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Qp SPACES ON RIEMANN SURFACES

RAUNO AULASKARI, YUZAN HE, JUHA RISTIOJA AND RUHAN ZHAO

ABSTRACT. We study the function spaces Qp(R) defined on a Riemann surface R,
which were earlier introduced in the unit disk of the complex plane. The nesting prop-
erty Qp(R) � Qq(R) for 0 Ú p Ú q Ú 1 is shown in case of arbitrary hyperbolic Rie-
mann surfaces. Further, it is proved that the classical Dirichlet space AD(R) � Qp(R)
for any p, 0 Ú p Ú 1, thus sharpening T. Metzger’s well-known result AD(R) �
BMOA(R). Also the first author’s result AD(R) � VMOA(R) for a regular Riemann
surface R is sharpened by showing that, in fact, AD(R) � Qp,0(R) for all p, 0 Ú p Ú 1.
The relationships between Qp(R) and various generalizations of the Bloch space on R
are considered. Finally we show that Qp(R) is a Banach space for 0 Ú p Ú 1.

1. Introduction. Let R be an open Riemann surface having a Green’s function, i.e.,
R Û2 OG. Denote the Green’s function on R with singularity at ã by gR(w,ã). Let A(R)
denote the collection of all functions analytic on R. For 0 Ú p Ú 1, we define

Qp(R) ≥
²

F 2 A(R) : kFk2
Qp(R) ≥ sup

ã2R

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄ Ú 1
¦

and
Qp,0(R) ≥

²
F 2 A(R) : lim

ã!∂R

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄ ≥ 0
¦

,

where ∂R is the ideal boundary of R and dw dw̄ ≥ 2 du dv for a local parameter w ≥ u+iv.
For the unit disc ∆ ≥ fz 2 C : jzj Ú 1g, Qp(∆) and Qp,0(∆) have been defined and
studied in [4] and [6]. It is proved in [4] that Qp(∆) ≥ B(∆) and Qp,0(∆) ≥ B0(∆) for
1 Ú p Ú 1. Earlier, in [13] and [14], it was proved that Q2(∆) ≥ B(∆) and Q2,0(∆) ≥
B0(∆), respectively. Recall that the Bloch space B(∆) and the little Bloch space B0(∆)
are defined as follows:

B(∆) ≥
n

f 2 A(∆) : kfkB ≥ sup
z2∆

jf 0(z)j(1 � jzj2) Ú 1
o

and
B0(∆) ≥

n
f 2 A(∆) : lim

jzj!1
jf 0(z)j(1 � jzj2) ≥ 0

o
.

It is proved in [6] that, for 0 Ú p1 Ú p2 � 1, Qp1 (∆) ²
Â�

Qp2 (∆).

For p ≥ 1 and R ≥ ∆, it is known that Q1(R) ≥ BMOA(R) and Q1,0(R) ≥ VMOA(R)
and so this has been taken as the definition of BMOA and VMOA on a Riemann surface
R (cf. [9, 10, 1]). BMO-spaces of harmonic functions on Riemann surfaces have been

Received by the editors November 16, 1996; revised September 25, 1997.
AMS subject classification: 30D45, 30D50, 30F35.
c Canadian Mathematical Society 1998.

449

https://doi.org/10.4153/CJM-1998-024-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-024-4


450 R. AULASKARI, Y. HE, J. RISTIOJA AND R. ZHAO

considered by Y. Gotoh in [7]. In [5], the relationships between Q2(R), Q2,0(R) and var-
ious generalizations of the Bloch space on Riemann surfaces have been studied. Before
introducing these results, we first look at some basic facts on hyperbolic geometry.

Let R be a Riemann surface such that R Û2 OG. It is well known that the universal
covering surface of R is the unit disc ∆. Let ï∆(z) ≥ 1Û(1 � jzj2) be the density of the
hyperbolic distance in ∆. Then the hyperbolic distance between two points z and a in ∆
is given by

d∆(z, a) ≥ inf
²Z

ç
ï∆(ê)jdêj : ç is a curve in ∆ from a to z

¦
.

Now let ô: ∆ ! R denote the universal covering mapping, and let w,ã 2 R. We define
the hyperbolic distance between w and ã on R by

dR(w,ã) ≥ inffd∆(z, a) : ô(z) ≥ w and ô(a) ≥ ãg.

Thus the density of dR at the point ã is given by

ïR(ã) ≥ inffï∆(a) : ô(a) ≥ ãg.

We can generalize the Bloch space and the little Bloch space onto R as follows:

B(R) ≥
(

F 2 A(R) : kFkB(R) ≥ sup
ã2R

jF0(ã)j
ïR(ã)

Ú 1

)

and

B0(R) ≥
(

F 2 A(R) : lim
ã!∂R

jF0(ã)j
ïR(ã)

≥ 0
)

.

To introduce another kind of generalization of the Bloch space on R, we note that if
R is a Riemann surface with Green’s function gR(w,ã), then, by using local coordinates
in a neighborhood of ã, we can define the Robin’s constant çR(ã) by

çR(ã) ≥ lim
w!ã

 
gR(w,ã) � log

1
jw � ãj

!
.

