
r
REMARKS ON DILWORTH'S THEOREM IN RELATION

| TO TRANSVERSAL THEORY

by HAZEL PERFECT

(Received 10 August, 1978)

In his book Transversal Theory [3], L. Mirsky has remarked that "At present,! the
relation between Dilworth's decomposition theorem... and transversal theory is rather
tenuous; but further study may reveal unexpected connections". Some of these connections
can perhaps now be seen a little more clearly; and our purpose in this note is to make one
or two observations in this regard. Throughout, all sets considered are finite.

The theorem of Dilworth to which reference is made was first proved in [1]. Simpler
proofs due to Perles [6], Tverberg [7] and F. Galvin (personal communication to Professor

w Mirsky) are now available. It appears, however, that in all probability only a restricted
form of Dilworth's theorem is of special relevance to transversal theory; namely when the
underlying partially ordered set contains no chain of length greater than 2. We begin,
therefore, with a very simple proof of this special case (which owes something to Perles's
general proof).

A RESTRICTED FORM OF DILWORTH'S THEOREM. Let (X,<) be a partially
ordered set in which no chain has length greater than 2. Further, let the maximum length of
an antichain in (X, <) be m. Then X can be covered by m chains.

Proof. We may suppose that | X | > m > l , since otherwise the result is obvious. We
proceed by induction on m and assume that the theorem is true for partially ordered sets
in which the maximum length of an antichain is less than m.

Denote by X+ (respectively X~) the set of maximal (respectively minimal) elements
of X. Then X = X+UX". (It is not, of course, assumed that X+DX~ = 0.)

Case 1. There is an antichain A in X with \A\ = m, A £ X + , A$£X~.
Let us write

A = {at , . . •, a*, a7 + 1 , . . . , a~},

where a*eX+ ( l < i < s ) , ar^X + (s + l < i < m ) . Then 0 < s < m . Write

X1 = {at, ...,al}U{xeX-:xj=a:+1, ...,x±a^

and

Then X = X1UX2. Further, every element of Xx is incomparable with each of
a~+1,..., a~, and every element of X2 is incomparable with each of a t , . . . , a*. There-
fore Xt (respectively X2) cannot contain an antichain of more than s (respectively m - s)

t This was in 1971.
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elements; and, by the induction hypothesis, Xx (respectively X2) can be covered by s
(respectively m — s) chains. So X can be covered by m chains.

Case 2. The only antichains of X of length M are subsets of X+ or X~.
Since each of X+ and X~ is itself an antichain, these are the only possibilities for

antichains of length m. Without loss of generality, suppose X+ is an antichain of length m.
Evidently, then, there must exist a e X+, beX~ with a > b. If X' = X\{a, b}, then X' can
contain no antichain of length m; for this would imply that X contained an antichain of
length m different from X+ and X~. So, by the induction hypothesis, X' can be covered
by m - 1 chains; and hence X can be covered by m chains.

The reader familiar with Konig's duality theorem [2, p. 233] (see also [3, p. 22]) will
readily see that this theorem is virtually equivalent to the above restricted form of
Dilworth's theorem. We simply associate a partial order with a bipartite graph in the most
obvious way, and observe that minimum separating sets and maximum antichains feature
as complementary sets.

In [3, p. 63-64] a deduction of P. Hall's classic theorem from the restricted form of
Dilworth's theorem is described.t We support our contention that this restricted form is
the all-important one for transversal theory by providing now a very simple deduction
from it of a much more general theorem on common transversals. Many proofs of this
theorem are now known and we refer the interested reader again to [3]. The proof which
follows depends on essentially the same initial construction as that in [4] for the special
case when M= 0 , though there the deduction was from Hall's theorem. A similar
deduction from Hall's theorem for the case of general M was briefly indicated in [5].

THEOREM. Let %=(Ai:ieI), 58 = (B,: / € J), with \I\ = | / | = n, be families of subsets of
E; and let Me. E be given. Then 21 and 93 have a common transversal containing M if and
only if

\A(V)nB(J')\ + \(A(I')U B(J'))nM'|>\r\ + \J'\ + \M'\- n, VI 'g / , J ' cJ , M£ M. (*)

REMARK. More familiar conditions, easily seen to be equivalent to (*), have M in
place of M'. As is usual, we have written, for instance, A(I') to denote U At.

iel'

Proof. We shall prove only the sufficiency of the conditions (*), since their necessity
is readily checked.

Take sets E\ E2 with {E^ = |E2| = |E|, and JVfcE1, J t f c E 2 with |MX| = |A^| = \M\;
and suppose I, J, E1, E2 are pairwise disjoint. We regard E1 and E2 as 'copies' of E
(more formally, we set up bijections E—+E1, E^E2) and, for any element e or subset X
of E, we denote its copy in E' by ei or X respectively (i = 1, 2). On the set J U E1 U E2 U
J we define a partial order in the following way: the comparable elements are specified by
the relations • ^ i i

i>e whenever ^ ) ,

e2>j whenever e e Bt (j e J),

e1 <e2 whenever e e E\M.
t Another deduction described in [3], which just verges on transversal theory, is Rado's theorem on

representing sets. (See p. 190.)
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Evidently no chain has length greater than 2. Also if I U E 1 U E 2 U J can be covered by
\E\ + n chains (it cannot be covered by fewer), then these chains must consist of n chains
which cover I and X1 say, where E 1 2 X 1 2 M1, another n chains which cover X2( 2 M2)
and J, and another |E | - n chains which cover E ^ X 1 and E2\X2. It follows readily that,
in this situation, % and 93 have a common transversal (namely X) containing M.t This is
the crux.

In order to complete the proof, we shall show that the conditions (*) imply that every
antichain in the partially ordered set has length at most |E| + n^Let, then, J U E ' U M ' U

! E ' U i ^ u X with l £ l , E 1 s E 1 \ M 1 , MX^M\ E 2 c £ 2 \ M 2 , tif^M2, j c j , be an an-
> tichain. Then

I A(I)1n(M1UE1)=0, J3(J)2n(M2UE2)=0,

; E1nE1 = 0 .

I Therefore, in E, we have

A(/)n(MUE)=0, B(J)n(MUE)=0,

EDE=0;

and so, by (*),

\I\ + |EJ | + [M1] + \E2\ + \M2\ + \J\

= |f| + |E| + |M| + |E| + |M| + | / |

< \A(I) ("1 B(J)\ + \(A(I) U B(J)) n M| + \E\ + \E\ + \M\ + n

A rather similar deduction from Konig's theorem may obviously be given, in view of
our previous remarks. Both deductions avoid the somewhat tedious technicalities of the
proof indicated in [5].

It is a pleasure to me to record my indebtedness to Professor Mirsky for his help and
advice in the preparation of this note.
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