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Floquet stability analysis and direct simulations of a circular cylinder undergoing
vortex-induced vibration (VIV) are presented. Simulation predictions are examined for
the reduced velocity range over which there is a strong and periodic resonant response:
Ur ∈ [4.0, 8.0], focusing on a mass ratio of m∗ = 2.546 matching a number of previous
investigations. Over most of this range, the dominant wake modes present are analogous
to modes A, B and QP (quasi-periodic) observed in a stationary circular cylinder wake.
However, at Ur = 4.5, the dominant modes are B, QP and a subharmonic mode (SH),
whereas at Ur = 4.0, the two-dimensional base state switches to a P + S wake. The critical
Reynolds number for two- to three-dimensional transition is observed to decrease with an
increase of Ur, in line with a decreasing response amplitude. Over this range, the minimum
Re for which the wake remains two-dimensional is 202, which occurs at Ur = 7.5, but this
increases to Recr = 300 at Ur = 4.5, noting the critical Reynolds number for a stationary
circular cylinder is Recr = 189. The corresponding critical spanwise wavelengths for
Ur = 4.5 and 8 are 1.4D (mode B) and 4.0D (mode A), respectively. Simulations indicate
that even at Re = 300, flow three-dimensionality increases the amplitude of the lower
branch considerably. The investigation establishes the role of oscillation amplitude and
reduced velocity in three-dimensional transition for elastically mounted systems.
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1. Introduction

The fluid–structure interaction problem of vortex-induced vibration (VIV) of a circular
cylinder and, in particular, the case where it is elastically mounted and constrained to
only oscillate transversely to the free stream, has been well studied in the literature,
as can be seen from many comprehensive reviews: Sarpkaya (1979), Bearman (1984),
Parkinson (1989), Sarpkaya (2004), Williamson & Govardhan (2004), Williamson &
Govardhan (2008), Bearman (2011), Wu, Ge & Hong (2012) and Soti et al. (2018),
amongst others. Over the last few decades, there have been many two-dimensional (2-D)
numerical investigations of VIV at low Reynolds numbers, which, of course, are only
valid if the wake remains 2-D. Interestingly, other studies have indicated that the onset of
wake three-dimensionality is delayed if the cylinder oscillates transverse to the free stream
(Leontini, Thompson & Hourigan 2007; Gioria et al. 2009). Since the development of
three-dimensional (3-D) flow is likely to strongly affect the VIV response, it is important
to understand the Reynolds number limits of the 2-D VIV modelling.

For a stationary cylinder, the transition from a 2-D periodic von Kármán vortex street
to a 3-D wake was observed by noticing the discontinuities of the Strouhal number
vs Reynolds number curve (Williamson 1988). Two dominant transition modes can be
observed in the 3-D wake, which are referred to as mode A and mode B. Stability analysis
reveals that the onset of the first 3-D mode, mode A, occurs at Recr ≈ 190. Mode A is a
spanwise periodic 3-D flow structure with a spanwise wavelength, λ, of approximately
four cylinder diameters (D) (Barkley & Henderson 1996). This is consistent with the
experimental finding of Williamson (1988), who observed a spanwise wavelength of
between 3D and 4D in the saturated wake beyond transition. A second 3-D wake mode,
mode B, predicted to occur at Recr = 260 from Floquet stability analysis (FSA), instead
occurs at Recr ≈ 230 in experiments because the mode A saturated wake substantially
alters the otherwise 2-D base flow. It also has a spanwise periodic structure with a critical
wavelength of λ ≈ 0.8D, again consistent with experimental measurements (Williamson
1988).

Stability analysis is concerned with the breaking of flow symmetries as flow parameters
(in this case the Reynolds number) are changed. The 2-D Kármán vortex street behind the
stationary cylinder possesses spanwise translational and reflectional symmetries. It also
possesses a spatiotemporal symmetry, i.e. a half-period time-shift and spatial reflection
about the wake centreline result in the same flow state. If the streamwise flow is directed
along the x axis and the base flow (U, V) is generated in the (x, y) plane, this symmetry
possessed by the 2-D base flow is defined by

(U, V)(x, y, t) = (U, −V)(x, −y, t + T/2), (1.1)

where T is the base-flow period. Alternatively, expressed in term of spanwise vorticity, Ω ,
this translates to

Ω(x, y, t) = −Ω(x, −y, t + T/2). (1.2)

Barkley, Tuckerman & Golubitsky (2000) observed that mode A breaks the translational
symmetry of the 2-D flow (base flow) U(x, y, z, t) = U(x, y, z + l, t) (where l is an
arbitrary real constant), but preserves the spatiotemporal symmetry. Mode B also breaks
the translational symmetry, but unlike mode A, mode B also breaks the spatiotemporal
symmetry.

Another instability mode, mode C, not found for a stationary cylinder, was (falsely)
reported to occur in the wake of square section cylinder (Robichaux, Balachandar & Vanka
1999). However, it does occur for circular cylinder wakes perturbed by tripwires (Sheard,
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Three-dimensional transition of oscillating circular cylinder

Thompson & Hourigan 2003). Mode C has an intermediate wavelength and occurs when
the 2-D time-dependent wake does not have the exact spatiotemporal symmetry typically
seen in the Kármán vortex street of a circular cylinder. In general, mode C appears in a
stationary cylinder wake if a symmetry-breaking mechanism is used, such as a tripwire,
or, for example, by imposing transverse oscillation. Such a mode is seen in the FSA of a
transversely oscillating cylinder (Leontini et al. 2007).

Another 3-D mode shown to be theoretically possible in a stationary or oscillating
cylinder wake is a quasi-periodic (QP) mode. This mode has a complex-conjugate pair
of Floquet multipliers, allowing it to consist of travelling or standing waves (Blackburn
& Lopez 2003). Importantly, this means that the perturbation mode and base-flow
periods are not commensurate. FSA for a stationary circular cylinder wake shows that
mode QP becomes unstable at Recr ≈ 377. At this Re, the wake is already highly 3-D
in experiments although showing identifiable dominant mode B spanwise structures
but displaying spatiotemporal chaos. These unstable 3-D modes have an intermediate
spanwise wavelength in the range 1.5D to 2D. In fact, the falsely identified mode C
instability observed for a square cylinder wake by Robichaux et al. (1999) was actually
a QP mode, but with a period that was very close to subharmonic.

The dominant physical mechanisms underlying mode A and mode B instabilities are
different. Williamson (1996) suggested that mode A instability was associated with an
elliptic instability of the vortex cores, and that mode B instability was associated with an
instability of the braid region (which includes the braid shear layer within the near-wake
vortex formation region (Leweke & Williamson 1998; Thompson, Leweke & Williamson
2001)). The physical mechanism of mode C appears to be a hybrid of modes A and B
(Sheard, Thompson & Hourigan 2005). However, in each of these cases, the instability
should perhaps not be identified with a single physical mechanism; for example, there
appears to be some evidence that mode B is also influenced by centrifugal instability of
near-wake vortices while showing elliptic instability characteristics within the spanwise
vortex cores (Ryan, Thompson & Hourigan 2005).

Most of these referenced studies were undertaken for circular cylinders, either fixed or
under forced oscillation. They focused on finding the dominant 3-D modes, the influence of
Reynolds number, Re = UD/ν, and amplitude of oscillation, A∗ = A/D, on the observed
modes, and the effect of loss of spatiotemporal symmetry of the base flow on mode
selection. Here, U is the uniform flow speed, ν is the kinematic viscosity and A the fixed
oscillation amplitude.

Typically, for 2-D numerical investigations of VIV, the Reynolds number is chosen to
be low enough to ensure a pre-transition 2-D wake. However, potentially interesting VIV
wake states can be suppressed if the Reynolds number is too low, and additionally the
connection between 2-D modelling and typically higher-Reynolds-number experiments
becomes increasingly decoupled. Thus, the question arises as to the Reynolds number limit
to ensure the wake is guaranteed to remain 2-D, or alternatively when 3-D modelling must
be undertaken. To date, it appears that the FSA of an elastically mounted circular cylinder
at low mass ratios has received little attention in the literature. For the forced oscillation
case, the variation of amplitude and possible flow state affect the critical Re for different
modes (Leontini et al. 2007) and hence transition to a 3-D wake. The primary motivation
for this study is to determine the Re limits of 2-D VIV simulations, and in particular,
whether changes to the standard von Kármán wake state strongly affect wake stability.
In effect, by examining free vibration, this study extends the forced-oscillation transition
study of Leontini et al. (2007) by examining the influence of oscillation frequency, and
how deviations from sinusoidal oscillation, deviations from vibration periodicity and
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wake–frequency coupling affect wake transition. In this paper, we investigate the critical
Reynolds number for the 2-D to 3-D transition in a VIV system through Floquet analysis
based on high-fidelity numerical simulations. We also undertake some complementary
3-D direct simulations beyond 3-D transition to quantify the effect on the amplitude
response and the wake state. In addition, the effect of mass ratio is considered.

The layout of this paper is as follows. In § 2, the theoretical background of FSA, used
to determine the linear stability of periodic flow, is briefly provided, and the numerical
approach to solve this coupled system is also briefly discussed. The simulation results
are given in § 3 for VIV. In this section, first response curves for a circular cylinder
wake under VIV are presented for Re = 150, 200 and 250 to show why 2-D simulations
are inadequate for accurately modelling higher-Re VIV. Next, the instability of Kármán
wake to 3-D perturbations at Re = 260, 280 and 300 are discussed, together with the
instability modes. Furthermore, the 3-D transition is investigated in detail for Re = 300 as
a function of reduced velocity, including comparing 2-D and 3-D simulation predictions.
3-D predictions at higher Reynolds numbers are also briefly discussed. Finally, the critical
Reynolds number for elastically mounted VIV wakes is presented as a function of reduced
velocity.

