Q_{p} SPACES ON RIEMANN SURFACES

RAUNO AULASKARI, YUZAN HE, JUHA RISTIOJA AND RUHAN ZHAO

Abstract

We study the function spaces $Q_{p}(R)$ defined on a Riemann surface R, which were earlier introduced in the unit disk of the complex plane. The nesting property $Q_{p}(R) \subseteq Q_{q}(R)$ for $0<p<q<\infty$ is shown in case of arbitrary hyperbolic Riemann surfaces. Further, it is proved that the classical Dirichlet space $\mathrm{AD}(R) \subseteq Q_{p}(R)$ for any $p, 0<p<\infty$, thus sharpening T. Metzger's well-known result $\operatorname{AD}(R) \subseteq$ $\mathrm{BMOA}(R)$. Also the first author's result $\mathrm{AD}(R) \subseteq \mathrm{VMOA}(R)$ for a regular Riemann surface R is sharpened by showing that, in fact, $\operatorname{AD}(R) \subseteq Q_{p, 0}(R)$ for all $p, 0<p<\infty$. The relationships between $Q_{p}(R)$ and various generalizations of the Bloch space on R are considered. Finally we show that $Q_{p}(R)$ is a Banach space for $0<p<\infty$.

1. Introduction. Let R be an open Riemann surface having a Green's function, i.e., $R \notin O_{G}$. Denote the Green's function on R with singularity at α by $g_{R}(w, \alpha)$. Let $A(R)$ denote the collection of all functions analytic on R. For $0<p<\infty$, we define

$$
Q_{p}(R)=\left\{F \in A(R):\|F\|_{Q_{p}(R)}^{2}=\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}<\infty\right\}
$$

and

$$
Q_{p, 0}(R)=\left\{F \in A(R): \lim _{\alpha \rightarrow \partial R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}=0\right\}
$$

where ∂R is the ideal boundary of R and $d w d \bar{w}=2 d u d v$ for a local parameter $w=u+i v$. For the unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}, Q_{p}(\Delta)$ and $Q_{p, 0}(\Delta)$ have been defined and studied in [4] and [6]. It is proved in [4] that $Q_{p}(\Delta)=\mathcal{B}(\Delta)$ and $Q_{p, 0}(\Delta)=\mathcal{B}_{0}(\Delta)$ for $1<p<\infty$. Earlier, in [13] and [14], it was proved that $Q_{2}(\Delta)=\mathcal{B}(\Delta)$ and $Q_{2,0}(\Delta)=$ $\mathcal{B}_{0}(\Delta)$, respectively. Recall that the Bloch space $\mathcal{B}(\Delta)$ and the little Bloch space $\mathcal{B}_{0}(\Delta)$ are defined as follows:

$$
\mathcal{B}(\Delta)=\left\{f \in A(\Delta):\|f\|_{\mathcal{B}}=\sup _{z \in \Delta}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)<\infty\right\}
$$

and

$$
\mathcal{B}_{0}(\Delta)=\left\{f \in A(\Delta): \lim _{|z| \rightarrow 1}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)=0\right\} .
$$

It is proved in [6] that, for $0<p_{1}<p_{2} \leq 1, Q_{p_{1}}(\Delta) \subset Q_{p_{2}}(\Delta)$.
For $p=1$ and $R=\Delta$, it is known that $Q_{1}(R)=\mathrm{BMOA}(R)$ and $Q_{1,0}(R)=\operatorname{VMOA}(R)$ and so this has been taken as the definition of BMOA and VMOA on a Riemann surface R (cf. [9, 10, 1]). BMO-spaces of harmonic functions on Riemann surfaces have been

Received by the editors November 16, 1996; revised September 25, 1997.
AMS subject classification: 30D45, 30D50, 30F35.
(c) Canadian Mathematical Society 1998.
considered by Y. Gotoh in [7]. In [5], the relationships between $Q_{2}(R), Q_{2,0}(R)$ and various generalizations of the Bloch space on Riemann surfaces have been studied. Before introducing these results, we first look at some basic facts on hyperbolic geometry.

Let R be a Riemann surface such that $R \notin O_{G}$. It is well known that the universal covering surface of R is the unit disc Δ. Let $\lambda_{\Delta}(z)=1 /\left(1-|z|^{2}\right)$ be the density of the hyperbolic distance in Δ. Then the hyperbolic distance between two points z and a in Δ is given by

$$
d_{\Delta}(z, a)=\inf \left\{\int_{\gamma} \lambda_{\Delta}(\zeta)|d \zeta|: \gamma \text { is a curve in } \Delta \text { from } a \text { to } z\right\} .
$$

Now let $\pi: \Delta \rightarrow R$ denote the universal covering mapping, and let $w, \alpha \in R$. We define the hyperbolic distance between w and α on R by

$$
d_{R}(w, \alpha)=\inf \left\{d_{\Delta}(z, a): \pi(z)=w \text { and } \pi(a)=\alpha\right\}
$$

Thus the density of d_{R} at the point α is given by

$$
\lambda_{R}(\alpha)=\inf \left\{\lambda_{\Delta}(a): \pi(a)=\alpha\right\} .
$$

We can generalize the Bloch space and the little Bloch space onto R as follows:

$$
\mathcal{B}(R)=\left\{F \in A(R):\|F\|_{\mathcal{B}(R)}=\sup _{\alpha \in R} \frac{\left|F^{\prime}(\alpha)\right|}{\lambda_{R}(\alpha)}<\infty\right\}
$$

and

$$
\mathcal{B}_{0}(R)=\left\{F \in A(R): \lim _{\alpha \rightarrow \partial R} \frac{\left|F^{\prime}(\alpha)\right|}{\lambda_{R}(\alpha)}=0\right\} .
$$

To introduce another kind of generalization of the Bloch space on R, we note that if R is a Riemann surface with Green's function $g_{R}(w, \alpha)$, then, by using local coordinates in a neighborhood of α, we can define the Robin's constant $\gamma_{R}(\alpha)$ by

$$
\gamma_{R}(\alpha)=\lim _{w \rightarrow \alpha}\left(g_{R}(w, \alpha)-\log \frac{1}{|w-\alpha|}\right)
$$

Let $c_{R}(\alpha)=\exp \left(-\gamma_{R}(\alpha)\right)$ be the capacity density of R at α. It is known that if $F \in A(R)$, then $\left|F^{\prime}(\alpha)\right| / c_{R}(\alpha)$ is a conformal invariant (cf., for example, [12]). Thus we can define the spaces $\mathcal{C B}(R)$ and $\mathcal{C B} \mathcal{B}_{0}(R)$ by

$$
\mathcal{C B}(R)=\left\{F \in A(R):\|F\|_{C \mathcal{B}(R)}=\sup _{\alpha \in R} \frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}<\infty\right\}
$$

and

$$
\mathcal{C} \mathcal{B}_{0}(R)=\left\{F \in A(R): \lim _{\alpha \rightarrow \partial R} \frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}=0\right\} .
$$

It is easy to check that, for $R=\Delta$, both $\mathcal{B}(R)\left(\mathcal{B}_{0}(R)\right)$ and $\mathcal{C B}(R)\left(C \mathcal{B}_{0}(R)\right)$ coincide with the Bloch space $\mathcal{B}(\Delta)$ (the little Bloch space $\mathcal{B}_{0}(\Delta)$).