Let cR(ã) ≥ exp
�
�çR(ã)

�
be the capacity density of R atã. It is known that if F 2 A(R),

then jF0(ã)jÛcR(ã) is a conformal invariant (cf., for example, [12]). Thus we can define
the spaces CB(R) and CB0(R) by

CB(R) ≥
(

F 2 A(R) : kFkCB(R) ≥ sup
ã2R

jF0(ã)j
cR(ã)

Ú 1

)

and

CB0(R) ≥
(

F 2 A(R) : lim
ã!∂R

jF0(ã)j
cR(ã)

≥ 0
)

.

It is easy to check that, for R ≥ ∆, both B(R) (B0(R)) and CB(R) (CB0(R)) coincide with
the Bloch space B(∆) (the little Bloch space B0(∆)).
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The following inclusions are given in [5],

(1. 1) BMOA(R) � Q2(R) � CB(R) � B(R)

and

(1. 2) VMOA(R) � Q2,0(R) � CB0(R) � B0(R).

(Note that in [5], Q2(R) and Q2,0(R) were denoted by BMOA(R, m) and VMOA(R, m),
respectively.) It turns out that, on general Riemann surfaces R, Q2(R) (Q2,0(R)) and CB(R)
(CB0(R)) do not always coincide with B(R) (B0(R)). There is a Riemann surface R Û2 OG

such that CB(R) Â≥ B(R) and Q2(R) Â≥ B(R) ([5, Theorem 4.2 and Theorem 7.2]). There
is also another Riemann surface R such that CB0(R) Â≥ B0(R) and Q2,0(R) Â≥ B0(R) ([5,
Theorem 7.3]).

In this paper we study the relations between Qp(R) and various generalizations of the
Bloch spaces on Riemann surfaces as well as BMOA(R). One of our main results is to
generalize the inclusion relations (1.1) and (1.2) to Qp(R), Qq(R) and Qp,0(R), Qq,0(R),
by showing the nesting properties

(1. 3) Qp(R) � Qq(R), Qp,0(R) � Qq,0(R)

and the inclusions

(1. 4) Qp(R) � CB(R), Qp,0(R) � CB0(R)

for 0 Ú p Ú q Ú 1. By (1.1) and (1.2) we have also proved

(1. 5) Qp(R) � B(R), Qp,0(R) � B0(R)

for 0 Ú p Ú 1. These will be proved in Section 2 and Section 4, respectively. The main
result in Section 3 sharpens T. Metzger’s result

AD(R) � BMOA(R)

(cf. [9, Theorem 1]) showing that, in fact,

(1. 6) AD(R) � Qp(R)

for all p, 0 Ú p Ú 1. Further, the first author’s result AD(R) � VMOA(R) for regular
Riemann surfaces R (cf. [1, Theorem 1(a)]) is sharpened by showing

(1. 7) AD(R) � Qp,0(R)

for all p, 0 Ú p Ú 1, in case of regular Riemann surfaces R. In Section 5, we will prove
that for 0 Ú p Ú 1, Qp(R) is a Banach space and Qp,0(R) is a closed subspace of Qp(R).
We will also give a criterion for Qp(R) by regular exhaustions of R.

Finally we note that in [2] all these inclusions (1.3)–(1.7) have been proved by using
a different technique.
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2. Qp(R) � Qq(R). In this section, we show the nesting properties of the spaces
Qp(R) and Qp,0(R) as a function of parameter values p. In [2, Theorem 4] different proofs
for these nesting properties are given. For proving the inclusions we need several lemmas
which are derived in the following.

First we show that 1 � e�t � 1
p tp for t Ù 0 and 0 Ú p � 1. If t ½ 1, then 1 � e�t �

1 � 1
p tp. Let 0 Ú t Ú 1 and f (t) ≥ 1

p tp� (1�e�t). Then f 0(t) ≥ tp�1�e�t ½ 1�e�t Ù 0,
and thus f (t) is increasing when 0 Ú t Ú 1. Since f (0) ≥ 0 we get f (t) ½ 0, and so
1 � e�t � 1

p tp for 0 Ú t Ú 1. By using this we get the first lemma

LEMMA 2.1. Let R be a Riemann surface, let R Â2 OG and let 0 Ú p � 1. Then, for
F 2 A(R),

Z
R
jF0(w)j2gR(w,ã) dw dw̄ �

2p

p

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄.

PROOF. By [8, Lemma 2] we haveZ
R
jF0(w)j2gR(w,ã) dw dw̄ �

Z
R
jF0(w)j2(1 � e�2gR(w,ã)) dw dw̄

and using the above consideration

Z
R
jF0(w)j2gR(w,ã) dw dw̄ �

2p

p

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄.

This gives as a corollary

COROLLARY 2.2. Qp(R) � BMOA(R) for all p, 0 Ú p � 1.

By the inequality 1 � e�t � t for t Ù 0 and [8, Lemma 2] we get

PROPOSITION 2.3.
R

R jF
0(w)j2gR(w,ã) dw dw̄ ¾

R
R jF

0(w)j2(1 � e�2kgR(w,ã)) dw dw̄
for any positive integer k.

