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Turbulent fountain flow consists of two distinct stages, the initial ‘negatively buoyant jet’
(NBJ) stage, and the fully developed ‘fountain’ stage. The present study investigates both
stages of the flow using particle image velocimetry and planar laser-induced fluorescence,
over a range of source Froude numbers, 10 � Fro � 30, and Reynolds numbers, 5500 �
Reo � 7700. While the velocity and buoyancy profiles in NBJs take similar Gaussian
shapes over a wide range of axial locations, this was not observed in fountains. The
changing profile shape is most evident in the outer flow (OF) region, while there is a
degree of similarity in the inner flow (IF). Entrainment between IF and OF is shown to
depend on the local Richardson number, Ri. The fountains are found to have a negative
entrainment coefficient, α < 0, for the majority of their height, implying a net radial
outflow of fluid from the IF to the OF. An alternative description of entrainment is
considered, the ‘decomposed top-hat’ model, where the radial flow is separated into inflow
and outflow components that are then estimated using the present experimental data. The
inflow component was found to be proportional to the axial IF velocity, which is similar
to the classical description of entrainment in pure jets/plumes, while the outflow depends
on the local Ri. Entrainment in NBJs may also be described by this framework, which,
despite not having an OF, is still subject to an Ri-dependent radial outflow.

Key words: buoyant jets, plumes/thermals, turbulent mixing

1. Introduction

Negatively buoyant jets (NBJs) occur when the buoyancy of a turbulent jet opposes its
momentum. A vertically aligned NBJ will be decelerated by the opposing buoyancy until
its momentum is reduced to zero at an ‘initial rise height’, zi, where it reaches a stagnation
point. For NBJs discharging from a round inlet, the flow will then reverse direction and
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return annularly towards the source, mixing with the opposing fluid. After some time,
a quasi-steady state is reached where the flow consists of an ‘inner flow’ (IF), where
fluid moves in the same direction in which it was discharged, and opposing annular ‘outer
flow’ (OF), where the fluid returns towards the source. At this quasi-steady stage, the flow
oscillates around its mean ‘steady-state height’, zss, and is referred to as a fully developed
fountain. The flow during the initial rise, before zi is reached and a return flow begins to
form, is distinct from the fully developed fountain stage and will be referred to as an NBJ.
Negatively buoyant jets and fountains occur in a variety of industrial applications and in
nature, such as brine discharge in desalination plants (Pincince & List 1973), and explosive
volcanic jets (Carazzo, Kaminski & Tait 2008; Dellino et al. 2014).

For high-Reynolds-number flow, the initial and steady-state heights are governed by the
source Froude and Richardson numbers given by

Fro = wo

(−robo)
1/2 = 1

(−Rio)1/2 , (1.1)

where wo is the initial average velocity, ro is the source radius (for round inlets), and
bo = g(ρo − ρa)/ρa is the source buoyancy. Here, ρo and ρa denote the densities of
the source and ambient fluid, respectively, and g is the gravitational acceleration. The
Reynolds number is Reo = woD/νo, where D = 2ro is the inlet diameter and νo is the
kinematic viscosity of the source fluid.

Several previous investigations into fully developed fountains have involved taking bulk
flow measurements, such as of zi and zss, to obtain Fro scaling relations for the rise
heights (Turner 1966; Kaye & Hunt 2006; Burridge & Hunt 2012). These have aided
the classification of distinct fountain regimes by Fro, ranging from very weak fountains
(Fro � 1.0) to highly forced fountains (Fro � 5.5), the latter being the primary focus of
the present investigation. In the high Fro case, the initial and steady-state heights have
been shown to follow zss = 2.46 Fro and zi/zss = 1.45 (Turner 1966; Kaye & Hunt 2006;
Burridge & Hunt 2012). Other studies have sought to investigate overall entrainment and
dilution in fountains, such as Burridge & Hunt (2016), who proposed scaling relations
for the entrained volume flux for the different fountain classes. These previous studies, as
well as the present investigation, consider Boussinesq fountains, where local variations in
density are small compared to the ambient density and may be neglected except where they
affect buoyancy. A more general description would be needed to describe non-Boussinesq
fountains with larger density differences.

In a study by the present authors, the initial NBJ stage of the flow was investigated
experimentally using two-dimensional particle image velocimetry (PIV) and planar
laser-induced fluorescence (PLIF) (Milton-McGurk et al. 2021; Talluru et al. 2021). It was
found that, like neutral jets and plumes, the velocity and buoyancy profiles take Gaussian
shapes over a wide range of axial locations (20 � z/D � 40). The widths of these profiles
in NBJs, however, grow at different rates. Another important difference between NBJs
and neutral and positively buoyant jets/plumes is that the turbulence profiles, such as
the Reynolds stress and axial fluctuations, do not scale with the mean flow. Entrainment
in NBJs was also investigated in Milton-McGurk et al. (2021), and was found to be
similar to a neutral jet near the source where the flow is more momentum-dominated.
Further along the NBJ, where the flow becomes more buoyancy-dominated, the direction
of ‘entrainment’ is reversed and there is a net radial outflow of fluid from the NBJ to the
ambient.

There have also been some investigations involving local measurements of the internal
velocity/scalar fields in fully developed fountains. Experimental studies by Mizushina
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ûe
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Figure 1. Schematic diagram of a fully developed fountain.

et al. (1982) and Cresswell & Szczepura (1993), and a direct numerical simulation (DNS)
study by Williamson, Armfield & Lin (2011), all found that the profiles inside fountains
were not self-similar. The assumption of self-similarity is common in attempts to model
fountains; for example, McDougall (1981) modelled a fountain as an NBJ surrounded by
an opposing OF, assumed self-similarity and used constant entrainment coefficients to
describe mixing between the IF/OF layers and the ambient fluid. A schematic of a fountain
described by this model is given in figure 1. Bloomfield & Kerr (2000) built upon this
model and assessed alternative entrainment formulations, including relating entrainment
into the IF to the relative velocity difference of the IF and OF, as well as to the IF velocity
only. Both formulations under-predicted the steady-state rise height, zss, with the latter
approach giving predictions closer to experiments. Hunt & Debugne (2016) developed a
similar integral model, but additionally accounted for entrainment into the cap region (the
top of a fountain where the fluid reverses direction). They assumed a constant entrainment
coefficient that described radial flow from the OF to the IF, and obtained predictions for
rise height, IF width and velocity that were in good agreement with experiments. Other
experimental and numerical studies, however, have reported that the radial flow of fluid is
primarily in the opposite direction, from the IF to the OF (Cresswell & Szczepura 1993;
Williamson et al. 2011). Differences between entrainment in NBJs without a return flow,
and in the fully developed fountain with the IF/OF structure, have also not been given
much attention (Hunt & Debugne 2016).

While our previous work was concerned primarily with the initial NBJ stage of the
flow (Milton-McGurk et al. 2021), the present study will extend this by using PIV and
PLIF measurements to investigate the fully developed fountain stage. Since NBJs can
be considered fountains without an OF, examining the differences between these two
flows will allow the effect of the return flow on the IF of a fountain to be investigated.
A particular focus will be placed on the IF, by considering the extent to which it can
be considered an NBJ independent of the OF. There is extensive literature focused on
predicting the bulk behaviour of fountains such as rise height (Turner 1966; Kaye &
Hunt 2006; Burridge & Hunt 2012; Hunt & Burridge 2015), so the present study aims
to investigate primarily local behaviour, including entrainment at the IF/OF boundary and
how this compares to NBJs.
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Time-averaged statistics for a fountain and an NBJ, both with Fro = 30, are presented
in § 3, followed by a comparison of Fro = 30 and 15 fountains in § 4. The velocity
decay and radial expansion of the IF are discussed in §§ 5 and 6, where a scaling for
the overall fountain width is found that is consistent with previous literature (Mizushina
et al. 1982). Entrainment in fountains and NBJs is investigated in §§ 7 and 8, with a focus
on entrainment between the IF/OF regions. This is pursued by extending the approach
of van Reeuwijk & Craske (2015) and Carazzo, Kaminski & Tait (2010), where a new
equation for entrainment in this region as a function of the local Richardson number is
derived. An alternative model of entrainment is proposed, where the net entrainment is
decomposed into a constant inflow component and a locally varying outflow component
in a ‘decomposed top-hat’ model. This builds on previous fountain models, such as those
by Hunt & Debugne (2016) and Bloomfield & Kerr (2000), by allowing for non-constant
entrainment between the IF and OF. The description of entrainment in these top-hat
models is connected to the formulation developed by van Reeuwijk & Craske (2015)
in the context of neutral and positively buoyant jets/plumes, which is based on the
governing conservation equations and does not make any assumptions about profile shapes
or self-similarity. Finally, in § 9, the proposed decomposed top-hat model is solved for the
fully developed fountains and compared to the present experimental data.

2. Experiments

With the same experimental set-up as used in Milton-McGurk et al. (2020, 2021), PIV and
PLIF measurements are obtained for the NBJ and fountain stages of the flow. This involves
using four pco.2000 CCD cameras, and an additional IDS uEye camera, capturing images
simultaneously with pulses from a 532 nm Nd:YAG laser. Two pco cameras were used to
obtained images for the PIV, and two for the PLIF, which were then ‘stitched’ together
to capture a wider region of interest (approximately 120 × 60 mm2). The PIV images
were processed with the open source MATLAB package PIVsuite (Vejražka, Zedníková
& Stanovskỳ 2018), using a multi-pass interrogation with final window size 24 × 24 pixels.
The PLIF images were processed using the algorithm developed by the present authors and
discussed in detail in Milton-McGurk et al. (2020). This involves using images from the
IDS uEye camera to obtain measurements of the laser power profile, and correcting each
instantaneous PLIF image for variations in this power profile.