The following inclusions are given in [5],

$$
\begin{equation*}
\operatorname{BMOA}(R) \subseteq Q_{2}(R) \subseteq \mathcal{C B}(R) \subseteq \mathcal{B}(R) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{VMOA}(R) \subseteq Q_{2,0}(R) \subseteq \mathcal{C} \mathcal{B}_{0}(R) \subseteq \mathcal{B}_{0}(R) \tag{1.2}
\end{equation*}
$$

(Note that in [5], $Q_{2}(R)$ and $Q_{2,0}(R)$ were denoted by $\operatorname{BMOA}(R, m)$ and $\operatorname{VMOA}(R, m)$, respectively.) It turns out that, on general Riemann surfaces $R, Q_{2}(R)\left(Q_{2,0}(R)\right)$ and $\mathcal{C B}(R)$ $\left(\mathcal{C B}_{0}(R)\right)$ do not always coincide with $\mathcal{B}(R)\left(\mathcal{B}_{0}(R)\right)$. There is a Riemann surface $R \notin O_{G}$ such that $\mathcal{C B}(R) \neq \mathcal{B}(R)$ and $Q_{2}(R) \neq \mathcal{B}(R)([5$, Theorem 4.2 and Theorem 7.2]). There is also another Riemann surface R such that $\mathcal{C} \mathcal{B}_{0}(R) \neq \mathcal{B}_{0}(R)$ and $Q_{2,0}(R) \neq \mathcal{B}_{0}(R)$ ([5, Theorem 7.3]).

In this paper we study the relations between $Q_{p}(R)$ and various generalizations of the Bloch spaces on Riemann surfaces as well as $\operatorname{BMOA}(R)$. One of our main results is to generalize the inclusion relations (1.1) and (1.2) to $Q_{p}(R), Q_{q}(R)$ and $Q_{p, 0}(R), Q_{q, 0}(R)$, by showing the nesting properties

$$
\begin{equation*}
Q_{p}(R) \subseteq Q_{q}(R), \quad Q_{p, 0}(R) \subseteq Q_{q, 0}(R) \tag{1.3}
\end{equation*}
$$

and the inclusions

$$
\begin{equation*}
Q_{p}(R) \subseteq \mathcal{C B}(R), \quad Q_{p, 0}(R) \subseteq \mathcal{C} \mathcal{B}_{0}(R) \tag{1.4}
\end{equation*}
$$

for $0<p<q<\infty$. By (1.1) and (1.2) we have also proved

$$
\begin{equation*}
Q_{p}(R) \subseteq \mathcal{B}(R), \quad Q_{p, 0}(R) \subseteq \mathcal{B}_{0}(R) \tag{1.5}
\end{equation*}
$$

for $0<p<\infty$. These will be proved in Section 2 and Section 4, respectively. The main result in Section 3 sharpens T. Metzger's result

$$
\mathrm{AD}(R) \subseteq \mathrm{BMOA}(R)
$$

(cf. [9, Theorem 1]) showing that, in fact,

$$
\begin{equation*}
\mathrm{AD}(R) \subseteq Q_{p}(R) \tag{1.6}
\end{equation*}
$$

for all $p, 0<p<\infty$. Further, the first author's result $\mathrm{AD}(R) \subseteq \operatorname{VMOA}(R)$ for regular Riemann surfaces R ($c f$. [1, Theorem 1(a)]) is sharpened by showing

$$
\begin{equation*}
\mathrm{AD}(R) \subseteq Q_{p, 0}(R) \tag{1.7}
\end{equation*}
$$

for all $p, 0<p<\infty$, in case of regular Riemann surfaces R. In Section 5, we will prove that for $0<p<\infty, Q_{p}(R)$ is a Banach space and $Q_{p, 0}(R)$ is a closed subspace of $Q_{p}(R)$. We will also give a criterion for $Q_{p}(R)$ by regular exhaustions of R.

Finally we note that in [2] all these inclusions (1.3)-(1.7) have been proved by using a different technique.
2. $Q_{p}(R) \subseteq Q_{q}(R)$. In this section, we show the nesting properties of the spaces $Q_{p}(R)$ and $Q_{p, 0}(R)$ as a function of parameter values p. In [2, Theorem 4] different proofs for these nesting properties are given. For proving the inclusions we need several lemmas which are derived in the following.

First we show that $1-e^{-t} \leq \frac{1}{p} t^{p}$ for $t>0$ and $0<p \leq 1$. If $t \geq 1$, then $1-e^{-t} \leq$ $1 \leq \frac{1}{p} t^{p}$. Let $0<t<1$ and $f(t)=\frac{1}{p} t^{p}-\left(1-e^{-t}\right)$. Then $f^{\prime}(t)=t^{p-1}-e^{-t} \geq 1-e^{-t}>0$, and thus $f(t)$ is increasing when $0<t<1$. Since $f(0)=0$ we get $f(t) \geq 0$, and so $1-e^{-t} \leq \frac{1}{p} t^{p}$ for $0<t<1$. By using this we get the first lemma

LEMMA 2.1. Let R be a Riemann surface, let $R \notin O_{G}$ and let $0<p \leq 1$. Then, for $F \in A(R)$,

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq \frac{2^{p}}{p} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

Proof. By [8, Lemma 2] we have

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq \int_{R}\left|F^{\prime}(w)\right|^{2}\left(1-e^{-2 g_{R}(w, \alpha)}\right) d w d \bar{w}
$$

and using the above consideration

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq \frac{2^{p}}{p} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

This gives as a corollary
Corollary 2.2. $\quad Q_{p}(R) \subseteq \operatorname{BMOA}(R)$ for all $p, 0<p \leq 1$.
By the inequality $1-e^{-t} \leq t$ for $t>0$ and [8, Lemma 2] we get
PROPOSITION 2.3. $\quad \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \sim \int_{R}\left|F^{\prime}(w)\right|^{2}\left(1-e^{-2 k g_{R}(w, \alpha)}\right) d w d \bar{w}$ for any positive integer k.

In the above, we use the notation $a \sim b$ to denote comparability of the quantities, i.e., there are absolute positive constants c_{1}, c_{2} satisfying $c_{1} b \leq a \leq c_{2} b$. For proving the nesting properties of the spaces $Q_{p}(R), Q_{q}(R)$ and $Q_{p, 0}(R), Q_{q, 0}(R)$ we first derive area integral estimates for parameter values p and q. By using a different method these inequalities with different constant factors have been shown in [2, Theorem 2].