2. Methodology

2.1. Theoretical background
FSA is used to predict the critical Reynolds number at which a 2-D periodic flow will first
become unstable to 3-D perturbations, similar to how linear stability analysis (LSA) is used
for stationary flows. This approach has been adopted by researchers to establish the onset
of 3-D instabilities for different bluff-body wakes. Barkley & Henderson (1996) examined
a fixed cylinder wake to predict the critical Reynolds number, Recr, the corresponding
perturbation mode structure and the wavelengths of modes A and B at onset. Previous
instability analyses of other bluff-body wakes include: the square cylinder (Robichaux
et al. 1999), elongated cylinders for different aspect ratios (Ryan et al. 2005), toroids
(Sheard et al. 2003), transverse-oscillating cylinders (Leontini et al. 2007), rotational
oscillating cylinders (Jacono et al. 2010) and elliptical cylinders of different aspect ratios
(Leontini, Jacono & Thompson 2015).

For mode A, the Floquet perturbation velocity field (u′ = (u′, v′, w′)) shows the
following spatiotemporal symmetry (Barkley & Henderson 1996; Robichaux et al. 1999):

u′(x, y, z, t) = u′(x, −y, z, t + T/2),

v′(x, y, z, t) = −v′(x, −y, z, t + T/2),

w′(x, y, z, t) = w′(x, −y, z, t + T/2),

⎫⎪⎬
⎪⎭ (2.1)

which is the same symmetry present in the 2-D base-flow wake (with w = 0). For mode
A, the velocity components, u′ and w′, have an even spatiotemporal symmetry, whereas
the cross-stream velocity v′ has an odd spatiotemporal symmetry. Combining these, the
representation of the mode by its streamwise vorticity (Ω ′

x) gives

Ω ′
x(x, y, z, t) = −Ω ′

x(x, −y, z, t + T/2), (2.2)

which obeys an odd spatiotemporal symmetry.
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Three-dimensional transition of oscillating circular cylinder

The velocity components of mode B have a spatiotemporal symmetry that is just the
opposite of mode A and can be written as

u′(x, y, z, t) = −u′(x, −y, z, t + T/2),

v′(x, y, z, t) = v′(x, −y, z, t + T/2),

w′(x, y, z, t) = −w′(x, −y, z, t + T/2).

⎫⎪⎬
⎪⎭ (2.3)

In terms of streamwise vorticity (Ω ′
x) this displays an even spatiotemporal symmetry

expressed as

Ω ′
x(x, y, z, t) = Ω ′

x(x, −y, z, t + T/2). (2.4)

The subharmonic mode C has a Floquet multiplier that is real and negative, and shows
the following temporal symmetry for the vorticity:

Ω ′
x(x, y, z, t) = Ω ′

x(x, y, z, t + 2T). (2.5)

Finally, the QP mode, because it is non-commensurate with the base-flow frequency,
does not possess such a relationship between flow states at different times.

In terms of flow physics, during shedding, the newly forming braid shear layer lies in
close proximity to the previously formed braid. Unlike mode A, for mode B the braid
comprises an array of rolled-up streamwise vortex pairs that extend between the spanwise
rollers. The disturbances due to the forming braid set the preferred locations and rotation
directions of the new braid vortices, giving a specific symmetry that is different from mode
A; mode B has an in-phase symmetry for the streamwise vortex pattern.

Blackburn & Lopez (2003) observed the Floquet multiplier for (pure) mode C contained
no imaginary component. In addition, the sign of the perturbation field swapped each
period, i.e. the 3-D features alternate in sign from one shedding cycle to the next. It
leads to a periodic state with a period of oscillation twice that of the fundamental one,
i.e. period = 2T (Sheard et al. 2005). Superficially, the spatial structure of the mode
C perturbation field is similar to that of modes A and B. For a torus, the near-wake
of the mode C instability, within approximately three diameters of the ring, bears a
strong resemblance to the mode B instability, with strong perturbation vorticity present
in the braid region between base-flow vortices. Further downstream, the perturbation field
resembles that of the mode A instability, with perturbation vorticity localised within the
base-flow spanwise vortex cores.

2.2. Floquet stability analysis
As indicated previously, FSA is method to determine the linear stability of the periodic
wake to 3-D perturbations. In this analysis, the growth of linear perturbations is
evaluated with respect to a pre-calculated periodic base flow. We consider a periodic 2-D
wake (base-flow) U(x, y, t) with period T , and analyse its stability with respect to an
infinitesimal 3-D perturbation u′(x, y, z, t). The equations that governs the perturbation
field are obtained by substituting U(x, y, t) + u′(x, y, z, t) for u(x, y, z, t); P(x, y, t) +
p′(x, y, z, t) for p, in (2.11). The governing equations for perturbation growth are obtained
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Outer BC

Outer BC

Outflow BC

Outer BC

No-slip BC

15D

D

k c

15D 25D

Figure 1. Schematic of the computational domain and the boundary conditions (BC) for Floquet analysis
used in the present study.

by linearising to give

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇p′ + 1

Re
(∇2u′), (2.6)

and

∇ · u′ = 0. (2.7)

These are simplified further by writing the solution as a summation of Fourier terms
in the spanwise direction, z. The individual Fourier terms decouple so that the analysis
can be done for each Fourier mode (i.e. spanwise wavelength) individually. The detailed
approach is described in Barkley & Henderson (1996).

The boundary conditions are shown in figure 1 and are described as follows. The
fluid velocity is prescribed at the inlet, top and bottom boundaries, and is given by
(U, V) = U∞i − ucylj. The perturbation velocity components at these far-field boundaries
are u′ = v′ = w′ = 0, where u′, v′ and w′ are the x, y and z perturbation velocity
components, respectively. At the surface of the cylinder, the no-slip condition is imposed,
i.e. (U, V) = 0 and (u′, v′, w′) = 0. At the outlet, the boundary condition is the same as
the base-flow condition, i.e. the normal velocity gradient is set to zero for both the base
and perturbation velocity fields, and the pressure is fixed. At no-slip boundaries and at the
far-field boundaries, higher-order boundary conditions are used for the normal pressure
gradient for both the base and perturbation pressure, as described in Karniadakis, Israeli
& Orszag (1991).

2.3. Perturbation kinetic energy
The transport equation for the perturbation kinetic energy can be derived from the stability
equations above by taking the dot product with the perturbation velocity. In tensor notation,
which leads to easier manipulation, this gives

u′
i
∂u′

i
∂t

= −u′
iUj

∂u′
i

∂xj
− u′

iu
′
j
∂Ui

∂xj
− u′

i
∂p′

∂xi
+ 1

Re
u′

i
∂

∂xj

(
∂u′

i
∂xj

)
. (2.8)
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This can be rewritten as

∂k′

∂t
+ Uj

∂k′

∂xj
= −u′

iu
′
j
∂Ui

∂xj
− ∂u′

ip
′

∂xi
+ 1

Re

(
∂2k′

∂x2
j

)
, (2.9)

where k′ = 1
2 u′

iu
′
i is the perturbation kinetic energy. The left-hand side is just the

time derivative of the kinetic energy following an advected fluid parcel whereas the
last term represents viscous diffusion of kinetic energy. Of the remaining two terms,
the first is the only one referencing the base flow and, hence, represents transfer of
energy to and from the base flow, whereas the second represents work done by the
perturbation pressure on the perturbation velocity field. Thus, examining the first term
on the right-hand side provides insight into the generation of perturbation kinetic
energy. Further, by expanding this term into Fourier components in the spanwise
direction, i.e. u′ = (û(x, y, t) cos(kz), v̂(x, y, t) cos(kz), ŵ(x, y, t) sin(kz)), p′ = p̂ cos(kz),
and integrating over a spanwise wavelength, gives the spanwise average approximation per
unit span as

K̇′ = 1
λ

∫ λ
0

(
−u′

iu
′
j
∂Ui

∂xj

)
dz = −1

2

(
ûû

∂U
∂x

+ v̂v̂
∂V
∂y

+ ûv̂

(
∂U
∂y

+ ∂V
∂x

))
, (2.10)

where λ = 2π/k is the wavelength corresponding to wavenumber k. This term can be used
to examine which parts of the wake contribute to a particular instability mode.

2.4. The spectral-element method
Fluid flow is modelled in the moving reference frame attached to the cylinder so
that remeshing is not required. The governing equations are then the non-dimensional
Navier–Stokes equations in an accelerated frame of reference (Thompson, Hourigan &
Sheridan 1996; Thompson et al. 2006)

∂u
∂t

= −(u · ∇)u − ∇p + 1
Re

(∇2u) − a, (2.11)

and
∇ · u = 0, (2.12)

where u and p are the dimensionless fluid velocity and kinematic pressure, respectively,
and a is the acceleration of the reference frame attached to the cylinder, a = ducyl/dt,
where ucyl is the cylinder velocity vector.

These equations are discretised in space using the spectral-element method (Thompson
et al. 1996, 2006; Karniadakis & Sherwin 2013). This is essentially a high-order
finite-element approach, where the fluid domain is broken up into quadrilateral elements
or cells, and within each cell the function is represented by a tensor product of high-order
Lagrange polynomial interpolants based on the node points of Gauss–Legendre–Lobatto
quadrature. This allows efficient evaluation of the integrals resulting from the application
of the weighted residual method to the governing fluid equations. Importantly, the method
converges exponentially (or spectrally) as the number of nodes/elements is increased. The
method is described in detail in the above references.