In the above, we use the notation a ¾ b to denote comparability of the quantities,
i.e., there are absolute positive constants c1, c2 satisfying c1b � a � c2b. For proving
the nesting properties of the spaces Qp(R), Qq(R) and Qp,0(R), Qq,0(R) we first derive
area integral estimates for parameter values p and q. By using a different method these
inequalities with different constant factors have been shown in [2, Theorem 2].

LEMMA 2.4. Let R be a Riemann surface, let R Â2 OG and let 0 Ú p Ú q Ú 1.
Then, for F 2 A(R),Z

R
jF0(w)j2gq

R(w,ã) dw dw̄ � cp,q

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄,

where cp,q ≥ 21+p�q Γ(q+1)
p e2 for 1 Ú q Ú 1 and cp,q ≥ 2p q

p for 0 Ú q � 1.

PROOF. We will prove the result for the case where R is a compact bordered Riemann
surface. For the general case, the conclusion follows by taking a regular exhaustion of
R.
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Let F 2 A(R) and let R1,ã ≥ fw 2 R : gR(w,ã) Ù 1g. Then

(2. 1)
Z

RnR1,ã

jF0(w)j2gq
R(w,ã) dw dw̄ �

Z
RnR1,ã

jF0(w)j2gp
R(w,ã) dw dw̄.

Let B¢(ã) be a disk in R1,ã with center at ã and radius ¢, and let R1,ã,¢ ≥ R1,ã n B¢(ã).
By using Green’s formula we get

(2. 2)

Z
R1,ã,¢

h
gq

R(w,ã)∆
�
jF(w) � F(ã)j2

�
� jF(w) � F(ã)j2∆gq

R(w,ã)
i

dw dw̄

≥ 2
Z

∂R1,ã,¢

"
jF(w) � F(ã)j2

∂gq
R(w,ã)
∂n

� gq
R(w,ã)

∂jF(w) � F(ã)j2

∂n

#
ds,

where ∆ denotes the Laplacian, ∂
∂n differentiation in the inner normal direction and ds

arc length measure on ∂R1,ã,¢. By computing we get

∆jF(w) � F(ã)j2 ≥ 4jF0(w)j2

and
∆gq

R(w,ã) ≥ q(q � 1)gq�2
R (w,ã)jrgR(w,ã)j2,

where r denotes the gradient operator. Further,

∂gq
R(w,ã)
∂n

≥ qgq�1
R (w,ã)

∂gR(w,ã)
∂n

≥ q
∂gR(w,ã)

∂n

for w 2 ∂R1,ã.
Let H1,ã(w) be the least harmonic majorant of jF(w) � F(ã)j2 on R1,ã. Let gŁR(w,ã)

be the conjugate of gR(w,ã). Then

exp hR(w,ã) ≥ exp[gR(w,ã) + igŁR(w,ã)]

is a meromorphic function with a simple pole at ã. Since

û1,ã(w) ≥
þþþ�F(w) � F(ã)

�
exp hR(w,ã)

þþþ2 ≥ jF(w) � F(ã)j2e2gR(w,ã)

is a subharmonic function on R1,ã and

û1,ã(w) ≥ e2jF(w) � F(ã)j2

for w 2 ∂R1,ã, we get by the maximum principle

(2. 3) jF(w) � F(ã)j2 � e2H1,ã(w)e�2gR (w,ã)

for w 2 R1,ã.
Let gR1,ã(w,ã) be a Green’s function of R1,ã with logarithmic singularity at ã. Now

∆gR1,ã(w,ã) ≥ 0 in R1,ã n fãg and gR1,ã(w,ã) ≥ 0 for w 2 ∂R1,ã and similar to the proof
in [5, Lemma 2.1] we get
(2. 4)

1
ô

Z
R1,ã

jF0(w)j2gR1,ã(w,ã) dw dw̄ ≥
1

2ô

Z
∂R1,ã

jF(w) � F(ã)j2
∂gR1,ã(w,ã)

∂n
ds ≥ H1,ã(ã).
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For t Ù 0, let St,ã ≥ fw 2 R : gR(w,ã) ≥ tg. Since gR(w,ã) ≥ t on St,ã we have
dt ≥ ∂gR

∂n dn. Further, in the conclusion below we use jrgR(w,ã)j2 ≥ (∂gR(w,ã)Û∂n)2

for w 2 St,ã. Taking the limit as ¢ tends to zero, (2.2) becomes
(2. 5)

I1,q(ã) ≥ 4
Z

R1,ã

jF0(w)j2gq
R(w,ã) dw dw̄

≥
Z

R1,ã

jF(w) � F(ã)j2∆gq
R(w,ã) dw dw̄

+ 2
Z

∂R1,ã

"
jF(w) � F(ã)j2

∂gq
R(w,ã)
∂n

� gq
R(w,ã)

∂jF(w) � F(ã)j2

∂n

#
ds

≥ q(q � 1)
Z

R1,ã

jF(w) � F(ã)j2gq�2
R (w,ã)jrgR(w,ã)j2 dw dw̄

+ 2q
Z

∂R1,ã

jF(w) � F(ã)j2
∂gR(w,ã)