The flow is produced by injecting a mixture of freshwater, ethanol and Rhodamine 6G
dye downwards into a 1 m3 tank containing saltwater through a round pipe with diameter
D = 10 mm. A schematic of this experimental set-up is given in figure 2. Rhodamine 6G
is used as the fluorescence dye for the PLIF measurements, and the ethanol is added to
the source mixture in order to match the refractive index with the saltwater ambient. By
varying the ethanol and salt concentration of the source and ambient fluids, and adjusting
the flow rate of the Ismatic MCP-Z gear pump used to drive the flow, source Froude and
Reynolds numbers in the ranges 10 � Fro � 30 and 2900 � Reo � 6000 were obtained.
A list of the experiments performed in the present study, and those from Milton-McGurk
et al. (2021), is given in table 1. The source and ambient fluid are prepared the day before
a given experiment to ensure that the temperature is constant, and sufficient time is given
between individual runs (approximately 30 min) to ensure that there is no motion in the
tank. A schematic of a descending NBJ and fully developed fountain alongside processed
PIV/PLIF images is shown in figure 3. Although only a small region of interest is observed
in a given experiment (approximately 60 × 120 mm2), data are gathered over a wider range
of axial locations by repeating the experiment and adjusting the location of the inlet pipe
and/or cameras.
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Figure 2. Illustration of the tank used in the present experimental set-up.

Flow Fro Reo z/D wo (mm s−1) bo (mm s−2)

F 30 6000 14–30 657 −95.9
F 20 6000 6–18 849 −354
F 15 4500 9–26 635 −358
F 10 3000 9–24 417 −347
NBJ 30 5800 18–39 635 −89.6
NBJ 20 6000 19–21 849 −354
NBJ 10 2900 9–12 417 −347
J ∞ 5900 18–29 558 0

Table 1. Table summarising the experiments referred to in this study. All fountain experiments (F), and the
Fro = 10 and 20 NBJs, were carried out for this investigation. The Fro = 30 NBJ and the neutral jet (J), were
carried out in Milton-McGurk et al. (2021). All experiments had D = 10 mm.

Each experiment was optimised to gather data from either the initial NBJ stage of the
flow, or the fully developed fountain stage. For the NBJ experiments, there is a much
shorter time frame where it is possible to obtain data, so in a single ‘run’, images are
captured at the maximum frequency of the system (7 Hz) and over a shorter overall time
(e.g. 15 s), after which the flow is stopped. This would be repeated several times (e.g. 10
‘runs’) in order to obtain a sufficient number of images of the flow. Since a fully developed
fountain is quasi-steady, these may be imaged for much longer time periods that are limited
primarily by the memory and data transfer speed of the cameras. These runs were typically
imaged at a lower frequency (e.g. 3 Hz) and for a longer time period (e.g. 100 s), allowing
for more images to be captured overall per run. In principle, we are also limited by the
tank volume since we are adding fluid during the experiment, but the time required to
overflow the tank was always longer than the experiment time so this was not a decisive
factor. The experimental set-up and image processing procedures were first benchmarked
for a turbulent neutral jet, with additional details given in Milton-McGurk et al. (2020,
2021). In the following sections we will present data for fountains with 10 � Fro � 30,
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60 mm

D = 10 mm

NBJ stage
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Figure 3. A schematic representation of (a) a descending NBJ and (b) a fully developed fountain, alongside
processed PIV/PLIF images showing the scalar concentration field with overlaid velocity vectors. The
approximate region of interest is indicated by the 120 × 60 mm2 rectangle.

NBJs with 10 � Fro � 30, and a neutral jet. Data for the Fro = 30 NBJ and neutral jet
were obtained from the previous study, Milton-McGurk et al. (2021), while the remaining
NBJ and fountain data are from the present investigation.

3. Flow statistics in fountains and NBJs

We will describe our flow locally using the local Froude and Richardson numbers, Fr and
Ri,

Fr = wm

(−rmbm)1/2 = 1

(−Ri)1/2 , (3.1)

where wm, rm and bm are local velocity, length and buoyancy scales. These scales are
defined in terms of the fluxes of volume, momentum and buoyancy, and the integral
buoyancy, Q, M, F and B,

Q = 2
∫ r̃

0
w̄r dr, M = 2

∫ r̃

0
w̄2r dr, F = 2

∫ r̃

0
w̄b̄r dr, B = 2

∫ r̃

0
b̄r dr, (3.2a–d)

which have been scaled to remove a factor π. Here, w = w(r, z), u = u(r, z) and b =
b(r, z) are the instantaneous axial and radial velocities, and buoyancy, which may be
decomposed into their mean and fluctuating components, such as w = w̄ + w′. The
buoyancy is defined as b(r, z) = g(ρ(r, z) − ρa)/ρa, where ρ is the local density, and
r and z are the radial and axial coordinates. The time and azimuthal components have
been omitted above for simplicity, since they are eliminated during the averaging process
and under the assumption of statistical axis symmetry. This averaging is computed from
multiple images in a given experiment, and across multiple repeated runs. Although NBJs
do not strictly reach a steady state, it was shown in Milton-McGurk et al. (2020, 2021), that
the flow is reasonably steady before the return flow forms, and that the mean profiles do
not change considerably in this initial period. For an NBJ, the integration limit is r̃ = ∞,
resulting in the same definition that is commonly used for neutral/positively buoyant
jets and plumes (Morton, Taylor & Turner 1956; Kaminski, Tait & Carazzo 2005; van
Reeuwijk & Craske 2015). For a fully developed fountain, we set r̃ = rio, where rio is the
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F Fr = 2.23, z/D = 24.27
F Fr = 1.25, z/D = 28.38
J (Wang & Law 2002)

F Fr = 3.24, z/D = 19.59
NBJ Fr = 5.56, z/D = 19.77

NBJ Fr = 2.21, z/D = 33.31
NBJ Fr = 1.85, z/D = 38.86
J (Wang & Law 2002)

NBJ Fr = 3.27, z/D = 25.01

r/r1/2,w r/r1/2,w
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w–/w–c
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Figure 4. Mean velocity profiles, w̄, for a fully developed fountain, (a), and NBJ (Milton-McGurk et al. 2021),
(b), both with Fro = 30, at a range of axial locations. The profiles are normalised by the local centreline value,
w̄c, and half-width, r1/2,w. The best-fit profile for a neutral jet (J) by Wang & Law (2002) is also shown as a
reference.

boundary between the IF and OF such that w̄(r = rio) = 0. These quantities allow us to
define the local velocity, radius and buoyancy scales

wm = M
Q

, rm = Q
M1/2 , bm = BM

Q2 . (3.3a–c)

3.1. Velocity and buoyancy profiles
Figures 4 and 5 show mean velocity and scalar concentration (buoyancy) profiles for
fountains and NBJs with Fro = 30, along with the best-fit profile for a neutral jet by
Wang & Law (2002) as a reference. Dimensionless scalar concentration (0 � c � 1)
and buoyancy (mm s−2) are related by a constant such that b = c(ρo − ρa)g/ρa. In
Milton-McGurk et al. (2021), these profiles were shown to be Gaussian over a range of
axial locations (20 � z/D � 40), or equivalently, local Froude numbers, Fr (1.9 � Fr �
5.9), in the NBJ, which are given in figures 4(b) and 5(b). When normalised by the
centreline quantities, w̄c and c̄c, and respective half-widths, r1/2,w and r1/2,c, these velocity
and scalar profiles in the NBJ collapse onto a single curve.

The profiles for a fully developed fountain obtained from the present experiments, also
with Fro = 30, are shown in figures 4(a) and 5(a), where it is clear immediately that the
profiles do not collapse in the same way as the NBJ. Although the velocity and scalar
profiles are reasonably similar for r/r1/2,w � 1 and r/r1/2,c � 1, respectively, they diverge
for radial locations beyond this. For the velocity profile, this is particularly evident in
the OF where w̄ < 0. The minimum (most negative) value of the velocity profile will
be denoted w̄d, with the radial location of this point denoted rd. Figure 4(a) shows that
w̄d/w̄c becomes increasingly negative with increasing axial distance, while the location of
the local minima, rd/r1/2,w, moves towards the centre. This is primarily a consequence of
the normalisation, where w̄c decreases strongly as the IF is decelerated under negative
buoyancy, increasing the magnitude of w̄d/w̄c. The velocity half-width, r1/2,w, also
increases relative to rd, reducing the value of rd/r1/2,w. The actual (non-normalised)
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F Fr = 5.47, z/D = 13.55

F Fr = 2.23, z/D = 24.27
F Fr = 1.25, z/D = 28.38
J (Wang & Law 2002)

F Fr = 3.24, z/D = 19.59
NBJ Fr = 5.56, z/D = 19.77

NBJ Fr = 2.21, z/D = 33.31
NBJ Fr = 1.85, z/D = 38.86
J (Wang & Law 2002)

NBJ Fr = 3.27, z/D = 25.01

(b)(a)

Figure 5. Mean scalar profiles, c̄, for a fully developed fountain, (a), and NBJ (Milton-McGurk et al. 2021),
(b), both with Fro = 30, at a range of axial locations. The profiles are normalised by the local centreline value,
c̄c, and half-width, r1/2,c. The best-fit profile for a neutral jet by Wang & Law (2002) is also shown as a
reference.

magnitude of w̄d, however, decreases towards zero at the top of the fountain, and rd moves
outwards as the IF expands.

The scalar profiles, normalised by local quantities, are given in figures 5(a) and 5(b) for
the fountain and NBJ. Unlike the NBJ profiles in figure 5(b), the fountain velocity profiles
in figure 5(a) do not collapse onto the same curve for the full radial width, although they
are reasonably similar in the inner profile for r/r1/2,c � 1. This means that, particularly
in the outer profile (r/r1/2,c � 1), they are no longer well described by a similar Gaussian
shape along the flow, appearing to get narrower with axial distance. Neither the velocity
or scalar (buoyancy) profiles in a fully developed fountain can therefore be considered
self-similar in the sense that they have similar shapes along the fountain. Despite this,
the most significant shape change of the profiles occurs in the return flow, with the
inner profiles collapsing approximately when normalised by their centreline values and
respective half-widths.

3.2. Turbulence statistics
Profiles for the axial turbulence fluctuations and Reynolds stress, w′2 and w′u′, are given
in figures 6 and 7, normalised by both local and source quantities. The development of
these turbulence profiles in an NBJ was discussed in Milton-McGurk et al. (2021), where
they were found to increase with axial distance due to the strongly decelerating mean flow,
characterised here by w̄c. This differs from neutral jets and plumes, where w′2 and w′u′
decrease at the same rate as the mean flow, so the normalised profiles, w′2/w̄2

c and w′u′/w̄2
c ,

are approximately constant along the flow (at least in the fully developed self-similar
region) (Panchapakesan & Lumley 1993; Hussein, Capp & George 1994; Wang & Law
2002).