In terms of time discretisation, a second-order three-step time-splitting method is
used (Karniadakis et al. 1991). This treats the effects of advection, mass conservation
(and pressure) and diffusion separately. The advection step is treated explicitly using a
third-order Adams–Bashforth approximation, whereas the linear pressure and diffusion
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substeps are treated implicitly resulting in linear matrix problems. This means that
these substeps of the time integration are reduced to matrix–vector multiplies after the
computing the lower–upper decomposition of the matrices in a pre-processing step.
Further details can be found in Thompson et al. (2006). This computational approach
is used for both the fluid (2.11), (2.12) and the stability analysis (2.6) equations.

The dimensionless structural differential equation, which provides the acceleration of
the cylinder, is given by

Ÿ∗ + 4πζ f ∗
n + 4π2f ∗

n
2Y∗ = 2

πm∗ CL. (2.13)

Here, Ÿ∗ = ÿD/U2, Ẏ∗ = ẏ/U, Y∗ = y/D and CL = Fy/(
1
2ρf U2DL) correspond to the

non-dimensional acceleration, velocity, displacement and lift force, respectively, with ρf
the fluid density and ζ the damping ratio. Here L represents the spanwise length of
the cylinder and is taken as 1. In addition, f ∗

n = Dfn/U is the non-dimensional natural
frequency of the system in a vacuum ( fn = (1/2π)

√
k/m), and m∗ = ρc/ρf is mass ratio,

with ρc the cylinder density. In general, the oscillation response is recorded as a function
of the reduced velocity, Ur = 1/f ∗

n , although often the theoretical system oscillation
frequency in the working fluid, which takes account of the added mass contribution, is
used to define an alternative reduced velocity instead, i.e. U∗ = 1/f ∗

w , where f ∗
w = Dfw/U,

with fw = (1/2π)
√

k/(m + mA). Here, mA = CAρcπD2/4 is the added mass with CA = 1
for a circular cylinder. There are also two other important frequencies that need to be
considered. These are fv , the shedding frequency of a stationary cylinder, and f or fy, the
actual measured frequency of the cylinder response when the oscillations are periodic. The
latter is, of course, different but related to the other frequencies.

These equations are discretised in time following the approach described in Rajamuni,
Thompson & Hourigan (2018), and are integrated simultaneously in time with the fluid
equations to provide the frame acceleration as a function of time. Typically, we take the
damping ratio ζ to be zero.

For the stability analysis undertaken for this study, the fluid (2.11), (2.12) and structural
(2.13) equations are integrated in time until a periodic state is reached. At that stage, the
velocity field is recorded at discrete integrals (typically 50–100 snapshots) over a complete
period. These fields are used to provide the velocity field at each timestep for the linear
stability equations (2.6) using quadratic interpolation based on the three closest saved
times.

2.5. Steady to unsteady transition
The initial Hopf bifurcation (i.e. steady to unsteady transition) for the transition to 2-D
periodic flow is also examined for the elastically mounted case. Previously, Mittal & Singh
(2005) found that a possible resonance between the shedding and system frequencies could
lower the transition Reynolds number considerably from the fixed cylinder case. In this
paper, we reexamine this transition especially focusing on the effect of mass ratio.

In terms of stability theory, the transition is from a stationary cylinder to coupled motion,
which means we can expand the fluid and body variables about the steady base state as

u → U(x, y) + u′(x, y, t), p → P(x, y) + p′(x, y, t), Y∗ → Y∗′(t). (2.14a–c)
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Thus, after linearising and subtracting the equations of the base flow, the governing
stability equations for this case are

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇p′ + 1

Re
(∇2u′) − d2Y∗′

dt2
, (2.15)

∇ · u′ = 0, (2.16)

together with

Ÿ∗′ + 4πζ f ∗
n Ẏ∗′ + 4π2f ∗

n
2Y∗′ = 2

πm∗ C′
L. (2.17)

Only the zero damping case is considered here, i.e. ζ = 0.
The dominant eigenmodes can be extracted using the same approach as for the Floquet

analysis, i.e. by integrating forward in time from an initial random velocity field until
only the most dominant modes remain and then using Arnoldi decomposition on a set of
regularly saved snapshots to extract the most dominant modes.

2.6. 3-D simulations
Subsequent to undertaking the linear and FSA, we also undertook some fully 3-D flow
modelling to examine the cylinder response and the wake state post-3-D transition. This
was done by extending the 2-D spectral-element code using a Fourier expansion in the
spanwise direction as described in Karniadakis & Triantafyllou (1992), Thompson et al.
(1996) and Gupta et al. (2023). Typically, 128 Fourier planes were used to cover a span
length of 12D. The latter was chosen as approximately three times the wavelength of mode
A. In addition, this gives a spanwise (z) spatial resolution of ∼0.1D, which is much smaller
than the smallest instability wavelength (mode B, wavelength ∼D). It was also necessary
to increase the cross-plane (x–y) resolution for the higher Reynolds number simulations:
relative to the 2-D simulations, the intra-element nodal resolution was increased from
8 × 8 to 10 × 10 for the Re = 500 simulations.

Most simulations at Re = 1000 were undertaken by switching on spectral-vanishing
viscosity (SVV) in the spectral/spectral-element code (Kirby & Sherwin 2006). This
increases the viscosity experienced by shorter length-scale features, which stabilises the
code at higher Reynolds numbers. An important point is that the range of length scales
(wavelengths) affected decrease as the resolution is increased. Sometimes this is referred
to as implicit large-eddy simulation (LES). The implementation and details follow its
application and recommended use in the open-source software Nektar++ (described in
Kirby & Sherwin 2006), which has been successfully used to simulate flow past a circular
cylinder at Re = 3900 (Jiang & Cheng 2021), noting an excellent match with PIV velocity
fields obtained by Parnaudeau et al. (2008) in that case. The implementation of SVV
in current code has been verified using the same benchmark Re = 3900 non-oscillating
cylinder flow, giving statistically identical predictions to the published predictions of Jiang
& Cheng (2021).

A resolution study was undertaken to ensure that SVV was minimally influencing
statistical maximum response amplitude predictions. Simulations were run for m∗ = 2.456
using meshes with 518 spectral elements and 128 Fourier planes with both 8 × 8 and 9 × 9
noded elements over the entire U∗ range. The mode cutoff recommendations provided
by Nektar++ documentation, i.e. the lower 75 % of spectral-element (polynomial) modes
remained undamped and the SVV diffusion coefficient was set at 0.1 (Nektar++ User
Guide, also see Jiang & Cheng (2021) for the Re = 3900 cylinder flow predictions and
the effect of the choice of SVV parameters). The timestep for these cases was set at
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Δt = 0.005D/U∞. The maximum variation in the amplitude prediction between these
two cases across the entire Ur range was less than 2 %, which is consistent with the
statistical sampling error given finite integration times. In addition, higher-resolution
simulations were undertaken for a reduced velocity corresponding to an upper-branch
response (U∗ = 5.0 or Ur = 4.2) using a mesh with 2072 7 × 7 elements and 128 or
256 Fourier planes. The maximum amplitude response predictions between these four
cases were in the range 0.766–0.770, i.e. a variation of approximately 0.5 %. Finally,
simulations were undertaken using the 2072 7 × 7 128 Fourier plane mesh without SVV
stabilisation. These were stable for most U∗ cases outside the upper branch although a
smaller timestep was required for stability. The predicted maximum amplitude responses
for the stable simulations were in statistical agreement with the SVV stabilised predictions.
In the upper branch, presumably the spatial resolution was not quite adequate to resolve
the transfer of energy down to the smallest scales, noting this is a turbulent flow.
Although higher resolution could have been used to fully capture scales down to the
Kolmorogov scale, this would have been computationally prohibitive, but also noting that
this higher-Reynolds-number case is not a major focus of the paper. Of course, the response
curve for Re = 1000 shown in figure 21 is in good agreement with the predictions of Zhao
et al. (2014) obtained using a stabilised finite-element code for almost the same mass ratio.

2.7. 2-D resolution studies
The implementation of the spectral-element approach used in the current study has been
validated extensively in previous studies, see, e.g., Hourigan, Thompson & Tan (2001),
Sheard et al. (2003), Rao et al. (2015) and Leontini et al. (2007) and references therein.
Resolution studies for base flow and stability calculations are considered separately. For
the base-flow simulations, the domain and element distribution is based on the previous
study of VIV of a circular cylinder, where resolution and other validation studies were
reported (Mishra et al. 2020). For the stability calculations, care has been taken during the
construction of the mesh to ensure adequate resolution, as verified through the base-flow
study. However, perturbation fields can have smaller length scales than the base flow,
especially as the spanwise wavelength is reduced, so we investigated the convergence
with respect to the polynomial order of the tensor-product intra-element interpolating
polynomials. Three sets of element resolutions, 6 × 6, 8 × 8 and 10 × 10 (nodes/element)
for a parameter set that leads to near-maximal displacement: Re = 300, ζ = 0.0, m∗ =
2.546 and natural frequency f ∗

n = 0.2 have been used. Figure 2 indicates that increasing the
polynomial order from 7 (8 × 8) to 9 (10 × 10) changed the value of the Floquet multiplier
less than 0.3 % over the range of spanwise wavelengths investigated, providing confidence
that the results presented in this paper are adequately converged.