∂n
ds� 2

Z
∂R1,ã

∂jF(w) � F(ã)j2

∂n
ds

≥ q(q � 1)
Z

R1,ã

jF(w) � F(ã)j2gq�2
R (w,ã)jrgR(w,ã)j2 dw dw̄

+ 2q
Z

∂R1,ã

jF(w) � F(ã)j2
∂gR(w,ã)

∂n
ds + 4

Z
R1,ã

jF0(w)j2 dw dw̄,

where we have used the equality

2
Z

R1,ã

jF0(w)j2 dw dw̄ ≥ �
Z

∂R1,ã

∂jF(w) � F(ã)j2

∂n
ds

obtained by Green’s formula.
We first suppose that 1 Ú q Ú 1. Then, by Lemma 2.1, (2.3), (2.4) and the inequality

gR1,ã(w,ã) � gR(w,ã),
(2. 6)

I1,q(ã) � q(q � 1)e2
Z

R1,ã

H1,ã(w)gq�2
R (w,ã)jrgR(w,ã)j2e�2gR (w,ã) dw dw̄

+ 4qôH1,ã(ã) + 4
Z

R1,ã

jF0(w)j2 dw dw̄

� 2q(q � 1)e2
Z 1

1

 Z
St,ã

H1,ã(w)
∂gR(w,ã)

∂n
ds
!

gq�2
R (w,ã)e�2gR (w,ã) dt

+ 4q
Z

R1,ã

jF0(w)j2gR1,ã(w,ã) dw dw̄ + 4
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� 4q(q � 1)e2ôH1,ã(ã)
Z 1

1
tq�2e�2t dt + 4q

2p

p

Z
R1,ã

jF0(w)j2gp
R1,ã

(w,ã) dw dw̄

+ 4
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� 23�qΓ(q + 1)e2
Z

R1,ã

jF0(w)j2gR1,ã(w,ã) dw dw̄

+ 4q
2p

p

Z
R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ + 4

Z
R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� 23+p�q Γ(q + 1)
p

e2
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄,
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since 23+p�q Γ(q+1)
p Ù 22+p q

p Ù 4. For 0 Ú q � 1 we have, by Lemma 2.1, (2.4) and the
inequality gR1,ã(w,ã) � gR(w,ã), the estimate

(2. 7)

I1,q(ã) � 4qôH1,ã(ã) + 4
Z

R1,ã

jF0(w)j2 dw dw̄

� 4q
Z

R1,ã

jF0(w)j2gR1,ã(w,ã) dw dw̄ + 4
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� 4q
2p

p

Z
R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ + 4

Z
R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� 22+p q
p

Z
R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄,

since q � 1 � 0.
Combining (2.1) and (2.6) we get for 1 Ú q Ú 1,

(2. 8)

Z
R
jF0(w)j2gq

R(w,ã) dw dw̄ ≥
Z

RnR1,ã

jF0(w)j2gq
R(w,ã) dw dw̄

+
Z

R1,ã

jF0(w)j2gq
R(w,ã) dw dw̄

� 21+p�q Γ(q + 1)
p

e2
Z

R
jF0(w)j2gp

R(w,ã) dw dw̄

and similarly combining (2.1) and (2.7), for 0 Ú q � 1,

Z
R
jF0(w)j2gq

R(w,ã) dw dw̄ � 2p q
p

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄.

This proves the lemma.

Thus the nesting property of the Qp(R) spaces is a direct consequence of Lemma 2.4.

THEOREM 2.5. Let R be a Riemann surface, R Û2 OG, and let 0 Ú p Ú q Ú 1. Then
(i) Qp(R) � Qq(R),

(ii) Qp,0(R) � Qq,0(R).

We note that a different proof of this result is shown in [2, Theorem 4].

3. AD(R) � Qp(R). In this section we will sharpen T. Metzger’s result that the
classical Dirichlet space AD(R) ≥ fF 2 A(R) :

R
R jF

0(w)j2 dw dw̄ Ú 1g is included in
BMOA(R) (cf. [9, Theorem 1]) by proving

AD(R) � Qp(R)

for any p, 0 Ú p Ú 1. The first author proved in [1, Theorem 1(a)] that AD(R) �
VMOA(R) for a regular Riemann surface R. Also this result is strengthened by using the
Qp,0(R) spaces.

We are now ready to prove
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THEOREM 3.1. AD(R) � Qp(R) for any p, 0 Ú p Ú 1.

PROOF. Applying Theorem 2.5 for 1 ≥ p Ú q Ú 1 we get BMOA(R) � Qq(R). By
T. Metzger’s result AD(R) � BMOA(R) [9, Theorem 1] we have

(3. 1) AD(R) � Qq(R)

for 1 � q Ú 1.
So we can concentrate on the case 0 Ú p Ú 1. By (2.5) we get in case of R1,ã ≥ fw 2

R : gR(w,ã) Ù 1g,

(3. 2)

4
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

� p(p � 1)
Z

R1,ã

jF(w) � F(ã)j2gp�2
R (w,ã)jrgR(w,ã)j2 dw dw̄

+ 4pôH1,ã(ã) + 4
Z

R1,ã

jF0(w)j2 dw dw̄

� 4pôH1,ã(ã) + 4
Z

R
jF0(w)j2 dw dw̄.