For the fully developed fountain, the behaviour of w′2 and w′u′ remaining high relative
to w̄2

c is more prominent than in the NBJ. The normalised profiles in figures 6 and 7
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Figure 6. Profiles of the mean axial turbulence fluctuations, w′2, for a fully developed fountain, (a,c), and NBJ
(Milton-McGurk et al. 2021), (b,d), both with Fro = 30. The profiles are normalised by the local centreline
value, w̄2

c , and half-width, r1/2,w, in (a,b), and by source velocity, w2
o, and radius, ro, in (c,d). The best-fit

profile for a neutral jet by Wang & Law (2002) is also shown as a reference.

increase more rapidly in the fountain than in the NBJ, with large peak values w′2/w̄2
c �

0.2 and w′u′/w̄2
c � 0.04 for the Fr = 2.23 profile. These are considerably higher than the

NBJ peaks at a similar Fr = 2.21 of w′2/w̄2
c � 0.09 and w′u′/w̄2

c � 0.02. Figures 6(c),
6(d), 7(c) and 7(d), which show the w′2 and w′u′ profiles instead normalised by source
conditions, illustrate the fact that the turbulence intensities are driven primarily by the
decreasing w̄c, rather than by an increase in turbulence production. From these it is clear
that w′2 and w′u′ decrease with axial distance for both the NBJ and the fountain, and are
higher in the fountain than the NBJ at similar local Fr. This is particularly true of the
w′2/w2

o profile, where the peak values in the fountain profiles are approximately twice that
of the NBJ at similar Fr. This is likely due to interactions between the IF and OF that result
in increased turbulence in the IF, and so also contributes to the greater w′2/w̄2

c and w′u′/w̄2
c

observed in the fountain. Cresswell & Szczepura (1993) also gathered turbulence data
for a fully developed fountain, although one with a much lower Fro � 3.2 (zss/D � 3.9).
When normalised by the local centreline value, their peak axial turbulence intensity was
w′2/w̄2

c � 0.046 near the source at z/D = 0.3, which increased to w′2/w̄2
c � 1.8 near the
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Figure 7. Profiles of the mean Reynolds stress, w′u′, for a fully developed fountain, (a,c), and NBJ
(Milton-McGurk et al. 2021), (b,d), both with Fro = 30. The profiles are normalised by the local centreline
value, w̄2

c , and half-width, r1/2,w, in (a,b), and by source velocity, w2
o, and radius, ro, in (c,d). The best-fit

profile for a neutral jet by Wang & Law (2002) is also shown as a reference.

cap at z/D = 3. Although the magnitudes at a given axial location differ from the present
data due to the significantly different Fro, the observation of w′2/w̄2

c increasing as the flow
decelerates is consistent with our higher Fro fountains.

Figures 8(a) and 8(b) show profiles of the mean turbulence scalar fluctuations,
√

c′2/c̄c,
for the fountain and NBJ, respectively. The NBJ profiles are reasonably well collapsed,
while the fountain profiles are not self-similar and also do not appear to follow a clear
increasing or decreasing trend with axial distance. Profiles of the axial and radial fluxes,
w′c′ and u′c′, for the fountain and NBJ are given in figures 9 and 10. When normalised
by local quantities, these profiles clearly increase with axial distance. A moderate increase
can also be observed between the NBJ profiles nearest and furthest from the source (z/D =
19.77 and z/D = 38.86), although the trend is less significant and there is some scatter
in the profiles between these locations. As with the velocity fluctuations, the growth in
the turbulent scalar profiles for the fountain is primarily a result of normalising by the
decreasing w̄c, rather than an increase in axial/radial scalar transport. It is also notable
that the w′c′ profiles for the fountain drop considerably below zero in the outer profile.
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Figure 8. Profiles of the mean scalar fluctuations,
√

c′2, for a fully developed fountain, (a), and NBJ
(Milton-McGurk et al. 2021), (b), both with Fro = 30. The profiles are normalised by the local centreline
value, c̄c, and half-width, r1/2,c. The best-fit profile for a neutral jet by Wang & Law (2002) is also shown as a
reference.
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Figure 9. Profiles of the mean axial turbulent flux, w′c′, for a fully developed fountain, (a), and NBJ
(Milton-McGurk et al. 2021), (b), both with Fro = 30. The profiles are normalised by the local product, w̄cc̄c,
and half-width, r1/2,c. The best-fit profile for a neutral jet by Wang & Law (2002) is also shown as a reference.

This corresponds to the OF region where the direction of axial mean flow is reversed, and
so a sign reversal of the axial scalar flux is expected.

Mean and turbulence statistics have been presented for a fully developed fountain and an
NBJ, both with Fro = 30, at axial locations where they have a similar local Fr. Presenting
these fountain profiles alongside those for an NBJ with the same Fro allows the effect
of a return flow to be revealed. In the fountain, although the w̄/w̄c and c̄/c̄c profiles
collapse approximately in the IF, they do not maintain similar shapes in the OF and are
therefore not generally self-similar. This is in contrast to the NBJ, which does not have
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Figure 10. Profiles of the mean radial turbulent flux, u′c′, for a fully developed fountain, (a), and NBJ
(Milton-McGurk et al. 2021), (b), both with Fro = 30. The profiles are normalised by the local product, w̄cc̄c,
and half-width, r1/2,c. The best-fit profile for a neutral jet by Wang & Law (2002) is also shown as a reference.

an OF, and has Gaussian velocity and scalar profiles over the full range of observed Fr
locations. The presence of a return flow tends to increase turbulence in the IF of fountains,
which can be seen by the significantly larger w′2/w̄2

c and w′u′/w̄2
c compared to an NBJ

at similar Fr locations. In both fountains and NBJs, the turbulence profiles involving
velocity fluctuations, namely w′u′, w′2, u′c′ and w′c′, all increase with axial distance when
normalised by centreline values. This is primarily a result of the strongly decelerating
mean flow, characterised here by w̄c, rather than an increase in turbulence along the flow.
This observation was first noted in Milton-McGurk et al. (2021) for NBJs, with the present
study identifying a similar behaviour in fountains.

Figures 4–10 have all shown profiles normalised by the local mean centreline values.
Another potential scaling option would be to include the OF velocity, which could be
characterised by the velocity at the location of ‘maximum outer flow’, w̄(r = rd) = w̄d.
The mean velocity profile could then be normalised by a characteristic relative IF/OF
velocity, w̄c − w̄d. However, since w̄c � |w̄d| for the majority of the fountain height, this
gives results similar to those for the w̄c normalisation, and the profiles do not collapse
across the full fountain width. Another approach would be to consider the quantity
(w̄ − w̄d)/(w̄c − w̄d), which is the fountain velocity relative to the moving reference
frame of the OF. This is always positive and has centreline value 1. Although this could
potentially be useful from a modelling point of view, it also did not collapse the present
results over the full fountain width.

4. Fro dependence

Statistics for two fountains with different source Froude numbers, Fro = 30 and 15, will
now be presented at locations with similar local Fr. Figures 11(a) and 11(b) show the w̄/w̄c
and c̄/c̄c profiles for both these fountains at Fr = 3.1 and Fr = 1.3. The velocity profiles
in figure 11(a) with matching local Fr are very similar for 0 � r � rd at both Fr locations
– that is, up to approximately the radial location of ‘maximum return flow’. The profiles
with Fr = 3.1 are similar even beyond this point, over the full r range obtained, although
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Figure 11. Normalised (a) w̄, and (b) c̄, profiles in Fro = 30 and 15 fountains. The profiles correspond to axial
locations where the local Fr in both flows are approximately equal. Additionally, ◦ markers corresponding to
radial location, rio, and × markers corresponding to rd , are shown on each profile.

this is not the case at all Fr locations. The scalar profiles in figure 11(b) are also similar
in this r range, where they agree up to near the × markers that correspond to rd, while
differing somewhat in the outer profile.

The agreement of these profiles between the two Fro fountains at similar Fr is better
than for those in figures 4(a) and 5(a), which showed profiles at different Fr locations for
the same Fro = 30 fountain. The latter w̄/w̄c profiles agreed only up until r/r1/2,w � 1,
which is prior to the IF/OF boundary, rio. The c̄/c̄c profiles in figure 5(a) agree only
approximately for r/r1/2,w � 1, and are significantly different beyond this. In figure 11(b),
the agreement between the Fro = 30 and 15 profiles is closer over the full profiles shown,
but particularly for r/r1/2,c � 1. Together, figures 4, 5 and 11 show that despite the locally
normalised velocity/scalar profiles not being generally self-similar within an individual
fountain, their shape for r � rd does not depend significantly on Fro and instead appears
to be scaled with Fr. That is, at a given local Fr, these profiles in different Fro fountains
are similar up to the location of maximum return flow, rd, with the closest agreement up
to the IF/OF boundary, rio. For r � rd, the mean profiles in fountains are therefore well
characterised by Fr, which depends only on IF quantities. This implies that the local IF
width of a fountain scales with Fr, which is comparable to previous studies that suggest
that the overall width of a fountain scales with Fro (Mizushina et al. 1982). It should be
noted that both fountains in figure 11 have Fro in the ‘highly forced’ regime (Fro � 5.5),
and this may not hold in lower Fro fountains, particularly those in the ‘intermediate’
regime and below (Fro � 2.8) (Burridge & Hunt 2012).