Lemma 2.4. Let R be a Riemann surface, let $R \notin O_{G}$ and let $0<p<q<\infty$. Then, for $F \in A(R)$,

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \leq c_{p, q} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

where $c_{p, q}=2^{1+p-q} \frac{\Gamma(q+1)}{p} e^{2}$ for $1<q<\infty$ and $c_{p, q}=2^{p} \frac{q}{p}$ for $0<q \leq 1$.
PROOF. We will prove the result for the case where R is a compact bordered Riemann surface. For the general case, the conclusion follows by taking a regular exhaustion of R.

Let $F \in A(R)$ and let $R_{1, \alpha}=\left\{w \in R: g_{R}(w, \alpha)>1\right\}$. Then

$$
\begin{equation*}
\int_{R \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \leq \int_{R \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \tag{2.1}
\end{equation*}
$$

Let $B_{\varepsilon}(\alpha)$ be a disk in $R_{1, \alpha}$ with center at α and radius ε, and let $R_{1, \alpha, \varepsilon}=R_{1, \alpha} \backslash B_{\varepsilon}(\alpha)$. By using Green's formula we get

$$
\begin{align*}
\int_{R_{1, \alpha, \varepsilon}} & {\left[g_{R}^{q}(w, \alpha) \Delta\left(|F(w)-F(\alpha)|^{2}\right)-|F(w)-F(\alpha)|^{2} \Delta g_{R}^{q}(w, \alpha)\right] d w d \bar{w} } \\
& =2 \int_{\partial R_{1, \alpha, \varepsilon}}\left[|F(w)-F(\alpha)|^{2} \frac{\partial g_{R}^{q}(w, \alpha)}{\partial n}-g_{R}^{q}(w, \alpha) \frac{\partial|F(w)-F(\alpha)|^{2}}{\partial n}\right] d s \tag{2.2}
\end{align*}
$$

where Δ denotes the Laplacian, $\frac{\partial}{\partial n}$ differentiation in the inner normal direction and $d s$ arc length measure on $\partial R_{1, \alpha, \varepsilon}$. By computing we get

$$
\Delta|F(w)-F(\alpha)|^{2}=4\left|F^{\prime}(w)\right|^{2}
$$

and

$$
\Delta g_{R}^{q}(w, \alpha)=q(q-1) g_{R}^{q-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2},
$$

where ∇ denotes the gradient operator. Further,

$$
\frac{\partial g_{R}^{q}(w, \alpha)}{\partial n}=q g_{R}^{q-1}(w, \alpha) \frac{\partial g_{R}(w, \alpha)}{\partial n}=q \frac{\partial g_{R}(w, \alpha)}{\partial n}
$$

for $w \in \partial R_{1, \alpha}$.
Let $H_{1, \alpha}(w)$ be the least harmonic majorant of $|F(w)-F(\alpha)|^{2}$ on $R_{1, \alpha}$. Let $g_{R}^{*}(w, \alpha)$ be the conjugate of $g_{R}(w, \alpha)$. Then

$$
\exp h_{R}(w, \alpha)=\exp \left[g_{R}(w, \alpha)+i g_{R}^{*}(w, \alpha)\right]
$$

is a meromorphic function with a simple pole at α. Since

$$
\phi_{1, \alpha}(w)=\left|(F(w)-F(\alpha)) \exp h_{R}(w, \alpha)\right|^{2}=|F(w)-F(\alpha)|^{2} e^{2 g_{R}(w, \alpha)}
$$

is a subharmonic function on $R_{1, \alpha}$ and

$$
\phi_{1, \alpha}(w)=e^{2}|F(w)-F(\alpha)|^{2}
$$

for $w \in \partial R_{1, \alpha}$, we get by the maximum principle

$$
\begin{equation*}
|F(w)-F(\alpha)|^{2} \leq e^{2} H_{1, \alpha}(w) e^{-2 g_{R}(w, \alpha)} \tag{2.3}
\end{equation*}
$$

for $w \in R_{1, \alpha}$.
Let $g_{R_{1, \alpha}}(w, \alpha)$ be a Green's function of $R_{1, \alpha}$ with logarithmic singularity at α. Now $\Delta g_{R_{1, \alpha}}(w, \alpha)=0$ in $R_{1, \alpha} \backslash\{\alpha\}$ and $g_{R_{1, \alpha}}(w, \alpha)=0$ for $w \in \partial R_{1, \alpha}$ and similar to the proof in [5, Lemma 2.1] we get
$\frac{1}{\pi} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}(w, \alpha) d w d \bar{w}=\frac{1}{2 \pi} \int_{\partial R_{1, \alpha}}|F(w)-F(\alpha)|^{2} \frac{\partial g_{R_{1, \alpha}}(w, \alpha)}{\partial n} d s=H_{1, \alpha}(\alpha)$.

For $t>0$, let $S_{t, \alpha}=\left\{w \in R: g_{R}(w, \alpha)=t\right\}$. Since $g_{R}(w, \alpha)=t$ on $S_{t, \alpha}$ we have $d t=\frac{\partial g_{R}}{\partial n} d n$. Further, in the conclusion below we use $\left|\nabla g_{R}(w, \alpha)\right|^{2}=\left(\partial g_{R}(w, \alpha) / \partial n\right)^{2}$ for $w \in S_{t, \alpha}$. Taking the limit as ε tends to zero, (2.2) becomes

$$
\begin{align*}
& I_{1, q}(\alpha)= 4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \tag{2.5}\\
&= \int_{R_{1, \alpha}}|F(w)-F(\alpha)|^{2} \Delta g_{R}^{q}(w, \alpha) d w d \bar{w} \\
&+2 \int_{\partial R_{1, \alpha}}\left[|F(w)-F(\alpha)|^{2} \frac{\partial g_{R}^{q}(w, \alpha)}{\partial n}-g_{R}^{q}(w, \alpha) \frac{\partial|F(w)-F(\alpha)|^{2}}{\partial n}\right] d s \\
&= q(q-1) \int_{R_{1, \alpha}}|F(w)-F(\alpha)|^{2} g_{R}^{q-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} d w d \bar{w} \\
&+2 q \int_{\partial R_{1, \alpha}}|F(w)-F(\alpha)|^{2} \frac{\partial g_{R}(w, \alpha)}{\partial n} d s-2 \int_{\partial R_{1, \alpha}} \frac{\partial|F(w)-F(\alpha)|^{2}}{\partial n} d s \\
&=q(q-1) \int_{R_{1, \alpha}}|F(w)-F(\alpha)|^{2} g_{R}^{q-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} d w d \bar{w} \\
&+2 q \int_{\partial R_{1, \alpha}}|F(w)-F(\alpha)|^{2} \frac{\partial g_{R}(w, \alpha)}{\partial n} d s+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}
\end{align*}
$$