The latter inequality follows because p � 1 Ú 0. If now F 2 AD(R), thenR
R jF0(w)j2 dw dw̄ ≥ M Ú 1. On the other hand, by T. Metzger’s result F 2 BMOA(R)

and (2.4),

(3. 3)
H1,ã(ã) ≥

1
ô

Z
R1,ã

jF0(w)j2gR1,ã(w,ã) dw dw̄

�
1
ô

Z
R
jF0(w)j2gR(w,ã) dw dw̄ � K Ú 1

for all ã 2 R. By (3.2) and (3.3),

(3. 4)
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ � pôK + M

for all ã 2 R.
Further, trivially

(3. 5)

Z
RnR1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ �

Z
RnR1,ã

jF0(w)j2 dw dw̄

�
Z

R
jF0(w)j2 dw dw̄ ≥ M.

Thus, by (3.4) and (3.5),

sup
ã2R

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄ � pôK + 2M,

and hence F 2 Qp(R). Combining this result with (3.1) we have

AD(R) � Qp(R)

for all p, 0 Ú p Ú 1. The theorem is proved.
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REMARK. Theorem 3.1 sharpens T. Metzger’s result AD(R) � BMOA(R), since
even in the case of the unit disk ∆, Qp(∆) ²

Â�

BMOA(∆), for 0 Ú p Ú 1 (cf. [6, Theorem 2

and Corollary 3]).
We recall that R is a regular Riemann surface if for each w 2 R,

lim
ã!∂R

gR(w,ã) ≥ 0.

Otherwise, we say that R is a non-regular Riemann surface. The first author proved that
AD(R) � VMOA(R) for regular Riemann surfaces. He also showed that VMOA(R) con-
tains only constant functions for non-regular Riemann surfaces. This result is generalized
to the space Q2,0(R) in [5, Theorem 2.5]. It is also true for Qp,0(R) for 0 Ú p Ú 1 as the
next theorem shows. Since even for the unit disk ∆, Qp,0(∆) ²

Â�

VMOA(∆) as 0 Ú p Ú 1,

the case (i) of the below theorem sharpens the first author’s result [1, Theorem 1(a)],
and by Theorem 2.5(ii) the case (ii) generalizes [1, Theorem 1(b)]. Finally we note that
Theorem 3.2(i) has been proved in [2, Theorem 7] by using a different technique.

THEOREM 3.2. Let 0 Ú p Ú 1. Then
(i) if R is a regular Riemann surface, AD(R) � Qp,0(R),

(ii) if R is a non-regular Riemann surface, Qp,0(R) contains only constant functions.

PROOF. (i) For 1 � p Ú 1 this is a direct consequence of Theorem 2.5(ii) and
[1, Theorem 1(a)], since Q1,0(R) ≥ VMOA(R). Therefore let 0 Ú p Ú 1 and let ¢,
0 Ú ¢ Ú 1, be arbitrary but fixed during the consideration. If F 2 AD(R), then, by (3.2)
and (3.3),
(3. 6)
4
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ � 4p

Z
R
jF0(w)j2gR(w,ã) dw dw̄ + 4

Z
R1,ã

jF0(w)j2 dw dw̄,

where R1,ã ≥ fw 2 R : gR(w,ã) Ù 1g. By [1, Theorem 1(a)] we know that the integralR
R jF

0(w)j2gR(w,ã) dw dw̄ tends to 0 as ã tends to ∂R. Since R is a regular Riemann sur-
face, R1,ã as a compact set tends to ∂R whenã tends to ∂R. Hence

R
R1,ã

jF0(w)j2 dw dw̄ !

0 for ã ! ∂R. Thus, by (3.6),

(3. 7)
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ Ú ¢

as ã 2 R n K1, where K1 is a compact subset of R. Let R¢ ≥ fw 2 R j gR(w,ã) Ù
(¢ÛM)1Ûpg, where

R
R jF

0(w)j2 dw dw̄ ≥ M. We can suppose that èÛM Ú 1. Then

(3. 8)

Z
RnR¢

jF0(w)j2gp
R(w,ã) dw dw̄ �

¢

M

Z
RnR¢

jF0(w)j2 dw dw̄

�
¢

M

Z
R
jF0(w)j2 dw dw̄ ≥

¢

M
Ð M ≥ ¢.

Now R¢nR1,ã is a compact set and R¢nR1,ã tends to ∂R asã tends to ∂R. Since F 2 AD(R),
there exists a compact set A such that

R
RnA jF

0(w)j2 dw dw̄ Ú ¢. On the other hand, there is
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a compact set K2 such that whenã 2 RnK2, then R¢nR1,ã � RnA. Thus, for ã 2 RnK2,

(3. 9)

Z
R¢nR1,ã

jF0(w)j2gp
R(w,ã) dw dw̄ �

Z
R¢nR1,ã

jF0(w)j2 dw dw̄

�
Z

RnA
jF0(w)j2 dw dw̄ Ú ¢.