Figure 12 shows w′u′/w̄2
c and u′c′/w̄c c̄c for both Fro = 30 and 15 fountains at similar

Fr locations. In contrast to the mean velocity/scalar profiles in figure 11, these turbulence
quantities clearly have both an Fr and an Fro dependence, and are not generally similar in
the two fountains at the same Fr. This difference is likely due to interactions with the OF
having an effect on the turbulence production in the IF, since the OF at a given Fr location
will be different in Fro = 30 and 15 fountains. Although differences in the OF may also
affect the mean profiles, w̄ and c̄ in the IF, this is largely captured by w̄c and c̄c in the
normalisation. An Fro dependence in w′u′/w̄2

c and u′c′/w̄c c̄c at similar Fr locations is not
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Figure 12. Normalised (a) w′u′, and (b) u′c′, profiles in Fro = 30 and 15 fountains. The profiles correspond
to axial locations where the local Fr values in both flows are approximately equal. Additionally, ◦ markers
corresponding to radial location, rio, and × markers corresponding to rd , are shown on each profile.
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Figure 13. Normalised (a) w′u′, and (b) u′c′, profiles in Fro = 30 (Milton-McGurk et al. 2021) and Fro = 10
(present study) NBJs. The profiles correspond to axial locations where the local Fr values in both flows are
approximately equal.

seen in NBJs, which do not have an OF present. This can be seen in figure 13, which
show the profiles for NBJs with Fro = 30 (Milton-McGurk et al. 2021) and Fro = 10
(present study) at locations corresponding to Fr � 3.5 and Fr � 3.1. Although these are
somewhat noisier than in the fountain, both the w′u′/w̄2

c and u′c′/w̄c c̄c profiles have similar
shapes and magnitudes at the two Fr locations. This supports the hypothesis that the Fro
dependence observed in figure 12 for the fountain is primarily a result of the return flow,
which is not present in the NBJ.

5. Centreline velocity decay

Figure 14(a) shows the decay of the centreline velocity, characterised by wo/w̄c, for 10 �
Fro � 30 fountains and NBJs plotted with z/D. Data for a neutral jet, which has Fr = ∞,
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Figure 14. The decay of the mean centreline velocity, wo/w̄c, plotted with z/D in (a), and w̄c/wo plotted
with z/(DFro) in (b), for fountains and NBJs with 10 � Fro � 30, and a neutral jet. In (b), a vertical
line corresponding to the steady-state height of a fountain as predicted by zss/ro = 2.46 Fro is also shown
(Turner 1966; Burridge & Hunt 2012). Data for the Fro = 30 NBJ and the neutral jet were obtained from
Milton-McGurk et al. (2021), while the remaining NBJ and fountain data are from the present study.

are also shown as a reference. The neutral jet and Fro = 30 NBJ data were obtained from
Milton-McGurk et al. (2021), while the remaining NBJ and fountain data are from the
present study. In neutral jets, the velocity decay corresponds to a w̄−1

c ∼ z scaling. In
NBJs, this deceleration is stronger and the relationship between w̄−1

c and z is generally
nonlinear. Near the source, however, where the local Fr is high and the flow is momentum
dominated, NBJs are more similar to neutral jets and wo/w̄c could be approximated as
linear. This region was referred to as the ‘forced’ regime in Milton-McGurk et al. (2021),
and corresponds approximately to z/D � 26 (Fr � 3.0) for the Fro = 30 NBJ.

At similar z/D locations, the Fro = 10, 20 and 30 fountains all decelerate more rapidly
than the corresponding NBJ with the same Fro. This is most evident in the Fro = 30 case,
where data have been gathered over a larger z/D range, and reveal the significance of the
return flow on the development of w̄c. The Fro = 10 NBJ data, which are close to the
source and in the ‘forced’ regime, almost coincide with the linear fit of the jet data. It is
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possible that all NBJs with sufficiently high Fro approach this ‘neutral jet line’ near the
source where the flow is increasingly momentum-dominated, although additional research
is required to affirm this. For fountains, wo/w̄c may never closely resemble this jet-like
state, since the presence of the return flow will continue to affect the IF even at the source.

In figure 14(b), w̄c/wo for the fountains is plotted with z/(D Fro), along with a vertical
line at the location z/(D Fro) = 1.23. This corresponds to the steady-state rise height
predicted by the scaling relation zss/ro = 2.46 Fro (Turner 1966; Kaye & Hunt 2006;
Burridge & Hunt 2012), which has been shown to hold for forced fountains with Fro � 3.
The location where w̄c/wo = 0 corresponds to zss, and since data were not gathered at
the top of the cap region where where the velocity is fully reduced to zero and zss is
reached, linear fits of w̄c/wo for the present data have also been shown so that the data
may be extrapolated to this point. Because w̄c/wo is not linear over the entire fountain
height, these fits were based on data near the top, z/(DFro) � 1, where a linear trend
may be a reasonable approximation over short distances. This slightly under-predicts
zss/(D Fro) = 1.23 for the Fro = 30, 20 and 10 fountains, and slightly over-predicts it for
Fro = 15, but in all cases is within approximately 1–8 % of the scaling relation.

6. Radial expansion and fountain width

The radial expansion of the IF of the fountains may may be characterised by the radial
location of the IF/OF boundary, rio, or by other measures of the IF velocity profile, such
as the half-width, r1/2,w. Figure 15(a) shows r1/2,w/D with axial distance, z/D, for the
fountains, the NBJs and a neutral jet (Milton-McGurk et al. 2021). For the Fro = 30 and 15
fountains, rio/D is also shown. For a large portion of their height, the neutral jet, fountains
and NBJs all have similar r1/2,w/D at similar axial locations, and follow an approximately
linear trend. Mizushina et al. (1982) had a similar finding in their experimental study
on fully developed fountains, where they found that a linear correlation, rio = 0.17z,
described approximately the location of the IF/OF boundary for a wide range of Fro
fountains (3 � Fro � 258). This relation is shown in figure 15(a), alongside a linear fit
based on the present Fro = 15 and 30 data of rio/D = 0.16z, which is in reasonable
agreement. The Fro = 10 and 20 fountains were not included in this correlation, since,
as will be discussed in the next paragraph, data for these flows were obtained only in
the cap region. It should be emphasised that any linear relations of rio or 1/2,w, in either
fountains or NBJs, are only approximations, and become less valid towards the cap region
where Fr → 0.

In the Fro = 15 and 30 fountains, r1/2,w and rio increase with z/D for the majority
of their height, followed by a sharp decrease after some critical point. Since the overall
width of a fountain decreases in the cap region, the internal IF width scales could also
be expected to decrease in the cap. The location where rio and r1/2,w start to decline
may therefore reflect the beginning of the cap region, which will be denoted zc. For the
Fro = 10 and 20 fountains, all data shown are within the cap region (z � zc), which is
reflected by the decreasing r1/2,w. For the Fro = 15 and 30 fountains, the IF width begins
decreasing at zc/D � 15 and zc/D � 28, respectively. The same values are obtained using
either the location of maximum r1/2,w or rio, and are approximately zc/D � Fro for both
fountains. Vertical lines are also shown in figure 15(a) to indicate the predicted steady-state
rise height of these fountains based on the high Fro scaling relation, zss/ro = 2.46 Fro
(Turner 1966; Kaye & Hunt 2006; Burridge & Hunt 2012). If the cap region were assumed
hemispherical, then the thickness of the cap would be an approximation of the overall
fountain radius, rf . If, additionally, zc/D = Fro was presumed to be a universal scaling for
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Figure 15. The velocity half-width, r1/2,w, for 10 � Fro � 30 fountains and NBJs, and a neutral jet. The radial
location of the IF/OF boundary, rio, is also shown for the Fro = 15 and 30 fountains. In (a), r1/2,w/D and rio/D
are plotted against z/D, with vertical lines showing the locations of the steady-state rise height, zss/D, of the
Fro = 15 and 30 fountains. In (b), an alternative normalisation is used, r1/2,w/(Fro D) and rio/(Fro D), plotted
with Fr.

the start of the cap region, then by using the aforementioned zss relation, we obtain
rf

D
= zss

D
− zc

D
= 0.23 Fro. (6.1)

This is in good agreement with the proposed relation rf /D = 0.26 Fro by Mizushina et al.
(1982), who measured the width of fountains directly with 3 � Fro � 258. The agreement
supports the earlier assumption that the location of maximum rio and r1/2,w can be used to
estimate the start of the cap region.

Figure 15(b) shows the radial expansion of the IF normalised by Fro, with r1/2,w/(Fro D)

and rio/(Fro D) plotted against Fr. The start of the cap region occurs at similar Fr for the
Fro = 15 and 30 fountains, at Fr = 1.1 and 1.3, respectively. These are similar to the
value Fr = 1.4 proposed by Shrinivas & Hunt (2014) and used by Hunt & Debugne (2016)
in their theoretical model of a fountain. Although there is some scatter in the data in
figure 15(b), the values of r1/2,w/(FroD) are in reasonable agreement at similar Fr for all
Fro fountains shown.
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This is consistent with the arguments made in § 4 with regard to figure 11(a), where the
shapes of the velocity profiles in the IF are not affected significantly by Fro, and are instead
governed by Fr. Figure 15(b) is then an alternative way of showing that the IF width scales
with the local Fr, just as the overall fountain width scales with the source Froude number,
Fro, as was reported by Mizushina et al. (1982) and implied by (6.1).

7. Integral models

7.1. Jet and plume models
Morton et al. (1956) proposed an integral model, referred to here as the MTT model, based
on the conservation of mass, momentum and buoyancy, to describe plumes originating
from a point source. These may also be applied to neutral and buoyant jets, as well as NBJs
prior to the return flow forming (Morton 1959; Milton-McGurk et al. 2021). The MTT
model invokes the ‘entrainment assumption’, which relates the radial inflow of ambient
fluid into the jet to a characteristic vertical velocity at that height by an ‘entrainment
coefficient’, α. Simple applications of the model, such as to pure plumes (zero initial
momentum) and neutral jets (zero buoyancy), typically use a constant value of α in the
range 0.10 � αp � 0.16 and 0.065 � αj � 0.080 for plumes and jets, respectively (Fischer
et al. 1979; Carazzo, Kaminski & Tait 2006). Priestley & Ball (1955) also developed an
integral model for plumes/jets, referred to here as the PB model, but instead derived from
the conservation of momentum, buoyancy and kinetic energy. Although the PB model did
not make use of the entrainment assumption originally, Fox (1970) showed how when
combined with the continuity equation, it implies that α is a function of the local Ri. For
flows with constant Ri, such as pure jets and plumes, α is then constant and the MTT
model is obtained (Fox 1970; Fischer et al. 1979). Analytical solutions to these models
can be obtained by assuming fully self-similar velocity and buoyancy profiles in the flow,
where the shapes of the profiles are assumed to be Gaussian or ‘top-hat’ (constant inside
the plume/jet, zero outside it). More recent studies have developed these models further,
by omitting assumptions about the shapes or self-similarity of the profiles (Kaminski et al.
2005; van Reeuwijk & Craske 2015).