where we have used the equality

$$
2 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}=-\int_{\partial R_{1, \alpha}} \frac{\partial|F(w)-F(\alpha)|^{2}}{\partial n} d s
$$

obtained by Green's formula.
We first suppose that $1<q<\infty$. Then, by Lemma 2.1, (2.3), (2.4) and the inequality $g_{R_{1}, \alpha}(w, \alpha) \leq g_{R}(w, \alpha)$,

$$
\begin{align*}
I_{1, q}(\alpha) \leq & q(q-1) e^{2} \int_{R_{1, \alpha}} H_{1, \alpha}(w) g_{R}^{q-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} e^{-2 g_{R}(w, \alpha)} d w d \bar{w} \tag{2.6}\\
& +4 q \pi H_{1, \alpha}(\alpha)+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \\
\leq & 2 q(q-1) e^{2} \int_{1}^{\infty}\left(\int_{S_{t, \alpha}} H_{1, \alpha}(w) \frac{\partial g_{R}(w, \alpha)}{\partial n} d s\right) g_{R}^{q-2}(w, \alpha) e^{-2 g_{R}(w, \alpha)} d t \\
& +4 q \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}(w, \alpha) d w d \bar{w}+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
\leq & 4 q(q-1) e^{2} \pi H_{1, \alpha}(\alpha) \int_{1}^{\infty} t^{q-2} e^{-2 t} d t+4 q \frac{2^{p}}{p} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}^{p}(w, \alpha) d w d \bar{w} \\
& +4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
\leq & 2^{3-q} \Gamma(q+1) e^{2} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}(w, \alpha) d w d \bar{w} \\
& +4 q \frac{2^{p}}{p} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
\leq & 2^{3+p-q} \frac{\Gamma(q+1)}{p} e^{2} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
\end{align*}
$$

since $2^{3+p-q} \frac{\Gamma(q+1)}{p}>2^{2+p} \frac{q}{p}>4$. For $0<q \leq 1$ we have, by Lemma 2.1, (2.4) and the inequality $g_{R_{1, \alpha}}(w, \alpha) \leq g_{R}(w, \alpha)$, the estimate

$$
\begin{align*}
I_{1, q}(\alpha) & \leq 4 q \pi H_{1, \alpha}(\alpha)+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \\
& \leq 4 q \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}(w, \alpha) d w d \bar{w}+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
& \leq 4 q \frac{2^{p}}{p} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \tag{2.7}\\
& \leq 2^{2+p} \frac{q}{p} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
\end{align*}
$$

since $q-1 \leq 0$.
Combining (2.1) and (2.6) we get for $1<q<\infty$,

$$
\begin{align*}
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w}= & \int_{R \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \\
& \quad+\int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \tag{2.8}\\
\leq & 2^{1+p-q} \frac{\Gamma(q+1)}{p} e^{2} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
\end{align*}
$$

and similarly combining (2.1) and (2.7), for $0<q \leq 1$,

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{q}(w, \alpha) d w d \bar{w} \leq 2^{p} \frac{q}{p} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

This proves the lemma.
Thus the nesting property of the $Q_{p}(R)$ spaces is a direct consequence of Lemma 2.4.
THEOREM 2.5. Let R be a Riemann surface, $R \notin O_{G}$, and let $0<p<q<\infty$. Then
(i) $Q_{p}(R) \subseteq Q_{q}(R)$,
(ii) $Q_{p, 0}(R) \subseteq Q_{q, 0}(R)$.

We note that a different proof of this result is shown in [2, Theorem 4].
3. $\mathrm{AD}(R) \subseteq Q_{p}(R)$. In this section we will sharpen T. Metzger's result that the classical Dirichlet space $\mathrm{AD}(R)=\left\{F \in A(R): \int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}<\infty\right\}$ is included in $\operatorname{BMOA}(R)(c f .[9$, Theorem 1]) by proving

$$
\mathrm{AD}(R) \subseteq Q_{p}(R)
$$

for any $p, 0<p<\infty$. The first author proved in [1, Theorem 1(a)] that $\mathrm{AD}(R) \subseteq$ $\operatorname{VMOA}(R)$ for a regular Riemann surface R. Also this result is strengthened by using the $Q_{p, 0}(R)$ spaces.

We are now ready to prove

THEOREM 3.1. $\quad \mathrm{AD}(R) \subseteq Q_{p}(R)$ for any $p, 0<p<\infty$.
Proof. Applying Theorem 2.5 for $1=p<q<\infty$ we get $\mathrm{BMOA}(R) \subseteq Q_{q}(R)$. By T. Metzger's result $\mathrm{AD}(R) \subseteq \mathrm{BMOA}(R)[9$, Theorem 1] we have

$$
\begin{equation*}
\mathrm{AD}(R) \subseteq Q_{q}(R) \tag{3.1}
\end{equation*}
$$

for $1 \leq q<\infty$.
So we can concentrate on the case $0<p<1$. By (2.5) we get in case of $R_{1, \alpha}=\{w \in$ $\left.R: g_{R}(w, \alpha)>1\right\}$,

$$
\begin{align*}
& 4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
& \leq \tag{3.2}\\
& \leq p(p-1) \int_{R_{1, \alpha}}|F(w)-F(\alpha)|^{2} g_{R}^{p-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} d w d \bar{w} \\
& \quad+4 p \pi H_{1, \alpha}(\alpha)+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \\
& \leq 4 p \pi H_{1, \alpha}(\alpha)+4 \int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}
\end{align*}
$$

The latter inequality follows because $p-1<0$. If now $F \in \mathrm{AD}(R)$, then $\int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}=M<\infty$. On the other hand, by T. Metzger's result $F \in \operatorname{BMOA}(R)$ and (2.4),

$$
\begin{align*}
H_{1, \alpha}(\alpha) & =\frac{1}{\pi} \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R_{1, \alpha}}(w, \alpha) d w d \bar{w} \\
& \leq \frac{1}{\pi} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq K<\infty \tag{3.3}
\end{align*}
$$

for all $\alpha \in R$. By (3.2) and (3.3),

$$
\begin{equation*}
\int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \leq p \pi K+M \tag{3.4}
\end{equation*}
$$

for all $\alpha \in R$.
Further, trivially

$$
\begin{align*}
\int_{R \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} & \leq \int_{R \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \\
& \leq \int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}=M \tag{3.5}
\end{align*}
$$

Thus, by (3.4) and (3.5),

$$
\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \leq p \pi K+2 M,
$$

and hence $F \in Q_{p}(R)$. Combining this result with (3.1) we have

$$
\mathrm{AD}(R) \subseteq Q_{p}(R)
$$

for all $p, 0<p<\infty$. The theorem is proved.

