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1. Dual integral equations of the form

u)du =f(x), 0£x£l , (1)

du = g(x), x>l, (2)

f00 -

f
Jowhere f(x) and g(x) are given functions, \j/(x) is unknown, k^.0, \i, v and a are

real constants, have applications to diffraction theory and also to dynamical
problems in elasticity. The special cases v = — \i, a = 0 and v = n = 0,
0 < a 2 < l were treated by Ahiezer (1). More recently, equations equivalent to
the above were solved by Peters (2) who adapted a method used earlier by
Gordon (3) for treating the (extensively studied) case /x = v, k = 0.

We present here a method of solution which has affinities with the " elemen-
tary " method introduced by Sneddon (4) for the case n = v = k = 0 and
developed by Copson (5) for the case n = v, k = 0. The essence of the method
is the reduction of the dual integral equations to a single integral equation:
the integral equations which arise in the study of equations (1) and (2) (see
Lemmas 2 and 3 below) have not apparently been treated before and seem to
be of interest in their own right; they generalise the integral equations discussed
by Copson (6) and Jones (7).

The analysis throughout is formal: orders of integration, and of integration
and differentiation, are inverted freely. The solutions obtained may always be
verified by substitution into the original dual integral equations.

2. We first state some preliminary results, in the form of three lemmas.

Lemma 1. (Sonine's " second " integral, (8), p. 415).

f
Jo (0, 0<a<b,

for all real or complex z, provided Re(v)>Re(ji)> — 1.
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Lemma 2. The solution of the integral equation

'- P2)ifiJp{kyJ(x2 - p2)}dp = h{x), (3)

where a is a finite constant, is

I//I Y l — If , . I / i i i i rtH Y — rt \ ~~z*-P J 7 ) Is- I ( Y r%W/1 n (£\

More symmetrically, the solution of the integral equation

i/'Cp) < — > Jp{kyJ(x2 — p2)}dp = h(x) (5)

lA(x) = — /?/l(p)̂ -̂  V /.(g + u ^ ^ X 2 - / ? 2 ) } ^ (6)
dx)a I k J

If Jp is replaced by /^ in (3) or (5) then/_w+1) must be replaced by J_(/,+1) in
(4) or (6).

To prove this result we put x 2 -a 2 - X, p2-a2 = Y, il/(p)lp = *¥(Y),
2h(x) = H(x) in (3) which gives

rx
m(Y){X-YfJAkJ(X-Y)}dY = H(X), (7)

Jo
an integral equation of convolution type. Thus, taking the Laplace transform
of both sides of (7) and using the convolution theorem (see (9)), we find, denoting
the Laplace transform of/(x) by ££{f) or/, that

W&iXWjpikX*)} = H (8)
But (see (10), p. 178)

«£• \-**- »* R\K--A- j j — yjci £} exp i ~~ fc i\*p) \ I p . . . . . . . . . . . . . . . (y )

and so (8) yields
Wlp = (2/fc)Y exp {k2l(4p)}H (10)

Now, using (9) again, we may write

which, since (see (8), p. 77)

iv(x) = i~vJv(ix), /v(ix) = iyJv(x), (11)

allows (10) to be written in the form

Hence, by the convolution theorem and the well-known property (see (10),

p. 168)//p = Sg j f*/(/)rf/j, we find

(12)
o
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Reverting to the original variables we immediately obtain (4). The pair (5)
and (6) follow at once from (3) and (4) and the effect of replacing Je by I0 may
be seen on replacing k by ik and using (11). Note that, by an elementary change
of variables, we see that, if the lower limit of integration in (7) is replaced by a
finite constant A, then the same must be done in the solution (12).

Lemma 3. The solution of the integral equation

= m(x) (13)£
IS

» (14)
dx

More symmetrically, the solution of the integral equation

= m(x) (15)
J x (. *• J

IS
-2\-l -

As in Lemma 2, if If is replaced by Jp in (13) or (15) then J _ w + 1 ) must be
replaced by / _ w + 1 ) in (14) or (15')- The formulae remain valid if the upper
limit of integration is a finite constant b throughout.