These more recent formulations of the models may be derived from the conservation of
volume, momentum, buoyancy and kinetic energy equations for a high-Reo axisymmetric
flow in a homogeneous environment (Kaminski et al. 2005; van Reeuwijk & Craske 2015):

∂

∂r
(rū) + ∂

∂z
(rw̄) = 0, (7.1)

∂

∂r
(rū w̄ + ru′w′) + ∂

∂z
(rw̄2) = rb̄, (7.2)

∂

∂r
(rūb̄ + ru′b′) + ∂

∂z
(rw̄b̄) = 0, (7.3)

∂

∂r
(rū w̄2 + 2ru′w′w̄) + ∂

∂z
(rw̄3) = 2ru′w′ ∂w̄

∂r
+ 2rw̄b̄. (7.4)

Pressure contributions and second-order turbulence terms, namely those involving w′2 and
w′b′, are neglected here. Neglecting these higher-order terms is common in the jet and
plume literature, where they are typically found to be negligible (Wang & Law 2002;
Kaminski et al. 2005; van Reeuwijk & Craske 2015; van Reeuwijk et al. 2016). For the case
of fountains and NBJs, these terms have been estimated as they appear after integrating
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(7.1)–(7.4), and are also found to be small compared to the mean components for the
majority of the flow. The terms become larger near the top of an NBJ/fountain, where
the mean velocity goes to zero and there is non-zero turbulence, but this region is not
considered in the present analysis.

For neutral or positively/negatively buoyant jets in a quiescent homogeneous ambient,
these equations may be integrated to infinity, with respect to r, to obtain a set of ordinary
differential equations (ODEs) consistent with the MTT and PB models (Priestley & Ball
1955; Morton et al. 1956; Kaminski et al. 2005; van Reeuwijk & Craske 2015):

dQ
dz

= 2αM1/2, (7.5)

dM
dz

= B = FQ
θmM

, (7.6)

dF
dz

= 0, (7.7)

d
dz

(
γm

M2

Q

)
= δm

M5/2

Q2 + 2F, (7.8)

where the entrainment coefficient, α, is defined as

(rū)r=r̃ = −αrmwm. (7.9)

The quantities θm, γm and δm are ‘profile coefficients’ corresponding to the dimensionless
buoyancy flux, mean kinetic energy and turbulence production, and are constant if the flow
is fully self-similar:

θm = F
wmbmr2

m
,

γm = 2
w3

mr2
m

∫ r̃

0
w̄3r dr,

δm = 4
w3

mrm

∫ r̃

0
w′u′ ∂w̄

∂r
r dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.10)

In the present context of neutral or positively/negatively buoyant jets and plumes, the
integration limit is set to r̃ = ∞ in all definitions.

For a constant α, (7.5)–(7.7) then represent the MTT model in the case of self-similar
flow, with the value of θm depending on the assumed profile shapes (e.g. θm = 1 for top-hat
profiles). van Reeuwijk & Craske (2015) used (7.5)–(7.8) to derive an analytical expression
for α that does not make any assumptions about the shape of the profiles or whether they
are self-similar:

α = − δm

2γm
+
(

1 − θm

γm

)
Ri + Q

2M1/2
d
dz

(ln γm). (7.11)

For a self-similar neutral jet, which has Ri = 0 and constant profile coefficients, the second
two terms are zero and a constant entrainment coefficient is obtained, while for self-similar
buoyant jets, α follows a linear relationship with Ri. In a previous study, the present authors
calculated the terms of (7.11) for an Fro = 30 NBJ after assuming Gaussian velocity and
buoyancy profiles (Milton-McGurk et al. 2021). It was found that α could be approximated
reasonably by a constant θm � 0.64 and linear fit of δm with Ri, giving a linear relationship
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between α and Ri. Since Ri → −∞ as wm → 0 at the top of an NBJ, α decreases with axial
distance and eventually becomes negative for sufficiently negative Ri. This was found to
occur for Ri � −0.25, where there is a mean radial outflow of fluid from the jet to the
ambient.

7.2. Application to fountains
The boundary between the IF and OF of a fully developed fountain is defined as the
location where the mean axial velocity is first equal to zero – that is, w̄(r = rio) = 0 where
rio is the radial location of the boundary. The IF of a fountain could then be considered an
NBJ that is surrounded by an opposing shear flow, namely the OF, rather than a quiescent
ambient. By integrating the conservation equations given in (7.1)–(7.4) to rio instead of
infinity, a system of ODEs similar to (7.5)–(7.8) can be derived that describe the IF of a
fountain. In this case, we let r̃ = rio in (3.2), (7.9) and (7.10), and all integral quantities and
profile coefficients correspond to the IF:

dQ
dz

= 2αM1/2, (7.12)

dM
dz

= FQ
θmM

− 2(ru′w′)r=rio, (7.13)

dF
dz

= −2(rūb̄)r=rio − 2(ru′b′)r=rio, (7.14)

d
dz

(
γm

M2

Q

)
= δm

M5/2

Q2 + 2F. (7.15)

The higher-order turbulence terms, i.e. turbulence components of the profile coefficients,
have been neglected here. The continuity and kinetic energy equations, (7.12) and (7.15),
are in the same form as (7.5) and (7.8) since w̄(r = rio) = 0, but the momentum and
buoyancy equations have non-zero boundary conditions arising because u′w′, u′b′ and
b̄ do not go to zero at rio. In the present formulation, α is related to the integral scales
of the IF only, and describes the exchange of fluid between the IF and OF, where α > 0
corresponds to fluid moving from the OF to the IF. An alternative approach may be to
define the velocity scale in the definition of α in (7.9) so that it includes information about
the OF velocity. However, since no assumptions are being made regarding the value or
behaviour of α, any substitution here can be made valid provided that it is consistent with
the conservation equations.

Similarly to the derivation of (7.11), an expression for α for the IF of a fountain may be
derived using (7.12), (7.13) and (7.15) (van Reeuwijk & Craske 2015):

α = − δm

2γm
+
(

1 − θm

γm

)
Ri + Q

2M1/2
d
dz

(ln γm) − 2Q
M3/2 (ru′w′)r=rio . (7.16)

This expression differs from (7.11) only in that it includes a non-zero shear stress term at
the boundary, and all integral quantities and profile coefficients are defined up to rio.

Carazzo et al. (2010) derived a set of equations similar to (7.12)–(7.15) for the IF of a
fountain, but went on to construct additional conservation equations for w̄3 and w̄b̄ in order
to replace the boundary conditions with integral profiles, and obtained a ‘confined top-hat’
model for the flow. For the purposes of the present investigation, it is sufficient to derive
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only the w̄3 equation, obtained by multiplying the momentum equation, (7.2), by 3w̄2:

∂

∂r
(rū w̄3 + 3ru′w′w̄2) + ∂

∂z
(rw̄4) = 3rw̄2b̄ + 6rw̄u′w′ ∂w̄

∂r
. (7.17)

This may then be integrated with respect to r from zero to rio, giving

d
dz

(
Γm

M3

Q2

)
= 6Δm

M7/2

Q3 + 3μm
MF
θmQ

, (7.18)

which is written in terms of the new profile coefficients

μm = 1
w2

mbmr2
m

∫ r̃

0
w̄2b̄r dr,

Γm = 1
w4

mr2
m

∫ r̃

0
w̄4r dr,

Δm = 1
w4

mrm

∫ r̃

0
w̄w′u′ ∂w̄

∂r
r dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.19)

with r̃ = rio. Note that this approach may also be applied to jets and plumes in a
homogeneous environment by setting r̃ = ∞ in the profile coefficient definitions, and
integrating the conservation equations to infinity. In this case, the same expression as (7.18)
is obtained.

By applying the product rule to (7.18), and using (7.12) and (7.15), a new expression for
α without any boundary conditions may be derived:

α = 3
2

(
δm

γm
− 4Δm

Γm

)
+ 3

(
θm

γm
− μm

Γm

)
Ri + Q

M1/2
d
dz

(
ln

Γm

γ
3/2
m

)
, (7.20)

which is valid for arbitrary velocity and buoyancy profiles and does not make any
assumptions about the self-similarity of the flow. By setting r̃ = rio in the profile
coefficient and α definition, this describes entrainment between the IF and OF of a fully
developed fountain. As with (7.19), it may also be applied to jets of arbitrary buoyancy in a
homogeneous environment by setting r̃ = ∞. This is somewhat similar to the expression
for α in Carazzo et al. (2010) (their (4.38)), which is valid for self-similar profiles and
corresponds to entrainment in their top-hat model of the flow. Although both formulations
are equally valid with respect to their given framework, (7.20) may be applied immediately
to both the IF of a fountain or an NBJ with arbitrary profiles, using the classical integral
velocity, width and buoyancy scales defined in (3.3). If the IF of the fountain were
self-similar, then all profile coefficients in (7.20) would be constant, and a linear expression
for α with Ri would be obtained. A linear relationship for α was also derived by Mehaddi
et al. (2015) in their model of self-similar turbulent fountains. In their case, α and Ri were
defined in terms of centreline values of the mean profiles and rio, rather than integral
quantities as in the present case. Although this means that the α expressions are not
immediately equivalent without making additional assumptions about the shapes of the
mean profiles, the linear forms of the relationships are consistent.

Both (7.16) and (7.20) are valid expressions for the entrainment coefficient of the IF of a
fountain (r̃ = rio), as well for an NBJ (r̃ = ∞). Using data from the present experiments,
it is possible to calculate each of the profile coefficients present in these expressions, as
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Figure 16. The entrainment coefficient, α, plotted with local Ri for the IF of an Fro = 30 and Fro = 15
fountain, and of an Fro = 30 NBJ, as calculated using (7.16) and (7.20).

well as to measure directly the boundary condition (ru′w′)r=rio in (7.16). Figure 16 shows
α calculated using both (7.16) and (7.20), for two fully developed fountains with Fro = 30
and Fro = 15, as well as for an NBJ with Fro = 30. Gaussian velocity/buoyancy profiles
were assumed for the NBJ (Milton-McGurk et al. 2021), which results in γm = 4/3,
Γm = 1, and the derivate in (7.16) and (7.20) equalling zero. For the fountain, Gaussian
profiles were not assumed, though the derivative terms in these two equations were found
to be negligible and so have been neglected.