REMARK. Theorem 3.1 sharpens T. Metzger's result $\mathrm{AD}(R) \subseteq \mathrm{BMOA}(R)$, since even in the case of the unit disk $\Delta, Q_{p}(\Delta) \subset \operatorname{BMOA}(\Delta)$, for $0<p<1(c f$. [6, Theorem 2 and Corollary 3]).

We recall that R is a regular Riemann surface if for each $w \in R$,

$$
\lim _{\alpha \rightarrow \partial R} g_{R}(w, \alpha)=0
$$

Otherwise, we say that R is a non-regular Riemann surface. The first author proved that $\mathrm{AD}(R) \subseteq \mathrm{VMOA}(R)$ for regular Riemann surfaces. He also showed that $\mathrm{VMOA}(R)$ contains only constant functions for non-regular Riemann surfaces. This result is generalized to the space $Q_{2,0}(R)$ in [5, Theorem 2.5]. It is also true for $Q_{p, 0}(R)$ for $0<p<\infty$ as the next theorem shows. Since even for the unit disk $\Delta, Q_{p, 0}(\Delta) \subset{ }_{\neq} \mathrm{VMOA}(\Delta)$ as $0<p<1$, the case (i) of the below theorem sharpens the first author's result [1, Theorem 1(a)], and by Theorem 2.5(ii) the case (ii) generalizes [1, Theorem 1(b)]. Finally we note that Theorem 3.2(i) has been proved in [2, Theorem 7] by using a different technique.

THEOREM 3.2. Let $0<p<\infty$. Then
(i) if R is a regular Riemann surface, $\mathrm{AD}(R) \subseteq Q_{p, 0}(R)$,
(ii) if R is a non-regular Riemann surface, $Q_{p, 0}(R)$ contains only constant functions.

Proof. (i) For $1 \leq p<\infty$ this is a direct consequence of Theorem 2.5(ii) and [1, Theorem 1(a)], since $Q_{1,0}(R)=\operatorname{VMOA}(R)$. Therefore let $0<p<1$ and let ε, $0<\varepsilon<1$, be arbitrary but fixed during the consideration. If $F \in \mathrm{AD}(R)$, then, by (3.2) and (3.3),

$$
\begin{equation*}
4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \leq 4 p \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w}+4 \int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \tag{3.6}
\end{equation*}
$$

where $R_{1, \alpha}=\left\{w \in R: g_{R}(w, \alpha)>1\right\}$. By [1, Theorem 1(a)] we know that the integral $\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w}$ tends to 0 as α tends to ∂R. Since R is a regular Riemann surface, $R_{1, \alpha}$ as a compact set tends to ∂R when α tends to ∂R. Hence $\int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \rightarrow$ 0 for $\alpha \rightarrow \partial R$. Thus, by (3.6),

$$
\begin{equation*}
\int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}<\varepsilon \tag{3.7}
\end{equation*}
$$

as $\alpha \in R \backslash K_{1}$, where K_{1} is a compact subset of R. Let $R_{\varepsilon}=\left\{w \in R \mid g_{R}(w, \alpha)>\right.$ $\left.(\varepsilon / M)^{1 / p}\right\}$, where $\int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}=M$. We can suppose that $\epsilon / M<1$. Then

$$
\begin{align*}
\int_{R \backslash R_{\varepsilon}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} & \leq \frac{\varepsilon}{M} \int_{R \backslash R_{\varepsilon}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \tag{3.8}\\
& \leq \frac{\varepsilon}{M} \int_{R}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}=\frac{\varepsilon}{M} \cdot M=\varepsilon
\end{align*}
$$

Now $R_{\varepsilon} \backslash R_{1, \alpha}$ is a compact set and $R_{\varepsilon} \backslash R_{1, \alpha}$ tends to ∂R as α tends to ∂R. Since $F \in \mathrm{AD}(R)$, there exists a compact set A such that $\int_{R \backslash A}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}<\varepsilon$. On the other hand, there is
a compact set K_{2} such that when $\alpha \in R \backslash K_{2}$, then $R_{\varepsilon} \backslash R_{1, \alpha} \subseteq R \backslash A$. Thus, for $\alpha \in R \backslash K_{2}$,

$$
\begin{align*}
\int_{R_{\varepsilon} \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} & \leq \int_{R_{\varepsilon} \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} d w d \bar{w} \tag{3.9}\\
& \leq \int_{R \backslash A}\left|F^{\prime}(w)\right|^{2} d w d \bar{w}<\varepsilon
\end{align*}
$$

Hence, for $\alpha \in R \backslash K_{1} \cup K_{2}$, by combining (3.7), (3.8) and (3.9) we get

$$
\begin{aligned}
& \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}=\int_{R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
&+\int_{R_{\varepsilon} \backslash R_{1, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w} \\
&+\int_{R \backslash R_{\varepsilon}}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}<\varepsilon+\varepsilon+\varepsilon=3 \varepsilon
\end{aligned}
$$

Thus $F \in Q_{p, 0}(R)$ for $0<p<1$.
(ii) Because of the nesting property in Theorem 2.5(ii) it is enough to prove the assertion for $1<p<\infty$, and then we can follow the proof of Theorem 1(b) in [1] by noticing that, by Hölder's inequality,

$$
\left(\int_{V_{r_{1} r_{2}}} g_{R}(w, \alpha) d w d \bar{w}\right)^{p} \leq\left(\pi\left(r_{2}^{2}-r_{1}^{2}\right)\right)^{p-1} \int_{V_{r_{1} r_{2}}} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

where $V_{r_{1} r_{2}}=\left\{w: r_{1}<|w-\alpha|<r_{2}\right\}$ is a part of the parameter disk. We omit the details here.

DEFINITION 3.3. Let $E(\zeta)=\sum_{n=1}^{\infty} a_{n} \zeta^{n}$ be an entire function with $a_{n} \geq 0$. We define

$$
Q_{E}(R)=\left\{F \in A(R): \sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w}<\infty\right\}
$$

and

$$
Q_{E, 0}(R)=\left\{F \in A(R): \lim _{\alpha \rightarrow \partial R} \int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w}=0\right\}
$$

THEOREM 3.4. Let $E(\zeta)=\sum_{n=1}^{\infty} a_{n} \zeta^{n}$ be an entire function with $a_{n} \geq 0$ and $a_{1}>0$. If its growth order ρ and type σ satisfy one of the following conditions:
(i) $\rho=1, \sigma<2$, or
(ii) $\rho>1, \sigma$ arbitrary, then $\operatorname{BMOA}(R)=Q_{E}(R)$ and $\operatorname{VMOA}(R)=Q_{E, 0}(R)$.