Hence, for ã 2 R n K1 [ K2, by combining (3.7), (3.8) and (3.9) we get

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄ ≥
Z

R1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

+
Z

R¢nR1,ã

jF0(w)j2gp
R(w,ã) dw dw̄

+
Z

RnR¢
jF0(w)j2gp

R(w,ã) dw dw̄ Ú ¢ + ¢ + ¢ ≥ 3¢.

Thus F 2 Qp,0(R) for 0 Ú p Ú 1.
(ii) Because of the nesting property in Theorem 2.5(ii) it is enough to prove the

assertion for 1 Ú p Ú 1, and then we can follow the proof of Theorem 1(b) in [1] by
noticing that, by Hölder’s inequality,

�Z
Vr1r2

gR(w,ã) dw dw̄
�p
�
�
ô(r2

2 � r2
1)
�p�1 Z

Vr1r2

gp
R(w,ã) dw dw̄,

where Vr1r2 ≥ fw : r1 Ú jw � ãj Ú r2g is a part of the parameter disk. We omit the
details here.

DEFINITION 3.3. Let E(ê) ≥
P1

n≥1 anê
n be an entire function with an ½ 0. We define

QE(R) ≥
²

F 2 A(R) : sup
ã2R

Z
R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄ Ú 1

¦

and
QE,0(R) ≥

²
F 2 A(R) : lim

ã!∂R

Z
R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄ ≥ 0

¦
.

THEOREM 3.4. Let E(ê) ≥
P1

n≥1 anê
n be an entire function with an ½ 0 and a1 Ù 0.

If its growth order ö and type õ satisfy one of the following conditions:
(i) ö ≥ 1, õ Ú 2, or

(ii) ö Ù 1, õ arbitrary, then BMOA(R) ≥ QE(R) and VMOA(R) ≥ QE,0(R).

PROOF. Since a1 Ù 0 and an ½ 0, it is obvious that QE(R) � BMOA(R) and
QE,0(R) � VMOA(R). For the converse, we use (2.8) for p ≥ 1 and q a positive in-
teger n, and get

IE(ã) ≥
Z

R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄

≥
1X

n≥1
an

Z
R
jF0(w)j2gn

R(w,ã) dw dw̄

� 4e2
Z

R
jF0(w)j2gR(w,ã) dw dw̄

1X
n≥1

An,
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where An ≥ anΓ(n+1)Û2n. Similar to the proof of [3, Theorem 1.1] it is not hard to show
that

P1
n≥1 An is convergent under the condition (i) or (ii). Therefore we have

Z
R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄ � M

Z
R
jF0(w)j2gR(w,ã) dw dw̄,

where M Ù 0 is a constant. Thus, by definition, we get BMOA(R) � QE(R) and
VMOA(R) � QE,0(R), and the proof is completed.

COROLLARY 3.5. Let 0 Ú å Ú 2 and let F 2 A(R). Then F 2 BMOA(R) if and only
if for every ã 2 R and every t Ù 0, there is a constant K Ù 0 such that

(3. 10)
Z

Rt,ã

jF0(w)j2gR(w,ã) dw dw̄ � Ke�åt,

where Rt,ã ≥ fw 2 R : gR(w,ã) Ù tg.

PROOF. Assume that F 2 BMOA(R). Let Eå(ê) ≥ êeåê ≥
P1

n≥1 å
n�1ênÛ(n � 1)!.

Then it is easy to check that the growth order ö and type õ of the entire function Eå(ê)
satisfy p ≥ 1 and õ ≥ å Ú 2. Thus, by Theorem 3.4, for every ã 2 R and every t Ù 0,

eåt
Z

Rt,ã

jF0(w)j2gR(w,ã) dw dw̄ �
Z

Rt,ã

jF0(w)j2gR(w,ã)eågR (w,ã) dw dw̄

�
Z

R
jF0(w)j2Eå

�
gR(w,ã)

�
dw dw̄ � K Ú 1.

Hence Z
Rt,ã

jF0(w)j2gR(w,ã) dw dw̄ � Ke�åt.

On the contrary, if F satisfies (3.10), we let t tend to 0 and get

sup
ã2R

Z
R
jF0(w)j2gR(w,ã) dw dw̄ � lim

t!0
Ke�åt ≥ K Ú 1.

Thus F 2 BMOA(R) and the proof is completed.

4. The Bloch space and Qp(R). In this section we study the relationship between
the spaces B(R), CB(R) and Qp(R) for 0 Ú p Ú 1. Since in [5] the theorems below of
this section have been proved in a special case for parameter value p ≥ 2, we will not
give the proofs in a detailed way. We first draft the proof of the following result.

THEOREM 4.1. Let 0 Ú p Ú 1. Then
(i) Qp(R) � CB(R),

(ii) Qp,0(R) � CB0(R).