As discussed in Milton-McGurk et al. (2021) and shown in figure 16, α < 0 for Ri �
−0.25 for an NBJ, indicating that there is a mean radial outflow of fluid from the jet. For
the Fro = 30 fountain, α becomes negative near Ri � −0.13, reflecting a mean outflow of
fluid from the IF to the OF. For the Fro = 15 fountain, α < 0 for the full range shown, Ri �
−0.04. This is consistent with studies by Williamson et al. (2011) (Fro = 7) and Cresswell
& Szczepura (1993) (Fro � 3.2), who observed predominately a mean radial flow from IF
to OF, other than in a small region near the source. More generally, figure 16 shows good
agreement between the α estimated from (7.16), which uses a direct measurement of the
IF/OF boundary condition, and that from (7.20), which uses the new profile coefficients
defined in (7.19).

8. Decomposing entrainment

Turbulent entrainment is generally considered the process where fluid is transported from
a non-turbulent region to a turbulent region across a turbulent/non-turbulent interface
(TNTI) (e.g. Mistry et al. (2016)). For the NBJ, α < 0 in figure 16 indicates that there
is a mean radial outflow of fluid from the turbulent jet to the quiescent ambient. For the
fully developed fountains, the size and sign of α indicate the direction and magnitude
of the mean radial velocity at the interface between two turbulent regions, the IF and
OF. In these contexts, α is simply a parameter constrained by the conservation equations
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that is used to describe the mean radial velocity at some interface, and is therefore not
necessarily a measure of ‘turbulent entrainment’ in the traditional sense. An NBJ with
α < 0 could undergo instantaneous ‘entrainment’ (i.e. flow from the ambient across the
TNTI into the jet) at some times, while expelling fluid at others. For a fountain, although
the IF/OF boundary is between two turbulent regions rather than a TNTI, there can still
be instantaneous fluid transport across this boundary in either direction, separate from the
mean flow. Such exchange of fluid across a turbulent shear layer is still often regarded as
‘entrainment’ (Morton 1962; McDougall 1981), and we will also take this interpretation in
the context of fountains.

As discussed in Milton-McGurk et al. (2021), the α < 0 in the NBJ is a natural
consequence of the conservation equations, being driven primarily by the Ri term in (7.11).
This term becomes increasingly negative as Ri → −∞ as the mean flow decelerates and
wm → 0. For a fountain, although the return flow influences the value of α (e.g. through
the boundary condition term in (7.16)), we would still expect α < 0 and radial flow from
IF to OF for sufficiently negative Ri as the IF velocity approaches zero. This section
will explore an alternative approach to characterising entrainment in NBJs and fountains,
where it will be separated into an inflowing ‘turbulent entrainment’ contribution occurring
simultaneously with a mean outflow of fluid.

8.1. Decomposed top-hat model
Consider a control volume of a thin horizontal slice of an axisymmetric fully developed
fountain, such as one taken from the fountain schematic shown in figure 1. The slice
should be taken before the cap, z < zc, where there are distinct IF and OF regions (e.g.
Ri � −0.5) (Shrinivas & Hunt 2014; Hunt & Debugne 2016). For simplicity, the fountain
is presumed to be orientated vertically upwards with a denser IF than OF (the opposite
but equivalent case to the present experiments), and to have top-hat vertical velocity and
buoyancy profiles. Here we have, for the IF and OF, ŵif and ŵof denoting the vertical
velocities, r̂if and r̂of the widths, and ĝif = g(ρa − ρ̂if )/ρa and ĝof = g(ρa − ρ̂of )/ρa the
buoyancies. Here, ρ̂if , ρ̂of and ρa are the densities of the IF, OF and ambient, so we have
ĝif < 0 and ĝof < 0. There is also a radial exchange of fluid between IF and OF that,
as will be argued in the following sections, is comprised of a component resulting from
turbulent entrainment and a component resulting from the buoyancy-induced spreading of
the IF. These two components can, simultaneously, be in opposite directions: the turbulent
component, in isolation, producing a flow from OF to IF, and the buoyant spreading
component, in isolation, producing a flow from IF to OF. The combination of the two
components will, depending on their balance, produce either a positive or negative net
flow across the IF/OF boundary at any time. The velocity component associated with the
turbulent entrainment is denoted ûe, while the velocity component associated with the
buoyant spreading is denoted ûout. The equations for conservation of volume, momentum
and buoyancy flux for the IF of this system are then

dQ̂if

dz
= 2r̂if ûe − 2r̂if ûout, (8.1)

dM̂if

dz
= −2r̂if ûeŵof − 2r̂if ûoutŵif + r̂2

if ĝif , (8.2)

dF̂if

dz
= 2r̂if ûeĝof − 2r̂if ûoutĝif , (8.3)
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where Q̂if = r̂2
if ŵif , M̂if = r̂2

if ŵ2
if and F̂if = r̂2

if ŵif ĝif are the (scaled) volume, momentum
and buoyancy fluxes.

In a fully developed fountain, the mean radial velocity is from the IF to the OF for the
majority of its height. A mean radial outflow is also seen in NBJs that do not have a return
flow, where it is driven by the decelerating mean flow as characterised by Ri → −∞.
Despite this, there may still be instantaneous ‘entrainment’ from the OF to the IF of a
fountain across the IF/OF interface (or from the ambient to the jet in the case of an NBJ).
The present analysis will treat ûe as the ‘entrainment velocity’, and we will assume that it
is proportional to the velocity of the IF by an entrainment coefficient, αe:

ûe = αeŵif . (8.4)

An alternative approach would be to treat αe as instead proportional to the relative velocity
difference between the IF and OF, which was also considered by Bloomfield & Kerr (2000)
alongside (8.4). This approach, as well as an alternative treatment of the body-force that
controls the buoyancy of the IF, is discussed in Appendix A.

No assumptions will be made about the velocity of the outflowing fluid, ûout, which in
practice is likely dependent on both IF and OF. In this formulation, even if ŵof = 0 and the
flow is effectively an NBJ without a return flow, there may still be a radial outflow of fluid
occurring simultaneously to entrainment (i.e. ûe > 0 and ûout > 0). This is a key difference
when compared to previously proposed fountain models, such as by McDougall (1981) or
Bloomfield & Kerr (2000), who modelled flow from the IF to the OF as proportional
to ŵof , and related them by a second constant entrainment coefficient. The conservation
equations for the present system may then be written as

dQ̂if

dz
= 2αer̂if ŵif − 2r̂if ûout, (8.5)

dM̂if

dz
= −2αer̂if ŵif ŵof − 2r̂if ûoutŵif + r̂2

if ĝif , (8.6)

dF̂if

dz
= 2αer̂if ŵif ĝof − 2r̂if ûoutĝif , (8.7)

which will be referred to as the ‘decomposed top-hat’ model. It was mentioned previously
that the system of equations could be applied to an NBJ by considering ŵof = 0, since
there is no return flow. As is clear from the w̄/w̄c profiles for NBJs in figure 4(b), this
is a reasonable description since the profiles go to approximately zero by r/r1/2,w � 3.
However, since NBJs are subject to a net radial outflow, characterised by α < 0 in figure 16,
we should expect that ûout > ûe for a portion of the flow. This ejected fluid will be
negatively buoyant, implying that ĝof /= 0 in this top-hat description of the flow. This may
be counter-intuitive since NBJs do not have a fully formed OF like a fountain, so invoking
a non-zero ĝof term potentially complicates the physical interpretation of the model. For
this reason, the original model described by (7.5)–(7.7) and solved in Milton-McGurk et al.
(2021) may be more appropriate for NBJs than the top-hat description, which is presented
primarily for the application to fountains. Despite this, characterising entrainment in NBJs
as the balance of inflowing and outflowing fluid is still a physically meaningful description,
and it is useful to compare this formulation to the original model. For this reason, we will
now proceed to estimate the inflow and outflow components of entrainment with respect
to the top-hat model in both fountains and NBJs using the present experimental data.

If the top-hat variables in (8.5)–(8.7) are replaced with integral quantities calculated
from the experimental data, then the only unknowns in the volume and momentum flux
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Characterising entrainment in fountains and NBJs

equations are αe and ûout. For the IF velocity and radius, we set ŵif = wm and r̂if = rm
as defined using (3.2) and (3.3a,b) with r̃ = rio for a fountain and r̃ = ∞ for an NBJ.
We will define the OF velocity, ŵof , similarly to wm except that the integrals in (3.2) are
evaluated from rio to infinity. For the IF buoyancy scale, ĝif , one choice might be bm from
(3.3c), which is based on integrals of the buoyancy and velocity profiles. However, we
choose instead ĝif = gm, where gm is defined in (8.8) (Milton-McGurk et al. 2020). In
this definition, gm is based on the buoyancy profile only, so is more closely related to the
definition of ĝif , which is dependent only on the local density difference and gravity. If the
real w̄ and b̄ profiles were exactly top-hat and had the same width, then bm and gm would
be equal, where we have,

G = 2
∫ r̃

0
b̄2r dr, gm = G

B
. (8.8a,b)

The OF buoyancy for a fountain, ĝof , may be defined similarly to ĝif except with the
integration limits in (8.8) set from r = rio to infinity. The derivatives dQ̂if /dz and dM̂if /dz
are estimated using a second-order accurate finite difference stencil. When referring
exclusively to NBJs, which do not have an OF, the subscript ‘if ’ is omitted from the
notation.