2.8. Influence of computational domain size
We also investigated the influence of the locations of the outer computational boundaries
relative to the centre of the cylinder. Two different domain sizes were examined. The first
domain had dimensions of 15D upstream and 25D downstream from the cylinder centre,
as depicted in figure 1, and was discretised with 518 macro-elements. The second domain
extended 50D upstream and 50D downstream from the cylinder centre, resulting in a mesh
consisting of 1134 elements. Figure 3 displays the amplitude of oscillation (A∗) and the
root mean square of the lift coefficient (CL,rms) for Re = 150, m∗ = 2.546 and ζ = 0.
This indicates only minor changes to the response curve over the entire reduced velocity
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Figure 2. Floquet multiplier modulus, |μ|, vs spanwise wavelength, λ/D, of Floquet modes as a function of
number of nodes per spectral element, for a cylinder undergoing VIV at Re = 300, ζ = 0.0, f ∗

n = 0.2 and
m∗ = 2.546: (a) influence of element-order on the mode B Floquet multiplier for the mesh used for the bulk of
the simulations; (b) influence of domain size.
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Figure 3. Effect of domain size of amplitude A∗ and root mean square of the lift coefficient (CL,rms) for
Re = 150, m∗ = 2.546 and ζ = 0.

range, with only slightly larger variation in the lift coefficient, which is more sensitive.
In addition, the effect on the Floquet multiplier for mode B is shown in figure 2(b),
which shows a difference of less than 0.2 % near the peak. Thus, the smaller domain size
was selected for the remainder of the simulations because of the reduced computational
resource requirement for this large parameter study.

2.9. Validation
We have undertaken a validation study to ensure that the results produced are in agreement
with published results for standard test cases. Comparisons of base-flow VIV predictions
for the current set-up against literature results were reported in Mishra et al. (2021). We
conducted simulations at Re = 150 and m∗ = 2.546 across a range of reduced velocities.
Figure 4 illustrates the variations of the maximum displacement of the cylinder, mean lift
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Figure 4. Comparisons of the predicted amplitude response and mean and fluctuating force coefficients against
simulation predictions from the literature. Here, ζ = 0, m∗ = 2.546 and Re = 150. See the text for further
details.

coefficient and root mean square of drag and lift coefficients with reduced velocity. The
comparison reveals that our results closely align with those presented in Bao et al. (2012)
and Zhao (2013). Any minor differences observed at specific reduced velocities may be
attributed to variations in blockage ratios considered.

Validation of stability predictions under VIV is through a comparison against forced
oscillation predictions of Leontini et al. (2007), while noting that Gioria et al. (2009)
has produced similar predictions for a different forcing frequency ratio. In particular,
Leontini et al. (2007) presented a transition map showing where different Floquet modes
become unstable as a function of forced oscillation amplitude and Reynolds number for
a fixed forcing frequency of f ∗ = f (D/U) = 0.2, noting that this is very close to the
vortex shedding frequency at Re = 200 and for higher Reynolds numbers after the flow
has become 3-D. For the current problem, the oscillation amplitude is a function of
the reduced velocity, so by running simulations over a range of Reynolds numbers, the
transition Reynolds number can be determined and the oscillation amplitude noted for a
particular system frequency. For f ∗ = 0.2, the transition Reynolds number can then be
compared with the published result of Leontini et al. (2007), under the assumption that
the displacement variation is close to sinusoidal in the freely oscillating case.
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Figure 5. Power spectrum of the displacement signal for f ∗ = 0.2, m∗ = 2.546 at Re = 305. This indicates
that the displacement signal for this reduced velocity (Ur = 5.194) the oscillatory response is very close to a
pure sinusoid, in accordance with the assumption required for a direct comparison of free and forced vibration
cases. See the text for further details.

The validation has been done by extracting the critical Reynolds number corresponding
to the observed amplitude for each transition mode from the forced oscillation study of
Leontini et al. (2007, figure 5). Those predictions show that for an undamped forced
oscillation amplitude of A∗ = 0.5 for f ∗ = 0.2, mode A becomes unstable at Rec,A ∼ 305
and mode B at Rec,B � 277. Thus, simulations were run for Re = 277 and 305 for ζ = 0
(undamped system) and m∗ = 2.546, corresponding to the standard VIV spring–damper
system. Since f ∗

n = 0.2 (i.e. Ur = 5) does not give a response oscillation frequency
of f ∗ = 0.2, it was first necessary to determine the Ur corresponding to f ∗ = 0.2 for
each Reynolds number. For both Reynolds numbers, the saturation amplitude is close to
A � 0.5. Figure 5 shows the power spectrum of the displacement signal for the Re = 305
case, indicating that the response is very close to a pure sine wave with only minor
higher-order frequency content at the odd harmonics. Figure 6 shows that at Re = 277,
the maximum amplitude multiplier is close to unity for the solution branch corresponding
to mode B, whereas for Re = 305, the maximum amplitude of the mode A branch
also reaches a value close to unity. Thus, both of these predictions are in close accord
with those from the forced oscillation study, with the same critical Reynolds numbers
of Recr = 277 and 305. This provides validation of the implementation of FSA for the
elastically mounted spring–damper VIV system. Further validation for the free-oscillation
case was provided by examining the initial growth phase of 3-D perturbations for 3-D
simulations at post-critical Reynolds numbers, which showed that the measured growth
rates in the linear growth regime matched the predictions of FSA. This comparison is not
shown because of space considerations.

3. Results

In this section, the stability of the wake to 3-D transition for the VIV for a circular
cylinder under elastic support is analysed. There are three independent parameters in this
study: mass ratio (m∗), reduced velocity (Ur) and Reynolds number (Re). Recall that the
reduced velocity is defined as Ur = U/( fnD), where U is the free-stream velocity, fn is
the natural frequency of the structure in a vacuum. The limit of two-dimensionality for the
oscillating cylinder is determined by varying three independent parameters, Re, Ur, i.e. the
non-dimensional oscillation period, and m∗.

We initially analyse an undamped elastically-mounted cylinder for m∗ = 2.546 at f ∗
n =

0.2, noting that the natural frequency is close to the natural vortex-shedding frequency of

984 A12-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

14
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.145


R. Mishra, R. Bhardwaj and M.C. Thompson

0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

μ

λ/D
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Figure 6. Floquet multiplier vs spanwise wavelength at Re = 277 and 305, for ζ = 0, f ∗ = 0.20, m∗ = 2.546,
corresponding to a standard spring–damper VIV system. Mode B becomes critical first at Re � 277 and then
mode A for Re = 305. In this figure, A∗ is the amplitude of oscillation. A comparison with Leontini et al.
(2007) shows that for a undamped forced oscillation amplitude of A∗ = 0.5 and oscillation frequency = 0.2,
and for purely sinusoidal oscillation, mode A becomes unstable at Rec,A ∼ 305 and mode B at Rec,B � 277.

a fixed cylinder. The occurrence of modes A, B and QP is examined as Re is increased.
We determine the critical values of Re and non-dimensional spanwise wavelength, λ/D,
for which the 2-D wake becomes linearly unstable for the periodic oscillation of a cylinder
under VIV.

3.1. Critical Re for the onset of vortex shedding
Before investigating the loss of stability of the Kármán wake to 3-D perturbations, it is
useful to determine the underlying periodic base-flow states. Although this dependence
of the transition on reduced velocity has been examined previous by Mittal & Singh
(2005) for the two-degree-of-freedom case, they only considered mass ratios m∗ � 5. For
the current simulations, this range is extended to lower mass ratios where the effect on
transition is amplified.

For a stationary circular cylinder, the wake undergoes a transition from a stable to
periodic Kármán wake at Re ∼ 47 (e.g. Dusek, Gal & Fraunie 1994; Williamson 1996;
Le Gal, Nadim & Thompson 2001). This instability leads to unsteady lift and drag forces
that cause an elastically mounted cylinder to undergo VIV. The onset of this periodic
shedding occurs at different Reynolds numbers for a cylinder undergoing VIV. The value
of this critical Re depends on the reduced velocity.

Based on the stability analysis of § 2.5, figure 7 provides growth rate contours for mass
ratios m∗ = 1, 2.546 and 10. The zero growth rate curves are marked, which indicate the
transition Reynolds number as a function of reduced velocity.

As Ur is increased from very small values, the critical Reynolds number, Reco, initially
rises from a value consistent with the stationary cylinder transition Reynolds number of
Reco � 46 to reach a peak, prior to rapidly dropping after a different instability mode
becomes dominant (corresponding to the system frequency rather than the unsaturated
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Figure 7. Growth rate contour maps for the steady to unsteady transition of an elastically mounted cylinder
showing the effect of mass ratio on transition as a function of reduced velocity. The rows correspond to
(a) m∗ = 1, (b) m∗ = 2.546 and (c) m∗ = 10. The zero growth contour is marked indicating the variation
of the transition Reynolds number as U∗ is varied.

shedding frequency). This shift corresponds to the kinks in the contour lines of figure 7.
For the lightest mass ratio considered, m∗ = 1, the critical Reynolds number is increased
to approximately Reco = 51 at Ur = 4.6. For larger mass ratios, the effect is less; for m∗ =
10, the increase is only to Reco � 47 at Ur = 5.7 before again dropping rapidly. In all
cases, beyond the initial peak, the critical Reynolds number reaches a value of slightly less
than 20, noting that the minimum occurs at different reduced velocities for the different
mass ratios. This result is consistent with the findings of Mittal & Singh (2005), who also
found a minimum critical Reynolds number of ∼20.
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Figure 8. Floquet multiplier vs wavelength at Re = 320, 300, 280 and 260; ζ = 0 (undamped system),
f ∗
n = 0.20 and m∗ = 2.546.

3.2. Variation of the mode growth close to 3-D transition
In this section, for the system undergoing VIV, loss of stability of the Kármán wake to
3-D perturbations is analysed for a mass ratio m∗ = 2.546, as a function of Reynolds
number. The Reynolds number range chosen covers the range where analogues of both
modes A and B become unstable. Figure 8 shows the magnitude of the predicted Floquet
multiplier, |μ|, vs wavelength, λ/D, for undamped free vibration. The natural frequency
is fixed at f ∗

n = 0.2, close to shedding frequency of the fixed cylinder; this corresponds
to Ur = 5.0. Figure 8 shows that for Re = 300 and 320, the flow is unstable to 3-D
perturbations, whereas at Re = 280 and 260 the 2-D wake flow remains stable (|μ| < 1),
with no Floquet modes showing positive growth. The amplitude of oscillation increases
slightly with decreasing Re, with A∗ = 0.49, 50, 0.50 and 0.51, for Re = 320, 300, 280
and 260, respectively. The figure shows that for Re ≥ 280, two clear peaks can be observed
although both remain stable at Re = 280, whereas for Re = 260 only the mode B peak has
become visible. The modes corresponding to the two branches are analogous to modes A
and B for the stationary cylinder. We observe that mode B becomes critical first then mode
A; a similar result was found for A∗ > 0.3 under forced cylinder oscillation by Leontini
et al. (2007).