PROOF. Since $a_{1}>0$ and $a_{n} \geq 0$, it is obvious that $Q_{E}(R) \subseteq \operatorname{BMOA}(R)$ and $Q_{E, 0}(R) \subseteq \operatorname{VMOA}(R)$. For the converse, we use (2.8) for $p=1$ and q a positive integer n, and get

$$
\begin{aligned}
I_{E}(\alpha) & =\int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w} \\
& =\sum_{n=1}^{\infty} a_{n} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{n}(w, \alpha) d w d \bar{w} \\
& \leq 4 e^{2} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \sum_{n=1}^{\infty} A_{n}
\end{aligned}
$$

where $A_{n}=a_{n} \Gamma(n+1) / 2^{n}$. Similar to the proof of [3, Theorem 1.1] it is not hard to show that $\sum_{n=1}^{\infty} A_{n}$ is convergent under the condition (i) or (ii). Therefore we have

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w} \leq M \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w}
$$

where $M>0$ is a constant. Thus, by definition, we get $\operatorname{BMOA}(R) \subseteq Q_{E}(R)$ and $\operatorname{VMOA}(R) \subseteq Q_{E, 0}(R)$, and the proof is completed.

COROLLARY 3.5. Let $0<\beta<2$ and let $F \in A(R)$. Then $F \in \operatorname{BMOA}(R)$ if and only if for every $\alpha \in R$ and every $t>0$, there is a constant $K>0$ such that

$$
\begin{equation*}
\int_{R_{t, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq K e^{-\beta t} \tag{3.10}
\end{equation*}
$$

where $R_{t, \alpha}=\left\{w \in R: g_{R}(w, \alpha)>t\right\}$.
Proof. Assume that $F \in \operatorname{BMOA}(R)$. Let $E_{\beta}(\zeta)=\zeta e^{\beta \zeta}=\sum_{n=1}^{\infty} \beta^{n-1} \zeta^{n} /(n-1)$!. Then it is easy to check that the growth order ρ and type σ of the entire function $E_{\beta}(\zeta)$ satisfy $p=1$ and $\sigma=\beta<2$. Thus, by Theorem 3.4, for every $\alpha \in R$ and every $t>0$,

$$
\begin{aligned}
e^{\beta t} \int_{R_{t, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} & \leq \int_{R_{t, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) e^{\beta g_{R}(w, \alpha)} d w d \bar{w} \\
& \leq \int_{R}\left|F^{\prime}(w)\right|^{2} E_{\beta}\left(g_{R}(w, \alpha)\right) d w d \bar{w} \leq K<\infty
\end{aligned}
$$

Hence

$$
\int_{R_{t, \alpha}}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq K e^{-\beta t}
$$

On the contrary, if F satisfies (3.10), we let t tend to 0 and get

$$
\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}(w, \alpha) d w d \bar{w} \leq \lim _{t \rightarrow 0} K e^{-\beta t}=K<\infty .
$$

Thus $F \in \mathrm{BMOA}(R)$ and the proof is completed.
4. The Bloch space and $Q_{p}(R)$. In this section we study the relationship between the spaces $\mathcal{B}(R), \mathcal{C} \mathcal{B}(R)$ and $Q_{p}(R)$ for $0<p<\infty$. Since in [5] the theorems below of this section have been proved in a special case for parameter value $p=2$, we will not give the proofs in a detailed way. We first draft the proof of the following result.

Theorem 4.1. Let $0<p<\infty$. Then
(i) $Q_{p}(R) \subseteq C \mathcal{B}(R)$,
(ii) $Q_{p, 0}(R) \subseteq C \mathcal{B}_{0}(R)$.

Proof. Because of the nesting property for the spaces $Q_{p}(R)$ in Theorem 2.5 and by Theorem 7.7 in [5] we need only consider parameter values $1<p<\infty$. But in this case our proof differs from the proof of Theorem 7.10 in [5] for a special case $p=2$ only in a few points which we now show. First replacing $R_{1, \alpha, \varepsilon}$ by $R_{\alpha, \varepsilon}=R \backslash B_{\varepsilon}(\alpha)$ and letting ε tend to 0 we get
$\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}=\frac{p(p-1)}{2} \int_{R}|F(w)-F(\alpha)|^{2} g_{R}^{p-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} d w d \bar{w}$.

Thus we need replace $\left|\nabla g_{R}(w, \alpha)\right|^{2}$ by $g_{R}^{p-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2}$ and then consider the integral $\int_{0}^{\infty} H_{t, \alpha}(\alpha) t^{p-2} d t$ instead of $\int_{0}^{\infty} H_{t, \alpha}(\alpha) d t$. By these changes using the same inequality

$$
\left(\frac{\left|F^{\prime}(\alpha)\right|}{c_{t}(\alpha)}\right)^{2} \leq H_{t, \alpha}(\alpha)
$$

for the capacity density $c_{t}(\alpha)$ of $R_{t, \alpha}$ at α as in the proof of [5, Theorem 7.10] we get the inequality
(4.2) $\quad \int_{R}|F(w)-F(\alpha)|^{2} g_{R}^{p-2}(w, \alpha)\left|\nabla g_{R}(w, \alpha)\right|^{2} d w d \bar{w} \geq 2^{2-p} \Gamma(p-1) \pi\left(\frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}\right)^{2}$
which proves the theorem.
Corollary 4.2. Let $0<p<\infty$. Then
(i) $Q_{p}(R) \subseteq \mathcal{B}(R)$,
(ii) $Q_{p, 0}(R) \subseteq \mathcal{B}_{0}(R)$.

This is obvious since $\mathcal{C B}(R) \subseteq \mathcal{B}(R)$ and $\mathcal{C} \mathcal{B}_{0}(R) \subseteq \mathcal{B}_{0}(R)$ ([5, Theorem 7.1]).
THEOREM 4.3. There exist Riemann surfaces R_{1} and R_{2} for which $Q_{p}\left(R_{1}\right) \neq \mathcal{B}\left(R_{1}\right)$ and $Q_{p, 0}\left(R_{2}\right) \neq \mathcal{B}_{0}\left(R_{2}\right)$ for any $p, 0<p<\infty$.

Proof. By obvious changes the proofs are the same as in [5, Theorem 4.2] and [5, Theorem 5.4], respectively.

