see that this vanishes asymptotically, except where Λ(θ) = 0, i.e.
for θ ∈ (π/4+ ε,3π/4− ε). Thus Ãμ→ 0 for t ∈ [−∞,T ], T finite, exponentially
fast as |x| →∞, as depicted in Figure 8.5.

Now we further perform the gauge transformation to put Ã0 = 0 everywhere;
this is easily implemented by the choice

Λ(x,t) =

∫ t

−∞
dt′Ã0(x,t

′)
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t

x

θ = –∈
4
3π θ = +∈

4
π

Ãμ=0 Ãμ=0

Ãμ=0Ãμ=0

Figure 8.5. The regions of spacetime where the gauge field vanishes

A1(x,t)→ ˜̃A1(x,t) = Ã1(x,t)−∂xΛ(x,t) = Ã1(x,t)−∂x
∫ t

−∞
dt′Ã0(x,t

′).

(8.32)

This makes ˜̃A0 = 0 everywhere, but maintains ˜̃A1 → 0 for t ∈ [−∞,T ], T finite,
exponentially fast as |x| →∞, since both Ã1→ 0 and Ã0→ 0 exponentially fast
at spatial infinity in the region t∈ [−∞,T ], due to the first gauge transformation.
Thus as t→−∞, ˜̃A1 = 0, but as t→+∞ we have,

˜̃A1 → g(x)∂xg
−1(x) (8.33)

with
g(x) = ei

∫∞
−∞ dt′Ã0(x,t

′)g(θ)eiθ, (8.34)

where g(θ) = e−iΛ(θ) is our first gauge transformation and ei
∫∞
−∞ dt′Ã0(x,t

′) is
the second gauge transformation that put ˜̃A0 = 0. The final factor eiθ is the
asymptotic gauge transformation of the Nielsen–Olesen vortex. The first two
factors are topologically trivial gauge transformations: in each case the exponent
can be continuously switched to zero, thus the winding number of the gauge
transformation eiθ, which is 1, is unchanged. However, the two trivial factors
manage to bunch all of the non-trivial winding of eiθ into the spatial line x at
t=∞.

Thus we have put the Nielsen–Olesen vortex in a gauge where it interpolates
from the vacuum configuration g(x) = 1 at t = −∞ to the non-trivially
transformed vacuum configuration g(x) = ei

∫∞
−∞ dt′Ã0(x,t

′)g(θ)eiθ. The situation
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is exactly analogous to the problem of a periodic potential on a line. The
classical vacua form a denumerable infinity of local minima indexed by the
winding number n. There is a finite energy barrier between each one, and the
Nielsen–Olesen vortex is the instanton that mediates the tunnelling between
them.

8.3 Tunnelling Transitions

We can calculate the matrix element

〈ν = n|e−ĤT
� |ν = 0〉 =N

∫ ν[φf ]=n

ν[φin]=0

D (A1,φ
∗,φ)e−

SE
φ
� (8.35)

in the semi-classical approximation. The functional integral is simply identified
with the integral over all finite action field configurations with ν = n. The
continuation from Euclidean space automatically projects on the vacuum in this
sector. The critical point of the action contains the vortex with ν = n; however,
this is not the most important configuration. The most important configurations
correspond to n+ vortices with ν = 1 and n− vortices with ν = −1, widely
separated, such that n+ − n− = n. The action for such a configuration is very
close to (n++n−)SE(ν =1). The entropy factor, counting the degeneracy of the
configuration, is

(TL)
n++n−

n+!n−!
. (8.36)

In comparison, for a single vortex with ν = n, the action is presumably smaller,
but the entropy factor is just TL, since there is only one object. Thus the dilute
multi-instanton configurations are arbitrarily more important as TL→∞. Then

〈ν = n|e−ĤT
� |ν = 0〉 =Ndet

− 1
2

0

n+=∞∑
n+=0

n−=∞∑
n−=0

1

n+!n−!