In the case of Re = 300, only mode B is unstable, with the maximum growth rate
occurring at λ ≈ 0.9D. The multiplier branch corresponding to Mode QP, which has
a complex Floquet multiplier, remains stable but is dominant for 1.4D < λ < 1.9D.
At Re = 300, mode A is also stable with a maximum |μ| ≈ 0.9 occurring at λ ≈ 2.5D.
In fact, for λ > 3.7D, the dominant mode has a complex Floquet multiplier corresponding
to a QP mode. Since it is observed at a longer wavelength than mode A, to make a clear
distinction from the previously observed QP mode, it is designated as mode QPL, named
for long-wavelength QP. For Re = 280, the flow is near to unstable to mode B, again
with a wavelength centred around λ ≈ 0.9D, whereas the branch corresponding to mode
QP remains stable and exists for λ > 1.4D although it is not shown explicitly here. Thus,
modes A and B become critical at lower Reynolds numbers than those of modes QP and
QPL. This latter behaviour is similar as that reported by Blackburn, Marques & Lopez
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(a) (b)

(c) (d )

Figure 9. Spanwise perturbation vorticity depicting (a,b) mode B and (c,d) mode A at Re = 300, ζ = 0,
f ∗
n = 0.20 and m∗ = 2.546. Red (blue) represents positive (negative) spanwise vorticity. The solid lines outline

base-flow vorticity.

(2005) for a stationary cylinder, who estimated the critical Re for mode QP to be about
377 with λcr ≈ 1.8D. Mode QP has no local maximum over this Reynolds number range,
unlike modes A and B; however, we have not examined the stability for Re > 300.

Figure 9 shows the spanwise and streamwise perturbation vorticity fields at Re = 300
in order to indicate the similarities and differences in the structures of modes A and B.
The solid lines in the figure outline the base-flow vorticity with two single vortices shed
per oscillation cycle (referred to as a 2S wake mode). This mode occurs at low amplitudes
of oscillation, in particular for A∗ � 0.5 at Re = 300 (Leontini et al. 2006a). Mode B in
figure 9(a,b) is the first occurring unstable mode showing a maximum Floquet multiplier
at λ = 0.9D. Mode B obeys the spatiotemporal symmetry of the base flow about the
wake centre line, with spanwise perturbation vorticity repeated (on reflection through the
centreline) every half base period. The successive spanwise vortex structures from each
side of the wake have the same sign. The still stable mode A correspondingly shows a
maximum |μ| at λ = 2.5D. This mode is shown in figure 9(c,d). The primary vortex at
the rear of the cylinder has both positive and negative regions of perturbation vorticity;
further downstream, the perturbation becomes concentrated in the primary vortex cores.
Mode A has spatiotemporal symmetry opposite to that of mode B. The perturbation field
structures for modes A and B are found to be similar to those of modes A and B for
a fixed circular cylinder (Barkley & Henderson 1996), although the oscillation certainly
has a strong effect on the underlying base flow. In particular, the near-wake base-flow
vortex structures are quite different from those for a stationary cylinder in that they are
stretched and elongated as the cylinder moves up and down rather than more elliptical in
character for the stationary cylinder. Since mode A has been at least partially attributed
to elliptic instability (Leweke & Williamson 1998; Thompson et al. 2001), this may help
to explain why mode A remains stable until higher Reynolds numbers under oscillation.
Since mode B is likely to depend more on the shear of the braid regions between Kármán
wake vortices (Leweke & Williamson 1998), which of course persist in the oscillatory case,
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Figure 10. Floquet multiplier vs wavelength for (a) m∗ = 10, 2.546 and 1, at Re = 300 for f ∗ = 0.2.

this is consistent with the smaller effect on the onset of mode B. However, this question
is further considered in the following through an examination of the perturbation kinetic
energy generation.

The effect of mass ratio on 3-D stability under VIV at Re = 300 is examined for mass
ratios m∗ = 1, 2.546 and 10 in figure 10. The reduced velocity is adjusted to result in
f ∗ = 0.20 in each case. The response amplitude is close to 0.49 for each mass ratio. Indeed,
the dominant Floquet multiplier curves are virtually identical as the mass ratio is varied
by a factor of 10, again showing a collapse against the actual system response frequency
(rather than Ur or U∗), and consistent with figure 6.

3.3. Relationship of the 3-D instability modes to stationary cylinder modes A, B and QP
Figure 11 plots the spatial distributions of the perturbation kinetic energy (k′) and
generation rate term (K̇′) given by (2.10) for the different instability modes. This latter
term (K̇′) provides the rate of transfer of perturbation kinetic energy to or from the base
flow, thus providing insight into which parts of the wake contribute to the development
of the instability modes. This analysis was undertaken for modes A, B and QP for the
stationary circular cylinder and the analogous A, B and QP instability modes for a cylinder
undergoing VIV.

Each pair of rows of this figure shows side-by-side comparisons of the dominant
stationary-cylinder and VIV oscillating-cylinder instability modes close to onset. The left
column shows perturbation kinetic energy and the right column the perturbation energy
generation rate. The top, middle and bottom pair of rows show comparisons for modes
A, B and QP, respectively. Clearly, for mode A of the stationary cylinder, energy input
into the mode occurs primarily in the wake vortex cores, consistent with the interpretation
of elliptic instability assisting the maintenance of the instability (Leweke & Williamson
1998; Thompson et al. 2001). On the other hand, for mode B perturbation energy transport
from the base flow is primarily in the sheared region between the near-wake vortices
and extending into the braids between the row of vortices further downstream. This is
consistent with the interpretation that the instability is supported mostly by an instability
of the braids (Leweke & Williamson 1998). Mode QP appears to be supported through a
more equal combination of elliptic and hyperbolic instabilities (Sheard et al. 2003).
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Mode A (Re = 190, λ = 4D), stationary cylinder

Mode A (Re = 305, λ = 2.5D), VIV, Ur = 5

Mode B (Re = 260, λ = 0.9D), stationary cylinder

Mode B (Re = 277, λ = 0.9D), VIV, Ur = 5

Mode QP (Re = 380, λ = 2D), stationary cylinder

Mode QP (Re = 220, λ = 1.2D), VIV, Ur = 7

(a) (b)

(g) (h)

(k) (l)

(i) ( j)

(e) ( f )

(c) (d )

Figure 11. Perturbation kinetic energy, k′, (a,c,e,g,i,k), and kinetic energy generation rate, K̇′, (b,d, f,h, j,l),
from (2.10), which indicates the generation of perturbation kinetic energy from the base flow: (a–d) mode A
comparison for the stationary and VIV cases; (e–h) same for mode B, bottom two rows; (i–l) same for mode
QP. See the text for further details.

In terms of the VIV instability modes, mode A shows distinct differences from the k′
and K̇′ distributions of the stationary cylinder modes. Under oscillation, there appears to
be little generation associated with the vortex cores and more generation in the braids. In
addition, further downstream, the instability mode appears supported by energy transfer
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in the vortex cores, while for the stationary cylinder mode A the generation remains
small. The study by Leontini et al. (2007) indicates that the mode A seen for a stationary
cylinder wake is continuously transformed into the mode A seen under high-amplitude
oscillations as the forced oscillation amplitude is steadily increased. Thus, an interpretation
of the perturbation kinetic energy analysis is that the stretching of vortex structures in the
near-wake caused by the body oscillation suppresses the presence of near-wake elliptic
instability, which causes the mode A instability to occur at considerably higher Reynolds
numbers (Rec � 305 at Ur = 5) than for the stationary case (Rec � 190).

For mode B similar spatial distributions of k′ and K̇′ are seen for both the stationary
and oscillating cylinder modes. Given this, it is not surprising that the instability mode
onset is similar in both cases: Rec = 259 for the stationary cylinder and Rec = 277 at
Ur = 5 for the oscillating cylinder. Thus, mode B is relatively minimally affected by
large amplitude oscillations and the non-trivial change to the wake structure, noting a
significantly increased wake width.

As shown later in § 3.6, a QP mode is the first occurring VIV instability mode at Ur = 7.
The comparison of the stationary and VIV QP modes in figure 11 indicates that the VIV
QP mode more closely resembles mode B than the stationary cylinder QP mode. Hence,
it is unsurprising that the critical Reynolds number for these modes is so different (Rec �
377 for the stationary cylinder mode and Rec � 220 for the VIV mode).

Further discussion on how these modes change with reduced velocity is given in § 3.6.

3.4. Response curves for a circular cylinder under VIV at Re = 150, 200 and 250
The VIV response of a circular cylinder for an undamped system is shown in figure 12 at
m∗ = 2.546 for Re = 150, 200 and 250. The following variables, the maximum oscillation
amplitude (A∗), peak lift coefficient (CL,max), normalised frequency ( f ∗), total phase
difference (φtot) and vortex phase difference (φvor), are plotted as a function of reduced
velocity (Ur) in figure 12(a–d), respectively. Normalised frequency is defined as f ∗ =
fy/fn, where fy is the frequency corresponding to the highest power in the power spectral
density of displacement, and fn is the natural frequency of the structural system. The total
phase (φtot) and the vortex phase (φvor) are the phase differences between fluid force and
displacement signals, obtained using a Hilbert transform (Khalak & Williamson 1999).
In particular, φtot and φvor are the mean phase difference between lift force and cylinder
displacement, and the vortex force (total − added mass force) and cylinder displacement,
respectively.