To prove this result we proceed as in the proof of Lemma 2, putting x2 = X,
p2 = Y, 4/(p)lp = »P(F), 2mix) = M(X) in (13), and we find

f
Jx

f

«F(YXy-x)*%{*V(y-x)}dr = Mix) (16)
Jx

To solve this equation we first consider the equation

* VAYXY-X)*'l0{ky/iY-X)}dY = MOO (17)
Jx

The substitutions Y = -u, X = -t, B =-a, »PB(y) = F(M), MiX) = AT(O
yield

fF(u)0-u)w/»{A;7(«-u)}dM =

or, by (11),

i« = i'Nit).f
JaHence by (7) and (12) (with the lower limit of integration replaced by a—cf. the

end of the proof of Lemma 2), we find

f"(«-
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which gives

x

Thus, letting B tend to infinity in (17) and (18) we obtain, as the solution of (16),

^^J ...(19)
x

which immediately yields (14) when we revert to the original variables. The pair
of equations (17) and (18) give the solution in the case when the upper limit of
integration is a finite constant and the alternative pair of equations (15), (15')
follow at once from (13) and (14).

3. We now turn to the solution of the dual integral equations (1) and (2).
Since these equations are linear in ip(x) we may write

x), (20)

where if/^x) denotes the solution in the case g = 0, \jt2(x) the solution in the
case / = 0.

By Lemma 1, a particular solution of the equation

f
Jo

0, x > l , (21)
Jo

is the function

Mx) = x*+\x2-k2y±xJx{pJ(x2-k2)},

provided p < l , A > v > — 1 . Thus we are led, by superposition, to the function

PP
Joo

with k> v> — 1 and 4>iip) a function to be determined; if we substitute (22)
into (21), invert the order of integrations and use Lemma 1, we see that the
function (22) automatically satisfies equation (2) (with g = 0).

To determine the function (^(p) we substitute (22) into (1), put u2—k2 = v2

and invert the order of integrations:

r <i>1(
(23)

Thus, if we choose 2a—A = X, i.e. k = a, we can apply Lemma 1 to the inner
integral in (23) which, after some simplification* yields the integral equation

i ', -(24)
o

provided fi>a> v> — 1.
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But now, by Lemma 2, equation (24) has solution

whence, by (22),

Jo

rfP (26)

To determine i//2(x) we rewrite (1) (with/ = 0) in the form

(v2 + k2ri("+v+i)v2'+iil/2{yJ(v2+k2)}Jlx{xs/(v
2+k2)}dv = 0, (27)f

Joo
with 0^x^\,v2 = u2 — k2. Thus, using Lemma 1 again, we see that a particular
solution of (27) is the function

V ), P>X, / I > A > - 1 ,
i.e.

<A2(M) = u1+\u2-k2)iX-*Jx{pJ(u2-k2)}, p>x,

Therefore, if we take

f
then equation (1) (with/ = 0) will be automatically satisfied and, on substituting
(28) into (2) and inverting the order of integrations, we find

, 1 " ^liPiU" u1+Xu2-k2)^-'JXxu)Jx{pJ(u2-k2)}du]dp = fir(.x),

(29)

To apply Lemma 1 to the inner integral in (29) we must take £A —a = — \X, i.e.
k = a, and, after some simplification, this yields the integral equation

r -x2)}dp = k*-v-lx-rg(x), (30)

provided p > a > v > — 1.
But now, by Lemma 3, the solution of equation (30) is

dx)x

whence, by (28)
r<° p'Up^2-k2)}x2-k2y±° [

Jj- rul-WuXu2-p2)*-'>Jy-.{ky/(u
2- (32)
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Thus the solution of equations (1) and (2) is given by (20), (26) and (32),
provided / i>a> v> — 1.

The solution may be written in various forms. Thus, integrating by parts in
(26), we have

r y/(x
2-

Jo
\

J

= k"~'xv+ \x2 - k2)-*°JaU(x2 - k2)}F(l)

+ k»-'xv+1(x2-k2)«i-°> f1 p-°Ja+l{Py/(x
2-k2)}F(p)dp, (33)

Jo
where

F(p) = [ u^lf{u){p2-u2)^-"X_ll{ks/{P
2-u2)}du (34)

Jo

and we have used the result ((8), p. 45)

j = -yx-Jv+l(xy) (35)
dx

Similarly, integrating (32) by parts we find

!-fc2)*(1-"> f"+ ka-vxt+y(x2-k2)i(1-a) | p'Jt-^pJix2-k2)fG(p)dp, (36)

where

G(p) = I u1~V("X»2-p2)i (v~a)- 'v-a{W(u2-P2)}rfM' (37)

and we have used the result ((8), p. 45)

— {xvJv(xy)} = yxvJv-1(xy) (38)
dx

the asymptotic behaviour of Jv(x) for large x and the assumption that g(x) is
such as to make G(p) = o(p*~") as p-»oo.