With all top-hat variables in (8.5) and (8.6) defined based on local integral scales,
the pair of equations may then be solved simultaneously to obtain estimates for αe
and ûout along the fountain and NBJ. Figure 17 shows αe plotted with local Ri for
Fro = 30 and Fro = 15 fountains, and an Fro = 30 NBJ. Here, only results prior to the
cap region are shown, since this is where the present top-hat model is expected to be
valid. The entrainment coefficient for a neutral jet, which has ûout = 0, is also shown as
a horizontal line as a reference. This corresponds to α = 0.071, as calculated using the
same experimental set-up (Milton-McGurk et al. 2021). For the fully developed fountains,
we have a slightly higher αe in the Fro = 30 case than in the Fro = 15 case, with average
values αe = 0.062 and αe = 0.052, respectively. Both fountains have αe > 0 over the full
range shown, which contrasts to the original definition of α discussed in § 7 and shown in
figure 16. This had α < 0 for the majority of the Ri range shown (Ri � −0.13 for Fro = 30,
and Ri � −0.04 for Fro = 15), and also had α generally lower in the Fro = 15 case. This
previous formulation of α, which was expressed by (7.16) and (7.20), will henceforth be
referred to as the ‘full model’.

The results in figure 17 for the ‘decomposed model’ are more scattered in the NBJ
since there are fewer data available, but we clearly have αe > 0 over the Ri range shown
(with average value αe = 0.077). This again contrasts to the full model in figure 16, where
α < 0 for Ri � −0.25. Since there is no clear systematic trend for αe with Ri in the NBJ or
fountains, αe could be approximated by taking the average value as constant. This returns
values of αe in the NBJ similar to α in a neutral jet, and fountain values somewhat lower.

In the decomposed formulation, αe can be interpreted as a measure of the rate of
‘turbulent entrainment’ in the flow. For fountains, this represents ‘entrainment’ from the
OF to the IF across the IF/OF interface, and in NBJs it is entrainment from the ambient
into the jet across the TNTI. This contrasts to α in the full model shown in figure 16, which
simply reflects the direction and magnitude of the mean radial velocity.

Solving (8.5) and (8.6) simultaneously also provides values for ûout, the outflow velocity.
Figure 18 shows ûout/ŵif plotted with Ri for the Fro = 30 and Fro = 15 fountains, and
Fro = 30 NBJ. We see that, for all three flows, ûout increases with −Ri, and that ûout > 0
for all Ri < 0. Near the source, where the IF is much stronger than the OF, ûout/ŵif → 0
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Ri

–0.2–0.10
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F Fro = 30
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NBJ Fro = 30
J Fro = ∞

Figure 17. The entrainment coefficient, αe, plotted with local Ri for the IF of an Fro = 30 and Fro = 15
fountain, and of an Fro = 30 NBJ. Here, αe = ûe/ŵif , corresponding to the decomposed top-hat model
described by (8.5)–(8.7). The ‘standard’ entrainment coefficient for the neutral jet (J), α, as reported in
Milton-McGurk et al. (2020) using the same experimental set-up, is also shown as a reference. For neutral
jets, Ri = 0 everywhere so α is shown as a horizontal line for clarity.

and Ri → 0. This is consistent with the neutral jet case, which has Ri = 0 and does not
have a mean outflow. Regions where there is a net radial outflow of fluid from the IF
correspond to where ûout > ûe. Since αe = ûe/ŵif from (8.4), this is equivalent to where
ûout/ŵif > αe. Horizontal lines showing average values of αe for the fountains and NBJ
are also shown in figure 18, which therefore indicate the start of the region where there is a
net radial outflow of fluid from the IF. Figure 18 therefore implies that the IFs of both Fro
fountains and the NBJ have a net radial outflow of fluid for a large portion of their height,
with the local Ri at the start of this region broadly consistent with figure 16 – that is, where
α < 0 in the original formulation given by (7.16) and (7.20).

In summary, the decomposed formulation separates radial flow between the IF and OF
of a fountain into two components that are constrained by both the conservation of mass
and momentum. The inflow term is described by the approximately constant αe, which
represents ‘turbulent entrainment’ from the OF to the IF. The outflow term, ûout/ŵif ,
represents fluid ejected from the IF to the OF and depends on the local Ri. This term
approaches zero as Ri → 0 where the IF is much stronger than the OF, and increases for
more negative Ri.

8.2. Connection to the full model
Figures 17 and 18 show that in the present decomposed top-hat formulation, the radial
flow across the IF/OF boundary of a fountain (or between an NBJ and the ambient) can be
described by an approximately constant turbulent entrainment coefficient, αe, and a local
Ri-dependent outflow component, ûout/ŵif . If the net radial flow from the IF to the OF is
denoted û, so that û = ûout − ûe, then the ratio α̂ = −û/ŵif is a non-dimensional measure
of the direction and magnitude of the mean radial flow at a given height. Using (8.4), this
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–0.5–0.4–0.3–0.2–0.10

0.05

0.10

0.15

0.20

0.25
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û ou
t/

ŵ if

ûout /ŵif  (F Fro = 30)

ûout /ŵif   (F Fro = 15)

αe (F Fro = 30)

αe (F Fro = 15)

αe (NBJ Fro = 30)

ûout /ŵ  (NBJ Fro = 30)

Figure 18. The normalised radial outflow velocity, ûout/ŵif , with respect to the decomposed top-hat model for
Fro = 30 and Fro = 15 fountains, and an Fro = 30 NBJ. Horizontal lines indicating average values of αe from
figure 17 are also shown.

may then be written as

α̂ = αe − ûout

ŵif
, (8.9)

which expresses α̂ as the sum of a constant and an Ri-dependent component, αe and
−ûout/ŵif , respectively. This is then the present top-hat model’s equivalent to α in the
full model, defined by (7.11) or (7.20), which is also a measure of the mean radial velocity
relative to the IF velocity scale. This equivalence may be seen by substituting (8.9) into
(8.5), and recalling that the same integral definitions for Q̂if and M̂if are used as for Q and
M in (7.5) and (7.12). If the profile coefficients in (7.20) are assumed constant, then α in
the full model may be written as

α = 3
2

(
δm

γm
− 4Δm

Γm

)
+ 3

(
θm

γm
− μm

Γm

)
Ri, (8.10)

which is also expressed as the sum of a constant and an Ri-dependent component, namely
the first and second terms on the right-hand side of (8.10), respectively.

For Gaussian velocity and buoyancy profiles, shown in Milton-McGurk et al. (2021) to
be a reasonable assumption in NBJs, we have that γm = 4/3, Γm = 1, θm = 2/(λ2 + 1)

and μm = 2/(2λ2 + 2). Here, λ is defined as

λ = rb

rw
, (8.11)

where rb and rw are the 1/e widths of the buoyancy and velocity profiles, respectively.
In Milton-McGurk et al. (2021), it was shown that λ, and hence θm and μm, are not
constant in NBJs. However, their variation has little effect on α once multiplied by Ri,
such as in (7.11) or (8.10), so they may be approximated as constant, with λ � 1.46 for
this purpose. For the IF of a fountain, the profiles cannot be described simply by Gaussian
functions, so these profile coefficients must be estimated numerically from their integral
definitions, (7.10) and (7.19). By assuming that these are constant we obtain, by taking
averages, θm � 0.68 and μm � 0.36 for Fro = 30, and θm � 0.65 and μm � 0.34 for
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Fro = 15. The data suggest that γm and Γm have a weak Ri dependence in fountains, with
1.27 � γm � 1.18 and 0.90 � Γm � 0.76 over 0 � −Ri � 0.5. Since this variation is not
very significant, these were approximated as constant using average values γm � 1.23 and
Γm � 0.85 for Fro = 30, and γm � 1.23 and Γm � 0.84 for Fro = 15. All four of these
profile coefficients, θm, μm, γm and Γm, therefore have similar values for both fountains,
with a negligible Fro dependence.

For an NBJ, it was shown in Milton-McGurk et al. (2021) that δm is not constant, and
instead varies linearly with Ri. The present data show that an approximately linear relation
also occurs in fountains. Additionally, the profile coefficient Δm, defined in (7.19) and
related to the turbulent production, is also well described by a linear Ri relation. These can
be expressed as

δm = δo + δ̃ Ri,

Δm = Δo + Δ̃ Ri,

}
(8.12)

where δo and Δo represent the values at the source, and δ̃ and Δ̃ are additional ad hoc
terms that capture the observed Ri dependence. The increasing of −δm and −Δm with
negative Ri is related to the behaviour of the w′u′ profiles discussed in Milton-McGurk
et al. (2021) and § 3.2, where the turbulence did not decrease at the same rate as the mean
flow in NBJs and fountains. A detailed analysis of the governing equations may shed light
on the precise reason for this behaviour, which is left for potential future research. For
the purposes of the present investigation, the observation of a linear trend and subsequent
empirical expressions in (8.12) will be used.

By using these linear relations, the expression for α in (8.10) becomes

α = 3
2

(
δo

γm
− 4Δo

Γm

)
︸ ︷︷ ︸

P1

+ 3

(
θm

γm
− μm

Γm
+ δ̃

2γm
− 2Δ̃

Γm

)
Ri

︸ ︷︷ ︸
P2

. (8.13)

This expresses α as the sum of a constant and an Ri-dependent component, P1 and P2, and
is valid for both NBJs and fountains. The following expression, obtained by combining the
linear δm relation with (7.20), is valid for NBJs only:

α = − δo

2γm︸ ︷︷ ︸
L1

+
(

1 − θm

γm
− δ̃

2γm

)
Ri

︸ ︷︷ ︸
L2

. (8.14)

Although both (8.13) and (8.14) are equally valid for NBJs, (8.14) is simpler since it does
not depend on Δm or Γm. Equation (8.14) will therefore be used for calculating α in
NBJs, while (8.13) will be used for fountains. It is then useful to attempt to unify the
decomposed top-hat model with the full model by considering α̂ = α. Both (8.13) and
(8.14) express α in terms of constant and Ri-dependent components, which may then be
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compared individually to the components of α̂ defined in (8.9). We would then have

L1 = αe,

L2 = − ûout

ŵ
,

⎫⎬
⎭NBJ (8.15)

P1 = αe,

P2 = − ûout

ŵif
,

⎫⎬
⎭ Fountain (8.16)

for the NBJ and fountains.
These different components and their summation are given in figure 19 for the Fro = 30