(
TLe−

SE
0
� K

)n++n−

× δn+−n−,n, (8.37)

where K−2 (so that it appears in the formula as just K) is given by the ratio of
the determinant prime corresponding to the quadratic part of the Lagrangian in
the presence of one vortex, divided by the determinant of the free quadratic part
(written as det0), and the Jacobian factors from the usual change of variables
that take into account zero modes. The prefactor is set equal to one by choosing
the normalization N . Now using the formula

δa,b =
1

2π

∫ 2π

0

dθeiθ(a−b) (8.38)

we get

〈ν = n|e−ĤT
� |ν = 0〉 = 1

2π

∫ 2π

0

dθeiθn
∞∑

n+,n−=0

ein+θe−in−θ

n+!n−!

(
TLe−

SE
0
� K

)n++n−
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T ′R

Figure 8.6. Creation of a pair of charges at the origin, separation by R, held
for time T ′ and then annihilated

=
1

2π

∫ 2π

0

dθeiθne

⎛
⎝TLe−SE

0
� K(eiθ+e−iθ)

⎞
⎠

=
1

2π

∫ 2π

0

dθeiθne

⎛
⎝2TLe

−SE
0
� K cosθ

⎞
⎠

=

∫ 2π

0

dθe
−E(θ)T

� 〈ν = n|θ〉〈θ |ν = 0〉 . (8.39)

Thus we find the infinite set of classical vacua rearrange themselves to form a
band of states parametrized by θ with energy density

E(θ)
L

=−2Ke−
SE
0
� cosθ (8.40)

and the matrix element

〈ν = n|θ〉= einθ√
2π
. (8.41)

8.4 The Wilson Loop

This rearrangement of the vacua has important consequences for the force
between charges. Consider the creation of an external charged particle and anti-
particle pair. We create them at the origin, separate them by a large distance
R, hold them at this separation for a long time T ′, and then we let them come
together and annihilate, as depicted in Figure 8.6. A particle of charge q, in an
electromagnetic field, experiences an additional change to its wave function by
the factor

e−i
q
e

∫
dxμAμ . (8.42)
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Consider external charges governed by a dynamics with a Lagrangian

L=
1

2
ẋ2i + qẋiAi− qA0−V (xi). (8.43)

The equation of motion is

ẍi+ q �Ai(xl)− qẋj∂i �Aj(xl)+ q∂iA0(xl)+∂iV (xl) = 0, (8.44)

which can be rewritten

ẍi− qẋjεjikBk(xl) =−∂iV (xl)+ q �Ei(xl), (8.45)

where Ei(xl) = ∂t �Ai(xl)+∂iA0(xl) is the electric field and Bi(xl) = εjik∂j �Ak(xl)

is the magnetic field. Thus the action in the functional integral for the particle
is augmented by the term

e−i
S0

� → e−i
S0

� e−i
q
e

∫
dt(ẋi �Ai(xl)−qA0(xl))

= e−i
S0

� e−i
q
e

∫
dxμAμ . (8.46)

For an anti-particle the additional factor is, of course,

ei
q
e

∫
dxμAμ . (8.47)

Thus for our trajectory, the additional factor becomes a closed integral in the
exponent,

e−i
q
e

∮
dxμAμ . (8.48)

We perform the functional integral over the gauge and scalar fields treating our
particles as external, with their dynamics controlled by V (xl). However, the wave
functions of the particles will change by this additional factor, which we must
take into account. When we integrate over Aμ,φ,φ∗ we obtain the matrix element
of the operator (in Euclidean space)

W = e−
q
e

∮
dxμAμ . (8.49)

This is called the Wilson loop operator. The matrix element of the operator
behaves approximately as

W ∼ e−E(R)T ′( q
e ). (8.50)

If E(R)∼CR for some constant C, the interaction between the charges is said to
be confining, and the expectation value of the Wilson loop operator will behave
like

〈W 〉 ∼ e−CA(
q
e ), (8.51)

where A is the area of the loop. This is the celebrated criterion of area law
behaviour of the Wilson loop for confining interactions. If, on the other hand,
the E(R)∼D for some constant D, we get

〈W 〉 ∼ e−DP(
q
e ), (8.52)

where P is the perimeter of the loop. Such behaviour of the Wilson loop does
not imply confining interactions.
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T ′R

Figure 8.7. A dilute gas of instantons and anti-instantons surround the Wilson
loop

8.4.1 Expectation Value of the Wilson Loop Operator

Thus we wish to evaluate

〈θ|W |θ〉 =
∫
D (Aμ,φ,φ

∗)e−
SE

� eiνθW∫
D (Aμ,φ,φ∗)e−

SE
� eiνθ

(8.53)

in the semi-classical approximation. For the numerator we divide the summation
over the positions of the vortices (instantons) and the anti-vortices (anti-
instantons) into those inside the loop and those outside the loop, as depicted
in Figure 8.7. We drop the contribution from vortices situated on or near the
boundary; these form a negligible part of the set of all configurations, if the size
of the loop is much larger than the size of the vortices.