Next we give a sufficient condition for which $Q_{p}(R)=\mathcal{B}(R)$ for $1<p<\infty$. To this end, we define

$$
C(R)=\sup \left\{\frac{d_{R}(w, \alpha)}{l_{R}(w, \alpha)}: w, \alpha \in R\right\}
$$

where $d_{R}(w, \alpha)$ is the hyperbolic distance between w and α and

$$
l_{R}(w, \alpha)=\frac{1}{2} \log \left(\frac{\exp \left(g_{R}(w, \alpha)\right)+1}{\exp \left(g_{R}(w, \alpha)\right)-1}\right) .
$$

We note that $C(R) \geq 1$ and the equality holds if and only if R is simply connected.
THEOREM 4.4. If $C(R)<\infty$, then $Q_{p}(R)=\mathcal{B}(R)$ for all $1<p<\infty$.
Proof. If $g_{k}(w, \alpha)$ is a Green's function of R_{k} in a regular exhaustion $\left\{R_{k}\right\}$ of R, we denote $h_{k}(w, \alpha)=g_{k}(w, \alpha)+i g_{k}^{*}(w, \alpha)$. The similar notation is introduced for $l_{k}(w, \alpha)$. Following the proof of Theorem 4.4 in [5] we get

$$
\begin{align*}
& \int_{R_{k}}\left(l_{k}(w, \alpha)\right)^{2} g_{k}^{p-2}(w, \alpha)\left|h_{k}^{\prime}(w, \alpha)\right|^{2} d w d \bar{w} \\
&=\frac{1}{2} \int_{0}^{\infty}\left(\int_{S_{t, \alpha, k}} \frac{\partial g_{k}(w, \alpha)}{\partial n} d s\right)\left(\log \frac{e^{t}+1}{e^{t}-1}\right)^{2} t^{p-2} d t \tag{4.3}\\
&=\pi \int_{0}^{\infty}\left(\log \frac{e^{t}+1}{e^{t}-1}\right)^{2} t^{p-2} d t \\
&=4 \pi \int_{0}^{\infty} t^{p-2} e^{-2 t}\left(1+O\left(e^{-2 t}\right)\right) d t=K<\infty
\end{align*}
$$

where $S_{t, \alpha, k}=\left\{w \in R_{k}: g_{k}(w, \alpha)=t\right\}$. From (4.3) and the proof of [5, Theorem 4.4] we conclude that $\mathcal{B}(R) \subseteq Q_{p}(R)$ for all $1<p<\infty$. In Corollary 4.2 we have shown $Q_{p}(R) \subseteq \mathcal{B}(R)$, and thus the theorem is proved.

Next we consider the relations between $Q_{E}(R)$ and $\mathcal{B}(R)(C \mathcal{B}(R))$. Note that in the following we do not restrict $a_{1}>0$.

THEOREM 4.5. Let $E(\zeta)=\sum_{n=1}^{\infty} a_{n} \zeta^{n}$ be an entire function with $a_{n} \geq 0$. If its growth order ρ and type σ satisfy one of the following conditions:
(i) $\rho=1, \sigma<2$, or
(ii) $\rho<1, \sigma$ arbitrary, then $Q_{E}(R) \subseteq \mathcal{C} \mathcal{B}(R)$ and $Q_{E, 0}(R) \subseteq C \mathcal{B}_{0}(R)$.

Proof. Using (4.1) and (4.2), we get

$$
\begin{aligned}
\int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w} & =\sum_{n=1}^{\infty} a_{n} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{n}(w, \alpha) d w d \bar{w} \\
& \geq 2 \pi \sum_{n=1}^{\infty} A_{n}\left(\frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}\right)^{2},
\end{aligned}
$$

where $A_{n}=a_{n} \Gamma(n+1) / 2^{n}$. As before, if (i) or (ii) is satisfied, then $\sum_{n=1}^{\infty} A_{n}=M<\infty$. Thus

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} E\left(g_{R}(w, \alpha)\right) d w d \bar{w} \geq 2 \pi M\left(\frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}\right)^{2}
$$

Both inclusions $Q_{E}(R) \subseteq C \mathcal{B}(R)$ and $Q_{E, 0}(R) \subseteq C \mathcal{B}_{0}(R)$ follow from this inequality.
Corollary 4.6. Under the same conditions as in Theorem 4.5, we have $Q_{E}(R) \subseteq$ $\mathcal{B}(R)$ and $Q_{E, 0}(R) \subseteq \mathcal{B}_{0}(R)$.
5. $Q_{p}(R)$ as a Banach space. The main result of this section is the following.

Theorem 5.1. Let R be a Riemann surface, $R \notin O_{G}$, and let $0<p<\infty$. Then $Q_{p}(R)$ is a Banach space with the norm

$$
\|F\|=\left|F\left(\alpha_{0}\right)\right|+\left(\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}\right)^{1 / 2}, \quad \alpha_{0} \in R
$$

and the point evaluation is a continuous functional on $Q_{p}(R)$.
Proof. Suppose $0<p<\infty$. It is easy to check that $\|\cdot\|$ is a norm. For $F \in Q_{p}(R)$ let

$$
I_{p}(\alpha)=\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w}
$$

From (4.1), (4.2) and the fact $c_{R}(\alpha) \leq \lambda_{R}(\alpha)$ for every $\alpha \in R$ ($c f$. [11, Theorem 2]), we have

$$
\left(\frac{\left|F^{\prime}(\alpha)\right|}{\lambda_{R}(\alpha)}\right)^{2} \leq\left(\frac{\left|F^{\prime}(\alpha)\right|}{c_{R}(\alpha)}\right)^{2} \leq C I_{p}(\alpha),
$$

where $C>0$ is a constant independent of F. Let $\pi: \Delta \rightarrow R$ be the universal covering mapping such that $\pi(0)=\alpha_{0}$, and let $f=F \circ \pi$. Then it is well known that $f \in \mathcal{B}(\Delta)$ and for every $z \in \Delta$,

$$
|f(z)| \leq|f(0)|+M(z)\|f\|_{\mathcal{B}(\Delta)}
$$

where $M(z)$ is a constant depending on z. Thus, by $f=F \circ \pi$ and $\|F\|_{\mathcal{B}(R)}=\|f\|_{\mathcal{B}(\Delta)}$, we get

$$
|F(w)| \leq\left|F\left(\alpha_{0}\right)\right|+M(w)\|F\|_{\mathcal{B}(R)} \leq\left|F\left(\alpha_{0}\right)\right|+C^{1 / 2} M(w)\left(\sup _{\alpha \in R} I_{p}(\alpha)\right)^{1 / 2} \leq \tilde{M}(w)\|F\|
$$

where $M(w)$ and $\tilde{M}(w)$ are constants depending on w. Thus the point evaluation is a continuous functional with respect to $\|\cdot\|$. By a standard argument, we can prove that $Q_{p}(R)$ is a Banach space under the norm $\|\cdot\|(c f$. , for example, the proof of Theorem 2.10 in [15]).

TheOrem 5.2. Let R be a Riemann surface, let $R \notin O_{G}$ and let $0<p<\infty$. Then $Q_{p, 0}(R)$ is a closed subspace of $Q_{p}(R)$.