We observe a typical three-branch response, the initial (red colour), upper (blue colour)
and lower (black colour) branches, followed by a desynchronisation (magenta colour)
regime. These branches are not necessarily one-to-one related to those observed for
high-Reynolds number VIV at a low mass-damping ratio. Based on the observation
by Govardhan & Williamson (2000), Leontini, Thompson & Hourigan (2006b),
Soti et al. (2018), Mishra et al. (2020) and Sharma, Garg & Bhardwaj (2022), the
criteria to classify different VIV branches are as follows. The initial branch is demarcated
with monotonically increasing A∗ and CL,max, multiple frequencies in fy, the vibration
frequency overlaps the vortex shedding frequency of a stationary cylinder ( f ∗ ≈ fv/fs),
φtot ≈ 0 and φvor ≈ 0. The range of the upper branch is identified with large A∗, constant
f ∗ slightly lower than 1 ( f ∗ < 1), large CL,max, φtot ≈ 0 and transition of φvor from 0
to π. Beyond this, conditions for the existence of the lower branch is large A∗, f ∗ = 1,
monotonic decrease in CL,max, transition of φvor from 0 to π and φvor ≈ π. Finally,
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Figure 12. VIV responses of the cylinder at m∗ = 2.546 for Re = 150, 200 and 250: (a) maximum oscillation
amplitude, A∗; (b) peak lift coefficient, CL,max; (c) normalised frequency, f ∗ (= f /fn) (green dotted line
represents the vortex shedding frequency for a stationary cylinder); (d) mean phase difference between lift force
and cylinder displacement, φtot; (e) mean phase difference between vortex force and cylinder displacement,
φvor .

desynchronisation is characterised by negligible A∗, f ∗ parallel to fv/fs, φtot ≈ π and
φvor ≈ π.

As evident from figure 12(a) A∗ is a continuous function of Ur, except there are sudden
jumps at Ur = 3.3, 3.1 and 3.0 for Re = 150, 200 and 250, respectively, thus allowing
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Branch Re = 150 Re = 200 Re = 250 Demarcating criteria

Initial (red) [2.8, 3.2] [2.8, 3.0] [2.8, 2.9] A∗ and CL,max increases;
f ∗ = fv/fs;φtot ≈ 0;
φvor ≈ 0

Upper (blue) [3.3, 3.9] [3.1, 3.8] [3.0, 3.7] Large A∗; CL,max; f ∗ ≈
constant and f ∗ < 1;
φtot ≈ 0; transition of φvor from 0
to π

Lower (black) [4.0, 7.6] [3.9, 7.4] [3.8, 7.4] Large A∗ and monotonically
decreasing CL,max; f ∗ ≈ 1;
transition of φtot from 0 to π;
φvor ≈ π

Desynchronisation (magenta) [7.7, 8.0] [7.5, 8.0] [7.5, 8.0] Negligible A∗; f ∗ parallel to fv/fs
line; φtot ≈ π;
φvor ≈ π

Table 1. Range of Ur and criteria distinguishing the different VIV branches for Re = 150, 200 and 250.

the identification of the transition between the initial and the upper branches. Although
displacement amplitude is continuous, figure 12(b) shows a sudden jump in the lift-force
amplitude, thus demarcating the upper and lower branches at Ur = 4.0 (Re = 150), 3.9
(Re = 200) and 3.8 (Re = 250). Figure 12(c–e) shows the branch-to-branch jumps in the
oscillation frequency and phase difference. We further quantify the branch ranges for Re =
150, 200 and 250 in table 1, together with the criteria used to distinguish the branches.

Figure 12(a) shows that the peak oscillation amplitude at all three Reynolds numbers
is �0.58D, and the overall response curves are similar for Re = 150, 200 and 250.
These findings agree with Govardhan & Williamson (2006), who showed that peak
oscillation amplitude is almost constant for low-Reynolds-number flows. However,
Williamson & Govardhan (2004) has noted that such low-Re simulations, in general,
predict peak oscillation amplitudes around 0.6D, whereas experiments for higher Re
produce amplitudes up to 1D. Figure 13 shows wake vorticity contours at a reduced
velocity, Ur = 4.0, corresponding to the maximum oscillation amplitude. At Re = 150, the
wake vortices assemble into a double-row, 2S (two single vortices per shedding period),
configuration consistent with the high amplitude oscillation (figure 13a). At Re = 200
and 250 (figure 13b,c), the newly shed vortices show signs of a 2P (two vortex pairs per
shedding period) structure close to the rear of the cylinder, although the second vortex
of each pair is very weak. However, we certainly do not claim that the wakes have a
2P structure for any of these Reynolds numbers, since the experimentally observed 2P
structures show approximately similar strength opposite-signed vortices in each pair.

On this point, Blackburn, Govardhan & Williamson (2001) compared low Reynolds
number experimental results (Re ∼ O(1000)) with 2-D and 3-D numerical predictions.
The 3-D simulations matched the experiments well. Furthermore, demarcation of the
upper and the lower branches based on amplitude was not observed for the 2-D
simulations, noting that they were clearly evident by the gaps between branches in the 3-D
simulation. Therefore, and as has been recognised for a long time, 2-D simulations are
inadequate for accurately modelling higher-Re VIV, when the flow is 3-D and turbulent.
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(b)

(a)

(c)

Figure 13. Vorticity contours at Ur = 4.0 for Reynolds number (a) Re = 150, (b) Re = 200 and
(c) Re = 250. The red (blue) colours represents clockwise (anticlockwise) spanwise vorticity.

0.8

Re = 150, ζ = 0, m∗ = 2.546

0.6

Periodic
Quasi-periodic

0.4

0.2

0
2 3 4 5

Ur

6 7 8

A∗

Figure 14. Variation of amplitude (A∗) vs reduced velocity (Ur) for undamped VIV in the range
Ur ∈ [2.0, 8.0], depicting the periodic and QP range.

3.5. Effect of reduced velocity on different modes
In § 3.2, stability analysis for VIV is presented for an oscillation frequency of f ∗

n = 0.2 at
Re = 300, corresponding to the strongly resonant case. In the current section, results for
fixed Re = 300 for a standard spring–damper VIV system are presented as a function of
reduced velocity. Figure 14 shows the maximum amplitude of vibration vs reduced velocity
at Re = 150 and for m∗ = 2.546 depicting the periodic and QP nature of the oscillations.
The situation is similar at other Reynolds numbers. Since FSA is only applicable to a
periodic base flow, only the reduced velocity range Ur ∈ [4.0, 8.0] is considered, noting
periodic flow together with a strong resonant response.

Figure 15 presents |μ| as a function of spanwise wavelength for Ur ∈ [4.0 − 8.0]. The
Ur = 4.0 case has a complex Floquet multiplier corresponding to a stable 2S wake mode,
as shown in figure 16. At Ur = 4.0 the oscillation amplitude A∗ = 0.56, corresponds
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Figure 15. Floquet multiplier vs wavelength, at Re = 300, m∗ = 2.546, ζ = 0 for: (a) Ur = 4.0, (b) Ur = 4.5,
(c) Ur = 5.0, (d) Ur = 5.5, (e) Ur = 6.0, ( f ) Ur = 6.5, (g) Ur = 7.0, (h) Ur = 7.5 and (i) Ur = 8.0.

Figure 16. Base-flow vorticity contours at Re = 300 for reduced velocity Ur = 4.0. The red (blue) represents
clockwise (anticlockwise) spanwise vorticity.

to the highest amplitude during VIV. Interestingly, Leontini et al. (2007) observed a
P + S (base-flow) wake for forced oscillations at A∗ = 0.55 and f ∗

s = 0.2. That case
corresponds to a forcing frequency of St = 0.2 or Ur � 5.0. They observed the transition
from a 2S to P + S wake configuration at Re = 280. Thus, the system frequency, which
controls the shedding frequency over the resonant range, does have a non-negligible effect
on the base-flow structure, with increasing the forcing/shedding frequency leading to a
higher-Reynolds-number transition from the 2S to the P + S state.
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(b)(a)

(c) (d )

Figure 17. Spanwise perturbation vorticity indicating mode SH for time (a) T , (b) 2T , (c) 3T and (d) 4T at
λ = 1.4D, Ur = 4.5, Re = 300 and m∗ = 2.546. Here, T is the base-flow field period.

For Ur ≥ 4.5, modes A, B, QP, QPL (a long-wavelength QP mode) and SH are observed.
Of interest, Ur = 4.5 shows that a subharmonic mode (SH) is the first to become unstable.
This occurs for a wavelength range typically dominated by Mode A. Modes B, QP and
QPL are not unstable, whereas mode SH is unstable and grows fastest at λ ≈ 1.4D.
Therefore, at Ur = 4.5, mode SH is responsible for 3-D transition. It is important to note
that the Floquet multiplier for the SH mode is always real and negative consistent with
its subharmonic nature. The spanwise perturbation vorticity field is shown in figure 17.
The subharmonic mode nature is highlighted by comparing images at each base-flow time
period (T), verifying that the perturbation field is repeated over two periods (2T) and the
structure of the mode is the same at the end of a single period except for a sign change
(Sheard et al. 2005).