PROOF. Because of the nesting property for the spaces Qp(R) in Theorem 2.5 and by
Theorem 7.7 in [5] we need only consider parameter values 1 Ú p Ú 1. But in this case
our proof differs from the proof of Theorem 7.10 in [5] for a special case p ≥ 2 only in
a few points which we now show. First replacing R1,ã,¢ by Rã,¢ ≥ R n B¢(ã) and letting
¢ tend to 0 we get
(4. 1)Z

R
jF0(w)j2gp

R(w,ã) dw dw̄ ≥
p(p � 1)

2

Z
R
jF(w) � F(ã)j2gp�2

R (w,ã)jrgR(w,ã)j2 dw dw̄.
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Thus we need replace jrgR(w,ã)j2 by gp�2
R (w,ã)jrgR(w,ã)j2 and then consider the in-

tegral
R1

0 Ht,ã(ã)tp�2 dt instead of
R1
0 Ht,ã(ã) dt. By these changes using the same in-

equality  
jF0(ã)j
ct(ã)

!2

� Ht,ã(ã)

for the capacity density ct(ã) of Rt,ã at ã as in the proof of [5, Theorem 7.10] we get the
inequality

(4. 2)
Z

R
jF(w) � F(ã)j2gp�2

R (w,ã)jrgR(w,ã)j2 dw dw̄ ½ 22�pΓ(p � 1)ô
 
jF0(ã)j
cR(ã)

!2

which proves the theorem.

COROLLARY 4.2. Let 0 Ú p Ú 1. Then
(i) Qp(R) � B(R),

(ii) Qp,0(R) � B0(R).

This is obvious since CB(R) � B(R) and CB0(R) � B0(R) ([5, Theorem 7.1]).

THEOREM 4.3. There exist Riemann surfaces R1 and R2 for which Qp(R1) Â≥ B(R1)
and Qp,0(R2) Â≥ B0(R2) for any p, 0 Ú p Ú 1.

PROOF. By obvious changes the proofs are the same as in [5, Theorem 4.2] and [5,
Theorem 5.4], respectively.

Next we give a sufficient condition for which Qp(R) ≥ B(R) for 1 Ú p Ú 1. To this
end, we define

C(R) ≥ sup
(

dR(w,ã)
lR(w,ã)

: w,ã 2 R
)

,

where dR(w,ã) is the hyperbolic distance between w and ã and

lR(w,ã) ≥
1
2

log
 exp

�
gR(w,ã)

�
+ 1

exp
�
gR(w,ã)

�
� 1

!
.

We note that C(R) ½ 1 and the equality holds if and only if R is simply connected.

THEOREM 4.4. If C(R) Ú 1, then Qp(R) ≥ B(R) for all 1 Ú p Ú 1.

PROOF. If gk(w,ã) is a Green’s function of Rk in a regular exhaustion fRkg of R, we
denote hk(w,ã) ≥ gk(w,ã) + igŁk(w,ã). The similar notation is introduced for lk(w,ã).
Following the proof of Theorem 4.4 in [5] we get

(4. 3)

Z
Rk

�
lk(w,ã)

�2
gp�2

k (w,ã)jh0k(w,ã)j2 dw dw̄

≥
1
2

Z 1

0

 Z
St,ã,k

∂gk(w,ã)
∂n

ds
!�

log
et + 1
et � 1

�2
tp�2 dt

≥ ô
Z 1

0

�
log

et + 1
et � 1

�2
tp�2 dt

≥ 4ô
Z 1

0
tp�2e�2t

�
1 + O(e�2t)

�
dt ≥ K Ú 1,
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where St,ã,k ≥ fw 2 Rk : gk(w,ã) ≥ tg. From (4.3) and the proof of [5, Theorem 4.4]
we conclude that B(R) � Qp(R) for all 1 Ú p Ú 1. In Corollary 4.2 we have shown
Qp(R) � B(R), and thus the theorem is proved.

Next we consider the relations between QE(R) and B(R) (CB(R)). Note that in the
following we do not restrict a1 Ù 0.

THEOREM 4.5. Let E(ê) ≥
P1

n≥1 anê
n be an entire function with an ½ 0. If its growth

order ö and type õ satisfy one of the following conditions:
(i) ö ≥ 1, õ Ú 2, or

(ii) ö Ú 1, õ arbitrary, then QE(R) � CB(R) and QE,0(R) � CB0(R).

PROOF. Using (4.1) and (4.2), we get

Z
R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄ ≥

1X
n≥1

an

Z
R
jF0(w)j2gn

R(w,ã) dw dw̄

½ 2ô
1X

n≥1
An

 
jF0(ã)j
cR(ã)

!2

,

where An ≥ anΓ(n + 1)Û2n. As before, if (i) or (ii) is satisfied, then
P1

n≥1 An ≥ M Ú 1.
Thus Z

R
jF0(w)j2E

�
gR(w,ã)

�
dw dw̄ ½ 2ôM

 
jF0(ã)j
cR(ã)

!2

.

Both inclusions QE(R) � CB(R) and QE,0(R) � CB0(R) follow from this inequality.

COROLLARY 4.6. Under the same conditions as in Theorem 4.5, we have QE(R) �
B(R) and QE,0(R) � B0(R).