Proof. By the same method as in the proof of Theorem 3.1 in [5], we can prove that $Q_{p, 0}(R) \subseteq Q_{p}(R)$ for $0<p<\infty$. Since the point evaluation is a continuous linear functional on $Q_{p}(R)$, we can prove by a standard argument that $Q_{p, 0}(R)$ is a closed subspace of $Q_{p}(R)$ (cf., for example, [15, Theorem 2.15]). We omit the details here.

To close this section, we give a characterization of $Q_{p}(R)$ by regular exhaustions.
THEOREM 5.3. Let R be a Riemann surface, let $R \notin O_{G}$, let $\left\{R_{k}\right\}$ be a regular exhaustion of R, and let $F \in A(R)$. If we denote

$$
\|F\|_{k}^{2}=\sup _{\alpha \in R_{k}} \int_{R_{k}}\left|F^{\prime}(w)\right|^{2} g_{k}^{p}(w, \alpha) d w d \bar{w}
$$

where $g_{k}(w, \alpha)$ is the Green's function on R_{k}, then for $0<p<\infty$,

$$
\|F\|_{Q_{p}(R)}^{2}=\lim _{k \rightarrow \infty}\|F\|_{k}^{2}
$$

Proof. It is easy to see that $\left\{\|F\|_{k}^{2}\right\}$ is increasing with respect to k and $\|F\|_{k}^{2} \leq$ $\|F\|_{Q_{p}(R)}^{2}$. Thus

$$
\|F\|_{Q_{p}(R)}^{2} \geq \lim _{k \rightarrow \infty}\|F\|_{k}^{2}
$$

On the contrary, since

$$
\|F\|_{Q_{p}(R)}^{2}=\sup _{\alpha \in R} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}(w, \alpha) d w d \bar{w},
$$

we know that there is a sequence of points $\left\{\alpha_{n}\right\}$ in R such that

$$
\|F\|_{Q_{p}(R)}^{2}=\lim _{n \rightarrow \infty} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} .
$$

For every $\alpha \in R$ and every $k>1$, let

$$
\tilde{g}_{k}(w, \alpha)= \begin{cases}g_{k}(w, \alpha), & w \in R_{k}, \\ 0, & w \in R \backslash R_{k} .\end{cases}
$$

Then, from $\lim _{k \rightarrow \infty} g_{k}(w, \alpha)=g_{R}(w, \alpha)$, we know

$$
\lim _{k \rightarrow \infty} \tilde{g}_{k}(w, \alpha)=g_{R}(w, \alpha)
$$

Let n be an arbitrary positive integer. Because $\left\{R_{k}\right\}$ is a regular exhaustion of R, there is a k_{n} such that $\alpha_{n} \in R_{k_{n}}$. Thus for every $k \geq k_{n}, \alpha_{n} \in R_{k} \subseteq R$, and so

$$
\int_{R}\left|F^{\prime}(w)\right|^{2} \tilde{g}_{k}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} \leq \sup _{\alpha \in R_{k}} \int_{R}\left|F^{\prime}(w)\right|^{2} \tilde{g}_{k}^{p}(w, \alpha) d w d \bar{w} .
$$

Then, by Fatou's Lemma,

$$
\begin{aligned}
\int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} & =\int_{R}\left|F^{\prime}(w)\right|^{2} \lim _{k \rightarrow \infty} \tilde{g}_{k}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} \\
& \leq \lim _{k \rightarrow \infty} \int_{R}\left|F^{\prime}(w)\right|^{2} \tilde{g}_{k}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} \\
& \leq \lim _{k \rightarrow \infty} \sup _{\alpha \in R_{k}} \int_{R}\left|F^{\prime}(w)\right|^{2} \tilde{g}_{k}^{p}(w, \alpha) d w d \bar{w} \\
& =\lim _{k \rightarrow \infty} \sup _{\alpha \in R_{k}} \int_{R_{k}}\left|F^{\prime}(w)\right|^{2} \tilde{g}_{k}^{p}(w, \alpha) d w d \bar{w} \\
& =\lim _{k \rightarrow \infty}\|F\|_{k}^{2} .
\end{aligned}
$$

Since the right hand side is independent of n, we have

$$
\|F\|_{Q_{p}(R)}^{2}=\lim _{n \rightarrow \infty} \int_{R}\left|F^{\prime}(w)\right|^{2} g_{R}^{p}\left(w, \alpha_{n}\right) d w d \bar{w} \leq \lim _{k \rightarrow \infty}\|F\|_{k}^{2}
$$

The proof is complete.
Acknowledgement. We would like to thank Professor W. K. Hayman and the referee for helpful suggestions.

References

1. R. Aulaskari, On VMOA for Riemann surfaces. Canad. J. Math. 40(1988), 1174-1185.
2. R. Aulaskari and H. Chen, On $Q_{p}(R)$ and $Q_{p}^{\#}(R)$ for Riemann surfaces. to appear.
3. R. Aulaskari, Y. He and R. Zhao, On entire functions, Bloch and normal functions. Chinese Ann. Math. Ser. B 17(1996), 139-148.
4. R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal. In: Complex Analysis and its Applications, Pitman Research Notes in Mathematics 305, Longman Scientific \& Technical, Harlow, 1994, 136-146.
5. R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, $\mathrm{BMOA}(R, m)$ and capacity density Bloch spaces on hyperbolic Riemann surfaces. Results in Math. 29(1996), 203-226.
6. R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC. Analysis 15(1995), 101-121.
7. Y. Gotoh, On BMO functions on Riemann surface. J. Math. Kyoto Univ. 25(1985), 331-339.
8. S. Kobayashi, Range sets and BMO norms of analytic functions. Canad. J. Math. 36(1984), 747-755.
9. T. A. Metzger, On BMOA for Riemann surfaces. Canad. J. Math. 33(1981), 1255-1260.
10. \qquad Bounded mean oscillation and Riemann surfaces. In: Bounded Mean Oscillation in Complex Analysis, Univ. Joensuu Publ. Sci. No. 14, 1989, 79-99.
11. C. D. Minda, The capacity metric on Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 12(1987), 25-32.
12. R. Nevanlinna, Uniformisierung. Springer-Verlag, Berlin, 1953.
13. J. Xiao, Carleson measure, atomic decomposition and free interpolation from Bloch space. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(1994), 35-46.
14. J. Xiao and L. Zhong, On little Bloch space, its Carleson measure, atomic decomposition and free interpolation. Complex Variables Theory Appl. 27(1995), 175-184.
15. R. Zhao, On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Dissertationes105(1996).

Department of Mathematics	Department of Mathematics
University of Joensuu	University of Joensuu
P.O. Box 111	P.O. Box 111
FIN-80101 Joensuu	FIN-80101 Joensuu
Finland	Finland
Department of Mathematics	Institute of Mathematics
University of Joensuu	Academia Sinica
P.O. Box 111	Beijing 100080
FIN-80101 Joensuu	People's Republic of China
Finland	