For the λ < 5D, mode QPL is only observed at reduced velocity Ur = 4.5 and 5.0,
whereas mode QPL is absent for other reduced velocities Ur ∈ [5.5, 8.0]. It is also
observed that as Ur increases, the stability of the modes are affected. For Ur = 4.0 the
wake is stable, whereas for Ur = 4.5 mode SH is just critical and modes B, QP and QPL
can be observed. For Ur = 5.0, mode A is observed for the first time but remains stable,
however mode B is unstable. Furthermore, for Ur ≥ 5.0, mode B is unstable (|μ| > 1) and
|μ| for this mode increases up to Ur = 6.5. The maximum |μ| ≈ 1.7 occurs at λ ≈ 0.9D
for Ur = 5.0, increasing to a maximum |μ| ≈ 4.0 at λ ≈ 1.0D for Ur = 6.5. The growth
rate for mode B further decreases at Ur = 7.0, with a maximum of |μ| ≈ 3.5 at λ ≈ 1.0D,
which remains constant on further increasing Ur. The maximum |μ| ≈ 3.5 occurs at
λ ≈ 1.0D for Ur = 7.0, 7.5 and 8.0.

Similar behaviour can be observed for mode A. At Ur = 5.5, the maximum |μ| ≈
1.03 occurs at λ ≈ 2.7D, indicating that the mode is just supercritical. The growth rate
increases on further increasing Ur up to Ur = 7.5 with a maximum |μ| ≈ 1.8 at λ ≈ 3.6D.
Beyond Ur ≥ 7.5, the growth rate remains constant. Mode QP is seen to be stable for
Ur ∈ [4.0, 6.0] and unstable for Ur ≥ 6.0. The maximum |μ| increases up to Ur = 7.0,
with a highest growth rate of |μ| ≈ 1.9 at λ ≈ 1.9D. On increasing Ur beyond 7.5, the
maximum |μ| slightly decreases with a maximum of |μ| ≈ 1.5 and |μ| ≈ 1.3 at Ur = 7.5
and 8.0, respectively, centred around λ = 1.9D. The flow is observed to be more stable at
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Figure 18. (a) Critical Reynolds number, Recr, and (b) critical wavelength, λcr, against reduced velocity for
the undamped system at Ur ∈ [4.5, 8.0], and m∗ = 2.546.

Ur = 4.0, 4.5 and 5.0, the highly resonant region. The synchronisation between cylinder
vibration and vortex shedding stabilises the flow and hence it is more stable over this range.

3.6. Critical Reynolds number and wavelength variation with reduced velocity
This section presents the maximum Re for which the wake remains 2-D for the undamped
VIV (standard spring–damper) system as a function of reduced velocity, Ur. We have
focused our analysis on the lower branch of VIV, where the base flow exhibits periodic
wake oscillations. In the desynchronisation branch, the amplitude is relatively small and
periodic with the oscillation frequency close to but lower than the natural shedding
frequency. On the other hand, for the initial and (pseudo-)upper branch, the oscillation
is not periodic, so FSA, which requires a purely periodic signal, cannot be applied. Thus,
we have limited our consideration to the resonant reduced-velocity range, Ur ∈ [4.5, 8],
where the base-flow amplitude variation is periodic, noting that at the upper end of this
range corresponds to the desynchonisation branch.

Figure 18 shows the critical Reynolds number, Recr, and corresponding critical
wavelength, λcr, as a function of reduced velocity, Ur, for an undamped VIV system. Here,
Recr is the value of the Reynolds number at which a given mode first becomes unstable,
i.e. μ first exceeds |μ| = 1. In addition, λcr is the wavelength at which Recr occurs. To
find an accurate Recr at each Ur, simulations were run for each Re for a series of λ in steps
of 0.1. For each Re, μ locally varies quadratically about each local maximum (as shown
in previous μ vs λ plots). We determine the coordinate (|μ|, λ) for the local maximum.
The value of Re is then incremented in steps of five, noting down the maximum |μ| and
the corresponding value of λ for each Re. This process is repeated until resolving values
that give a maximum |μ| = 1. The values of Recr are then found by interpolating Re and
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corresponding maximum |μ| values using quadratic interpolation. The same process is
repeated for each reduced velocity.

Figure 18 shows the transition boundary for modes A, B, SH and QP, corresponding to
reduced velocity [4.5, 8.0]. The critical Reynolds number, Recr, decreases with reduced
velocity up to Ur = 7.25. At Ur = 4.5, mode SH is the only mode that becomes critical,
which occurs at Re ≈ 299. For Ur ∈ [5.0, 6.0], modes A and B become critical, with mode
B being the leading 3-D mode. At Ur = 6.25, mode QP is critical first, with the order of
inception of modes being mode QP, mode B and mode A. It is observed that for Ur =
7.0 and 7.5, there are two distinct QP modes (referred to as QP and QP0) together with
mode A that become critical, with mode QP0 becoming critical first. Interestingly, mode
QP0 does not become critical at Ur = 6.25. The perturbation kinetic energy analysis (see
figure 11 and the discussion in § 3.3) suggests that the physical triggering mechanism for
this mode has more in common with mode B rather than mode QP. It also occurs for
the same wavelength band as for mode B, however, the transition Reynolds number is
much lower than observed for mode B. Also for this Ur range, at Ur = 7.25 and Re >

270, the wake develops asymmetry about the centreline and the wake period doubles.
This part of parameter space is where the transition to mode B would be expected to occur.
Transition to the desynchronisation branch occurs between Ur = 7.5 and 8.0, resulting
in the relatively sudden shifting of shedding and cylinder oscillation to the be close to
the natural shedding frequency, and a significant decrease in oscillation amplitude. At
Ur = 8.0, mode A precedes the occurrence of modes B and QP, with modes B and QP
transitioning at approximately the same Re. Interestingly, the transition Reynolds numbers
and wavelengths of modes A and QP at Ur = 8.0 are consistent with the trends at lower
Ur values, despite the significant change in oscillation frequency and amplitude. Mode B,
on the other hand, shows a significantly lower transition Reynolds number for this case.

The transition boundary, corresponding wavelength and amplitude for modes A, B,
QP and SH, and for Ur ∈ [4.5, 8.0], are summarised in table 2. These findings are in
accordance with Leontini et al. (2007) for the forced oscillation case: for A∗ < 0.3 mode
inception order (with increasing Re) is A, B and QP; whereas for 0.3 < A∗ < 0.55, the
order of mode inception is B then A; and for A∗ > 0.55 mode SH is the only unstable
mode. Table 2 indicates that for Ur ∈ [4.5, 7.5], A∗ decreases approximately from 0.52 to
0.42 with Ur, whereas for Ur = 8.0, A∗ ≈ 0.11. Mode SH occurs at A∗ ≈ 0.52 for Ur =
4.5, slightly varying from the prediction of Leontini et al. (2007), who observed mode
SH at A∗ > 0.55. For Ur ∈ [5.0, 6.0] with 0.42 ≤ A∗ ≤ 0.50 results are in agreement with
Leontini et al. (2007). It is also observed that for Ur = 6.5 and 7.5, 0.40 ≤ A∗ ≤ 0.44,
mode QP first becomes critical, which is different from Leontini et al. (2007); however,
of course, the system frequency is then significantly different from the forcing frequency
of St = 0.2 used in that study. On the other hand, at Ur = 8.0 with A∗ � 0.11 and the
shedding frequency is close to 0.2, modes A and B undergo transition at close to the
values seen for the forced oscillation case: Recr = 243 at St = 0.18 (VIV) compared
with Recr = 255 at St = 0.20 (forced) for mode B; and Recr = 212 at St = 0.18 (VIV)
compared with Recr = 230 at St = 0.20 (forced) for mode A. Overall, there appear to be
non-negligible effects of the oscillation frequency and amplitude on transition.

The envelope of the transition lines in figure 18(a) shows the variation of critical
Reynolds number with reduced velocity for which the flows remains 2-D. The critical
Reynolds number decreases with reduced velocity over the entire range of Ur considered.
Specifically, Recr ≈ 299 at Ur = 4.5, decreasing monotonically to Recr ≈ 208 at
Ur = 7.5.
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Reduced velocity Mode A Mode B Mode SH Mode QP f (D/U)

Ur = 4.5 — — Re = 299.3 — 0.2234
λ = 1.4

A∗ = 0.52
Ur = 5.0 Re = 311.8 Re = 283.5 — — 0.2043

λ = 2.4 λ = 0.9
A∗ = 0.49 A∗ = 0.50

Ur = 5.5 Re = 296.8 Re = 270.2 — — 0.1878
λ = 2.7 λ = 1.0

A∗ = 0.47 A∗ = 0.48
Ur = 6.0 Re = 289.2 Re = 261.3 — — 0.1729

λ = 3.3 λ = 1.0
A∗ = 0.43 A∗ = 0.45

Ur = 6.5 Re = 282.1 Re = 267.5 — Re = 243.6 0.1567
λ = 4.3 λ = 1.1 λ = 2.0

A∗ = 0.40 A∗ = 0.43 A∗ = 0.45
Ur = 7.0 Re = 256.5 — — Re = 220.6 0.1434

λ = 4.1 λ = 1.1
A∗ = 0.45 A∗ = 0.44

Ur = 7.5 Re = 236.5 — — Re = 208.7 0.1750
λ = 3.9 λ = 1.2

A∗ = 0.44 A∗ = 0.42
Ur = 8.0 Re = 212.4 Re = 242.5 — Re = 241.9 0.1781

λ = 3.9 λ = 0.9 λ = 2.0
A∗ = 0.11 A∗ = 0.13 A∗ = 0.13

Table 2. Transition boundary characteristics: corresponding critical Reynolds numbers, wavelengths and
amplitudes for modes A, B, SH and QP. The post-simulation oscillation frequency is shown in the last column
corresponding to the Reynolds number of the first transition.