5. Qp(R) as a Banach space. The main result of this section is the following.

THEOREM 5.1. Let R be a Riemann surface, R Û2 OG, and let 0 Ú p Ú 1. Then
Qp(R) is a Banach space with the norm

kFk ≥ jF(ã0)j +
�

sup
ã2R

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄
�1Û2

, ã0 2 R,

and the point evaluation is a continuous functional on Qp(R).

PROOF. Suppose 0 Ú p Ú 1. It is easy to check that k Ð k is a norm. For F 2 Qp(R)
let

Ip(ã) ≥
Z

R
jF0(w)j2gp

R(w,ã) dw dw̄.

From (4.1), (4.2) and the fact cR(ã) � ïR(ã) for every ã 2 R (cf. [11, Theorem 2]), we
have  

jF0(ã)j
ïR(ã)

!2

�

 
jF0(ã)j
cR(ã)

!2

� CIp(ã),

https://doi.org/10.4153/CJM-1998-024-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-024-4


462 R. AULASKARI, Y. HE, J. RISTIOJA AND R. ZHAO

where C Ù 0 is a constant independent of F. Let ô: ∆ ! R be the universal covering
mapping such that ô(0) ≥ ã0, and let f ≥ F Ž ô. Then it is well known that f 2 B(∆)
and for every z 2 ∆,

jf (z)j � jf (0)j + M(z)kfkB(∆),

where M(z) is a constant depending on z. Thus, by f ≥ F Ž ô and kFkB(R) ≥ kfkB(∆), we
get

jF(w)j � jF(ã0)j + M(w)kFkB(R) � jF(ã0)j + C1Û2M(w)
�
sup
ã2R

Ip(ã)
�1Û2

� M̃(w)kFk,

where M(w) and M̃(w) are constants depending on w. Thus the point evaluation is a
continuous functional with respect to k Ð k. By a standard argument, we can prove that
Qp(R) is a Banach space under the norm kÐk (cf., for example, the proof of Theorem 2.10
in [15]).

THEOREM 5.2. Let R be a Riemann surface, let R Û2 OG and let 0 Ú p Ú 1. Then
Qp,0(R) is a closed subspace of Qp(R).

PROOF. By the same method as in the proof of Theorem 3.1 in [5], we can prove that
Qp,0(R) � Qp(R) for 0 Ú p Ú 1. Since the point evaluation is a continuous linear func-
tional on Qp(R), we can prove by a standard argument that Qp,0(R) is a closed subspace
of Qp(R) (cf., for example, [15, Theorem 2.15]). We omit the details here.

To close this section, we give a characterization of Qp(R) by regular exhaustions.

THEOREM 5.3. Let R be a Riemann surface, let R Û2 OG, let fRkg be a regular
exhaustion of R, and let F 2 A(R). If we denote

kFk2
k ≥ sup

ã2Rk

Z
Rk

jF0(w)j2gp
k(w,ã) dw dw̄,

where gk(w,ã) is the Green’s function on Rk, then for 0 Ú p Ú 1,

kFk2
Qp(R) ≥ lim

k!1
kFk2

k.

PROOF. It is easy to see that fkFk2
kg is increasing with respect to k and kFk2

k �

kFk2
Qp(R). Thus

kFk2
Qp(R) ½ lim

k!1
kFk2

k.

On the contrary, since

kFk2
Qp(R) ≥ sup

ã2R

Z
R
jF0(w)j2gp

R(w,ã) dw dw̄,

we know that there is a sequence of points fãng in R such that

kFk2
Qp(R) ≥ lim

n!1

Z
R
jF0(w)j2gp

R(w,ãn) dw dw̄.
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For every ã 2 R and every k Ù 1, let

g̃k(w,ã) ≥
(

gk(w,ã), w 2 Rk,
0, w 2 R n Rk.

Then, from limk!1 gk(w,ã) ≥ gR(w,ã), we know

lim
k!1

g̃k(w,ã) ≥ gR(w,ã).

Let n be an arbitrary positive integer. Because fRkg is a regular exhaustion of R, there is
a kn such that ãn 2 Rkn . Thus for every k ½ kn, ãn 2 Rk � R, and so

Z
R
jF0(w)j2g̃p

k(w,ãn) dw dw̄ � sup
ã2Rk

Z
R
jF0(w)j2g̃p

k(w,ã) dw dw̄.

Then, by Fatou’s Lemma,
Z

R
jF0(w)j2gp

R(w,ãn) dw dw̄ ≥
Z

R
jF0(w)j2 lim

k!1
g̃p

k(w,ãn) dw dw̄

� lim
k!1

Z
R
jF0(w)j2g̃p

k(w,ãn) dw dw̄

� lim
k!1

sup
ã2Rk

Z
R
jF0(w)j2g̃p

k(w,ã) dw dw̄

≥ lim
k!1

sup
ã2Rk

Z
Rk

jF0(w)j2g̃p
k(w,ã) dw dw̄

≥ lim
k!1

kFk2
k.

Since the right hand side is independent of n, we have

kFk2
Qp(R) ≥ lim

n!1

Z
R
jF0(w)j2gp

R(w,ãn) dw dw̄ � lim
k!1

kFk2
k.

The proof is complete.
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