The integrand splits neatly into a part from outside and a part from inside
the Wilson loop

S = Soutside+Sinside

ν = νoutside+ νinside (8.54)

however,
W = e2πi

q
e ν

inside
. (8.55)

Inside the volume available is RT ′, while outside the volume available is LT −
RT ′, for each vortex. We sum independently over the vortices and the anti-
vortices, inside and outside the loop, with no constraint on their numbers. The
contribution inside has θ→ θ+ 2πq

e , thus we get

〈θ|W |θ〉 = e

⎛
⎝2Ke

−SE
0
� ((LT−RT ′)cosθ+RT ′ cos(θ+ 2πq

e )−LT cosθ)

⎞
⎠

= e

⎛
⎝2Ke

−SE
0
� RT ′(−cosθ+cos(θ+ 2πq

e ))

⎞
⎠
. (8.56)
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Then comparing with Equation (8.50) we get

E(R) = 2R

(
cos(θ)− cos

(
θ+

2πq

e

))
Ke−

SE
0
� (8.57)

and hence
E(R)∼R (8.58)

implying confinement.
We can also calculate

〈θ| 1
2
εμνFμν |θ〉 =

1

2LT

∫
d2x 〈θ|εμνFμν |θ〉

=− 4π

2LT

∫
D (Aμ,φ,φ

∗)νe−
SE
0
� eiνθ∫

D (Aμ,φ,φ∗)e−
SE
0
� eiνθ

=
4π

2LT
i
d

dθ
ln

(∫
D (Aμ,φ,φ

∗)e−
SE
0
� eiνθ

)
=

4π

2LT
i
d

dθ

(
2Ke−

SE
0
� LT cos(θ)

)
=−i4πKe−

SE
0
� sin(θ). (8.59)

For small θ from Equation (8.40), removing a constant, we have

E(θ)
L

=Ke−
SE
0
� θ2. (8.60)

Also,

〈θ|F12 |θ〉 =−i4πKe−
SE
0
� θ

E(R) = 2R

(
θ2−

(
θ+

2πq

e

)2
)
Ke−

SE
0
� . (8.61)

This lends itself to the following interpretation. In the θ vacuum, there exists
an electric field that is proportional to θ with a corresponding energy density
proportional to θ2. The external charges induce an electric field between them,
proportional to their charges. The energy changes by the separation of the
charges multiplied by the energy density, which in this case is clearly(

θ+
2πq

e

)2

. (8.62)

There exist non-linear effects that convert these to periodic functions in q
e . This

is because the theory contains particles of charge e. For q > e, a charged particle–
anti-particle pair can be created, which then can migrate to the oppositely
charged external charges, lowering their charge and hence the induced electric
field. Thus q’s are equivalent modulo e.
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156 Quantum Electrodynamics in 1+1 Dimensions

Our analysis, although encouraging, cannot work in higher dimensions. In 1+1

dimensions, the flux of each instanton inside the loop must totally pass through
the loop, independent of its position inside the loop. In 3 + 1 dimensions the
instantons are not like flux tubes, they are O(4)-symmetric objects. Instead of
the Wilson loop, we would require some analogous “Wilson three-dimensional
hypersurface” to reach the same conclusion. Confinement must, however, imply
the area law for the usual Wilson loop, in any dimensions. Thus we do not
expect instantons to be responsible for confinement in higher dimensions. We
can, as we shall see in Chapter 9, circumvent this problem in 2+ 1 dimensions
by introducing a mild non-Abelian nature.

https://doi.org/10.1017/9781009291248.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291248.009