4. It is worth noting that the quantities that are of interest in applications
are not only the solution \p(x) of equations (1) and (2) but also the left-hand
sides of these equations, for the ranges x> 1 and O g x ^ l , respectively, i.e. the
functions

f" du> x>\, (39)

f"
Jo= f*Ku)JjLxu)du, O^x^l (40)
J
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There are several ways of evaluating these, perhaps the most direct being to
substitute (20), (22) and (28) into the right-hand sides of (39) and (40). This
yields, after inversion of the order of integrations,

PP
+ \u2. «v+ \u2 - k2yixUPy/(.»2- k2)}du\ dp

, ...(41)

where, after putting v2 = u2 — k2 in the inner integrals, we have used Lemma 1
and the fact that x> 1. Similarly,

0i(x) = [l

J" iA dp

, (42)

where we have used Lemma 1, the fact that O^x^ 1 and equation (11).
Thus, if we now substitute (25) and (31) into (41) and (42), we obtain

/,(*) = fee"' f1 (x2-p2)^-'-1%.a.1{ky/(x2-p2)}d-fdp
Jo dp

ff0

Jl

and

9i(x) =

(43)

-fee* f "
Ji

(P
2-x2)^-"-t '/a_v_1{A:V(P2-^2)} ^ dP. (44)

dp
where F(p), G(p) are given by (34) and (37), respectively.
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5. Finally we observe that the conditions / t>a> v> — 1 imposed above can
be circumvented in various ways. One of these is to alter the order of the Bessel
functions occurring in (1) and (2) before starting the solution.

Thus, if we multiply (1) by x* and differentiate both sides of the resulting
equation with respect to x, using (38), we obtain the equations

~" — fx"/(x)}, O g x ^ l , (45)
dx

f
Jo

<l/(u)Jv(xu)du = g(x), x > l , (46)
Jo

which may be solved as above provided n~ l > a > v > — 1. If now we multiply
both sides of (46) by x~v and repeat the above procedure (using (35)), we find

f
J

2_A.2)^(u-) J ( x u ) d M = x-^ £ (Jcy(^)}) O^xg l , (47)
* dx

f
J

4>(u)Jv+l(xu)du = -xv ~ {x-"g(x)}, x > l , (48)
o dx

where <j>(x) — x\//(x), which may be solved as above provided ft— l>ot> v+1

f
Jk

Similarly, if we multiply (1) by x~", (2) by xv and repeat the above procedure,
we find

i ) i ( u2_J t2 )^( u ) J ( x [ / ) d l / = _XM £ {x-"/(
k dX

(49)

(X Muynixutfu = x~* j - {xvg(x)}, x>l, (50)
Jo dx

where 0(x) = xtyipc), which may be solved as above provided

An alternative is to integrate instead of differentiating. Thus, if we multiply
(1) by x" +1 and integrate with respect to x, from 0 to x, using (38), the behaviour
of Jv(x) for small x and the fact that /i> — 1, we obtain the equations

[^ u-»-v-\u2-k2Y4i(u)J^l(xu)du = x""-1 | u"+lf(u)du, Ogxgl, (51)
Jk Jo

I <fi(u)Jv(xu)du = g(x), x > l , (52)
Jo

which may be solved as above provided fi + lxx>v> — 1, ^ + l > 0 . Finally,
if we now multiply (52) by x~v and differentiate with respect to x, we obtain

(53)

f"M-JO. + i)+c+i)i(1|2_ife2)«0(My/i+1(xu)dM = jc-n-i [X
u»

+lf(u)du,
Jk Jo
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(Ku)Jv+l(xu)du = -x- L {x-"g(x)}, x>\, (54)f
Jo

jo dx

where <f>(x) = x\fi{x), which may be solved as above provided
> — 1, /i+1 >0. These processes may be repeated and combined as often as
necessary. Other examples of the use of such methods are given by Peters (2)
and Noble (11) for the case k = 0.

A more satisfactory method of extending the range of values of the para-
meters, as well as some discussion of the conditions to be imposed on the func-
tions f(x) and g(x) in equations (1) and (2) for the various procedures to be
valid, will be given in a subsequent paper.
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