Figure 18(b) shows the variation of λcr with reduced velocity. In terms of the first modes
to become unstable, the figure shows that λcr ≈ 1.4D for mode SH at Ur = 4.5. For Ur =
5.0 to 6.5, λcr ≈ 0.9D for mode B, however, for mode A there is an increase in λcr from
2.4D to 4.3D. On further increasing Ur, λcr for mode A decreases towards 3.9D at Ur =
8.0. Mode QP, which appears for Ur ≥ 6.5, decreases from λcr ≈ 2.0D to λcr ≈ 1.0D
over the interval 6.5 ≤ Ur ≤ 7.5. It then increases to λcr ≈ 2.0D at Ur = 8.0. The critical
values for Ur = 8.0, where the oscillation amplitude is only 0.11, are close to those for the
non-vibrating case (Barkley & Henderson 1996) as should be expected.

Overall, the synchronisation between cylinder vibration and vortex shedding has a
significant role in maintaining the two-dimensionality of the flow. Clearly, high-amplitude
oscillations delay onset of 3-D transition but there is also a distinct dependence on reduced
velocity. In summary, for the standard elastically mounted VIV system, the maximum
Re for which the wake remains 2-D over the resonant and periodic reduced-velocity
range Ur ∈ [4, 8] is 208 and occurs at Ur = 7.5, corresponding to a critical wavelength
of λcr ≈ 1.2D. The maximum delay in the transition from 2-D to 3-D flow occurs for
Ur = 4.5, with the wake remaining 2-D up to Recr ≈ 299.

3.7. Influence of mass ratio on the amplitude response and transition
Figure 19 shows the influence of mass ratio on the amplitude response under VIV
as a function of Reynolds number. The subfigures in the first column correspond to
(a) Re = 150 (where the wake is certainly 2-D), (b) Re = 200 (with the wake on the
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Figure 19. (a–c) Amplitude response for different Reynolds numbers and mass ratios. (d–f ) Corresponding
amplitude response against f /fv for the same cases in the left column.

verge of transition) and (c) Re = 300 (where the wake is mostly 3-D). The response
curves have a similar shape but with the onset reduced velocity of resonance shifted to the
right as the mass ratio is increased. In addition, desynchronisation occurs at smaller Ur
values for higher mass ratios. The right-hand column provides the equivalent amplitude
curves but plotting against the ratio of actual system oscillation frequency (and vortex
shedding frequency under VIV) to vortex shedding frequency for a stationary cylinder.
The displacement response is only plotted for the resonant Ur range where the oscillation
is periodic. Clearly, for each Reynolds number, there is an excellent collapse of the
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2-D simulation
3-D simulation

Figure 20. Amplitude response for 2-D and 3-D simulations with respect to Ur at Re = 300 for m∗ = 2.546.

amplitude response for the wide range of mass ratios considered. As already commented,
higher mass ratios result in the resonance dropping out at higher oscillation amplitudes
as Ur is increased; however, the shape of the curves remains the same. The only slight
variation where this does not occur is in the neighbourhood of the maximum amplitude
response for Re = 300, where there are differences in the maximum response amplitude
for the different mass ratios. The upshot of this collapse suggests that the transition
scenario discussed in the previous section should hold for other mass ratios by using
the post-simulation measured oscillation frequency as the scaling parameter rather than
Ur. To this end, table 2 also provides the oscillation frequency for the transitions for
m∗ = 2.546. Thus, to find the equivalent transition for, say, m∗ = 1.0, that occurs at
Ur = 6 for m∗ = 2.546 (initially to mode B at Re = 261.3), simulations can be undertaken
at m∗ = 1.0 for Re = 261.3 varying Ur to find when f (D/U) = 0.1729. For m∗ = 1,
this occurs for Ur = 6.37, and indeed determining the Floquet multiplier for this Re–Ur
combination for λ/D = 1 gives μ = 1.0 in agreement with the m∗ = 2.546 result.

3.8. Differences in 2-D and 3-D amplitude responses
In order to show the differences between 3-D and 2-D VIV simulations, even at relatively
low Reynolds numbers, direct 3-D numerical simulations were undertaken. Figure 20
illustrates the comparison between 2-D and 3-D simulations at Re = 300 for m∗ = 2.546.
This particular Reynolds number choice is interesting because the previous transition
analysis shows that the wake should be 3-D except for the highest-amplitude cases. Indeed,
the predicted maximum amplitudes for the 3-D simulations centred in the neighbourhood
of Ur = 4 agree for predictions from 2-D simulations. A check on these cases does
indicate that the wake remains 2-D there. However, there are significant differences
between the amplitude response at smaller and larger reduced velocities. In particular,
the predicted 3-D amplitudes between 4.5 � Ur � 8 are significantly larger than their 2-D
counterparts and the response branch is beginning to show the typical response observed in
high-Reynolds-number experiments (where the lower branch maintains an almost constant
amplitude until finally dropping at higher reduced velocity after desynchronisation (e.g.
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Figure 21. Amplitude response for 2-D and 3-D simulations with respect to Ur at Re = 300 for m∗ = 2.546.

Khalak & Williamson 1997). Although less noticeable, the initial branch amplitude is also
over-predicted in the 2-D simulation. Both the 2-D and 3-D simulations fail to predict the
upper branch, where the response amplitude is largest.

3.9. Amplitude response as the wake becomes increasingly turbulent
We also used 3-D simulations to examine the response curves as the flow becomes
increasingly turbulent, especially to document the appearance of the upper branch and
to further determine differences from 2-D simulation predictions. The response curves are
shown in figure 21 for Re = 300, 500 and 1000. These predictions are compared with the
experimental response curve for m∗ = 2.4 of Khalak & Williamson (1997) for 2000 <

Re < 12 000, and numerical simulation results from Zhao et al. (2014) at a slightly smaller
mass ratio of 2. There is excellent agreement between the current predictions and those
of Zhao et al. (2014), noting the effect of the smaller mass ratio is to extend the reduced
velocity range of the lower branch slightly. Both sets of simulations predict a noticeable
upper branch. The amplitude in the upper branch is below that seen in experiments, which
is consistent with the previous observed dependence of the upper branch amplitude with
Reynolds number for VIV (Govardhan & Williamson 2006; Rajamuni et al. 2018). On
reducing the Reynolds number to Re = 500, the upper branch disappears. This was also
observed by Blackburn et al. (2001) for simulations for Re = O(500). That study focused
on demonstrating that shedding in the lower branch was of type 2P, consistent with
experiments unlike the typical 2S wake seen over most of the resonant range in lower-Re
simulations.

In terms of the lower branch wake state observed in the current set of simulations,
figure 22 provides a comparison of wake vortices at Re = 300 for the 2-D (a) and 3-D
(b) simulations for Ur = 7.5. Thus, development of 3-D flow changes the wake from
2S (for 2-D) to P + S (for 3-D), which can be associated with the higher lower-branch
response amplitude in the latter case. On increasing the Reynolds number to Re = 500,
the lower-branch wake changes to a 2P mode, as shown in figure 23 and consistent with
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(b)(a)

Figure 22. Effect of 3-D transition on the lower branch. (a) Spanwise vorticity contours at Re = 300,
m∗ = 2.546, Ur = 7.5 for 2-D flow. (b) Same for 3-D flow at a representative spanwise cross-section.

(c)(a)

(b) (d )

Figure 23. Mode selection for the lower branch as Reynolds number is increased. (a) Span-averaged spanwise
vorticity contours at m∗ = 2.546, Ur = 7.5 and Re = 300 for 3-D flow. (b) P + S wake mode for this case
depicted using isosurfaces of Q-criterion (Q = 0.1). (c) Same as (a) for Re = 500, showing the mode has
switched to 2P. (d) Corresponding Q-criterion contours for this case.

Blackburn et al. (2001). The top two images display spanwise-averaged wake vorticity
contours for Re = 300 (left) and Re = 500 (right). The bottom row of images shows a top
down view of these wakes visualised using isosurfaces of constant Q-criterion (Q = 0.1),
which highlights rotational vorticity rather than shear. Clearly, the Re = 300 wake is
much less complex, although there is still significant distortion of the spanwise rollers.
At Re = 500, the wake is effectively turbulent while still showing the remnants of the
instability modes examined in this paper.

4. Conclusions

FSA of flow past a circular cylinder undergoing VIV subject to standard elastic support
has been undertaken. It has been found that for Re = 300, all three previously identified
stationary cylinder wake modes, A, B and QP, can be observed. In this case, 3-D transition
is through mode B for a spanwise wavelength of λ ≈ 0.9D, close to the value observed
for a stationary cylinder, whereas modes A have Floquet multipliers less than unity and so
remain stable at this transition Re. Over the resonant reduced-velocity range Ur ∈ [4.5, 8]
corresponding to purely periodic shedding, the 3-D onset mode changes from mode B
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to mode A via mode QP as Ur is increased. Interestingly, for Ur = 4.5, a subharmonic
(SH) mode is observed and is found to be the critical mode. In all other cases, mode
A is observed instead of mode SH. This may be due to the higher amplitude and lower
frequency of oscillation as compared to the other reduced-velocity cases examined. The
critical Re for 3-D transition has been observed to decrease as Ur increases from 4.5 to 8,
with the critical mode changing from mode B to mode A.

Thus, each of the modes A, B, QP and SH have been shown to drive the wake
transition from 2-D to 3-D flow depending on the amplitude of oscillation and reduced
velocity considered. The maximum Re for which the wake is guaranteed to remain 2-D
for reduced velocities covering the resonant response range, Ur ∈ [4.5, 8.0], is 202. The
3-D simulations at Re = 300 show that the amplitude response curve is distinctly different
from that obtained using 2-D simulations. This study improves our understanding of 3-D
wake transition for a circular cylinder undergoing VIV under standard elastic mounting,
documenting how response oscillation amplitude and reduced velocity effect transition.
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