NBJ, and in figure 20 for the Fro = 30 and Fro = 15 fountains. For the NBJ, figure 19(a)
shows L1 = 0.075 and L2 = 0.292 Ri corresponding to (8.14), with the values obtained by
assuming Gaussian velocity and buoyancy profiles, a constant λ � 1.46, and a linear fit
of δm (Milton-McGurk et al. 2021). Although very good agreement is observed between
αe and L1, the constant component of the entrainment coefficient, there is a discrepancy
between the Ri-dependent terms, L2 and −ûout/ŵ. It was found that better agreement could
be obtained by including the turbulence components of the profile coefficients δf and γf
in the expression for α (van Reeuwijk & Craske 2015):

γf = 4
w3

mr2
m

∫ r̃

0
w̄w′2r dr, δf = 4

w3
mrm

∫ r̃

0
w′2 ∂w̄

∂z
r dr. (8.17a,b)

These may be included by replacing δm and γm with δg = δm + δf and γg = γm +
γf , wherever they appear. By initially neglecting higher-order turbulence terms in the
conservation equations, (7.1)–(7.4), δf and γf were assumed negligible prior to this point.
From the present NBJ data, these terms are estimated to be approximately 18 % and 35 %
of the corresponding mean components, δm and γm, respectively. As a comparison, these
are approximately 1 % and 25 % of the mean values for a neutral jet in the present data,
and are commonly neglected for this flow (Kaminski et al. 2005; van Reeuwijk & Craske
2015). Now, average values δf � −0.044 and γf � 0.47, as estimated from the present
experimental data for the NBJ, will be included and assumed constant. This results in the
following expression for α that can be used in place of (8.14):

α = −δo + δf

2γg︸ ︷︷ ︸
L1

+
(

1 − θm

γg
− δ̃

2γg

)
Ri

︸ ︷︷ ︸
L2

. (8.18)

Figure 19(b) then shows the same α̂ decomposition, but now with L1 and L2 as calculated
by (8.18). Although the constant terms, αe and L1, are not as close as in figure 19(a), the
agreement between the Ri terms −ûout/ŵ and L2, and the overall summations α̂ and α,
have been improved significantly. Although this supports the validity of the decomposed
top-hat formulation, it raises questions as to whether the assumption made up to this point,
that the turbulence components of the profile coefficients may be ignored, is appropriate.
Although the turbulence components do have an effect on the entrainment rate, the
modelling of NBJs in Milton-McGurk et al. (2021) showed that reasonable w̄c agreement
could nevertheless be achieved without them. It is argued therefore that neglecting
these higher-order contributions is a reasonable simplification for the purposes of the
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Figure 19. The constant and Ri-dependent components of the entrainment coefficient of an Fro = 30 NBJ
from both the decomposed top-hat model (α̂ = αe − ûout/ŵ) and the full model (α = L1 + L2). Panel (a) shows
the terms L1 and L2 as calculated using (8.14), while (b) uses (8.18). That is, (a) neglects the turbulence
component of profile coefficients, δf and γf , while (b) includes them.

present investigation. The effect of including additional turbulence components is left for
potential future research.

The components of the entrainment coefficient for the fully developed fountain are
given in figures 20(a) and 20(b) for the Fro = 30 and 15 cases, respectively. For both
Fro cases, (8.13) has been used to calculate the α components, P1 and P2, with the
turbulence profile coefficients neglected. Here, the linear fits used to obtain δm = δo + δ̃ Ri
and Δm = Δo + �̃ Ri have been obtained from the experimental data for each Fro fountain
separately. The Fro = 30 case in figure 20(a) shows good agreement between the constant
and Ri-dependent components, with αe � P1 and −ûout/ŵif � P2, and subsequently
α � α̂. Although the agreement is more modest in the Fro = 15 case, the components
and their summation are still broadly consistent.

In the case of the NBJ, the constant component corresponds to turbulent entrainment
from ambient fluid into the NBJ. Near the source where Ri → 0, this fully describes
entrainment and may be interpreted as the ‘neutral jet’ value. This is supported by the
present experimental data, which give similar values of α = 0.071 and αe = 0.077 for
the neutral and negatively buoyant jets, respectively. For a fully developed fountain, the
constant component can be interpreted as describing the ‘turbulent entrainment’ from the
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(a) (b)

Figure 20. The constant and Ri-dependent components of the entrainment coefficient of a fully developed
fountain from both the decomposed top-hat model (α̂ = αe − ûout/ŵ) and the full model (α = L1 + L2).
Results for the Fro = 30 fountain are shown in (a), and for the Fro = 15 case in (b).

OF to the IF associated with the mean IF velocity. In this case, the values are slightly lower
than the neutral/negatively buoyant jets, and also have a source Fro dependence, with
αe � 0.062 and αe � 0.052 for the Fro = 30 and 15 cases, respectively. This difference
may be attributed to the existence of a return flow, which will depend on Fro and is still
present even at the source where Ri = 0.

In describing the radial flow between the IF and OF of a fountain, the highly simplified
decomposed top-hat description of a fountain is consistent with the the more general full
model approach discussed in § 7.2. This is also applicable to an NBJ, which can be thought
of as a fountain with a zero-velocity OF under the same top-hat formulation. This provides
evidence that despite fountains generally having a mean radial flow from the IF to the OF
(or into the ambient for an NBJ), they still ‘entrain’ fluid at a rate proportional to their
characteristic axial velocity. This entrainment is captured by αe in the top-hat model, and
by terms L1 and P1 in the full model.

While buoyant jets and plumes are subject to an acceleration due to their positive
buoyancy and Ri > 0, NBJs are instead decelerated as characterised by their increasingly
negative Ri. This has implications for entrainment as captured by the ûout term in
the decomposed formulation, and by L2 and P2 in the full model. In NBJs under the
decomposed formulation, this has the effect of encouraging a radial outflow of fluid.
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In a physical flow, there will be instantaneous entrainment at some times and radial outflow
at others. A mean radial outflow of fluid then occurs when the Ri-dependent term is
larger in magnitude than the constant entrainment term, resulting in α < 0. In addition
to the present experiments, different regions of mean radial inflow and outflow have
also been observed in other fountain investigations, such as by Williamson et al. (2011)
and Cresswell & Szczepura (1993). The present decomposed top-hat model provides a
consistent description of this observation, allowing it to be understood in a context similar
to that for the classical entrainment relations applied originally to jets and plumes.

8.3. Special cases: pure jets/plumes
It is also useful to consider more closely the application of these models to neutral
jets and plumes. Once fully developed, these idealised flows can be considered fully
self-similar with constant profile coefficients. By assuming additionally that the velocity
and buoyancy/scalar profiles are Gaussian, (7.11) and (7.20) become

α = −3
8
δm +

(
1 − 3

2(λ2 + 1)

)
Ri, (8.19)

α = 3
2

(
3
4
δm − 4Δm

)
+ 3

(
3

2(λ2 + 1)
− 2

2λ2 + 1

)
Ri, (8.20)

where λ is the ratio of 1/e widths of the scalar and velocity profiles. For a neutral jet,
Ri = 0, so by equating (8.20) and (8.19), we find that δm = 4Δm. This is supported by
the experimental data for a neutral jet (Milton-McGurk et al. 2021), where we find δm �
4Δm � −0.20.

If a self-similar buoyant jet or pure plume is now considered, with 0 < Ri � Rip and
constant δm, then by equating the Ri components of (8.19) and (8.20), we obtain

6
λ2 + 1

− 6
2λ2 + 1

− 1 = 0, (8.21)

that is, a non-linear equation restricting the possible values of λ to maintain consistency
between (8.20) and (8.19), with positive solutions λ = 1 and λ = 1/

√
2. Under these

assumptions, we then have that λ can take only the values 1 and 1/
√

2 in order to maintain
consistency with the conservation of mass, momentum and kinetic energy equations,
(7.1)–(7.4), and the additionally derived w̄3 equation in (7.17). Although, to the best
of the authors knowledge, there have been no studies to have reported a value as low
as λ = 1/

√
2 � 0.707 in buoyant jets or plumes, the prediction λ = 1 is remarkably

consistent with the existing plume literature (Papanicolaou & List 1988; Shabbir &
George 1994; Wang & Law 2002; van Reeuwijk et al. 2016). This then provides a new
theoretical justification of the commonly reported λ = 1 observation in pure plumes. It
should be noted that although this consistency requirement exists for plumes/buoyant
jets under these assumptions, there is no constraint here on λ in neutral jets (Ri = 0),
which are typically reported to have 1.15 � λ � 1.30 (Fischer et al. 1979; Wang &
Law 2002; Ezzamel, Salizzoni & Hunt 2015). If δm is not constant, such as in NBJs or
near the source in positively buoyant jets (van Reeuwijk et al. 2016), then (8.21) is also
not valid.

Consider now the application of the decomposed top-hat model to a Gaussian neutral
jet by equating α = α̂ from (8.19) and (8.9). Here, the Ri-dependent term is zero and
we have αe = −3δm/8 – that is, a constant turbulent entrainment coefficient αe, and no
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outflow term. This is consistent with the classical description of a turbulent jet, which
entrains ambient fluid at a rate proportional to its mean axial velocity, and is not subject to
any ‘mean radial outflow’.

For a buoyant jet with λ = 1 and constant δm, by setting α = α̂ we obtain

α = αe − ûout

ŵ
= −3

8δm + 1
4 Ri. (8.22)

Equating the constant and Ri-dependent terms would then give αe = −3δm/8 and
−ûout/ŵ = Ri/4. We then have −ûout/ŵ > 0 and αe > 0, that is, both terms promoting
entrainment from the ambient into the plume, rather than a balance of inflow and outflow
as is the case in an NBJ. If applying the decomposed top-hat formulation to positively
buoyant jets or plumes, it is therefore potentially misleading to refer to the Ri-dependent
term as the ‘outflow term’, ûout. Despite this, it is still a consistent description of the flow,
and distinguishes between radial inflow associated with turbulent entrainment and that
associated with positive buoyancy. In these applications, it may simply be preferable to
use an alternative nomenclature, such as replacing ûout with ûb to indicate that it is radial
flow associated with buoyancy.

9. Model predictions

The predictions of the decomposed top-hat model presented in § 8.1 are now compared
to the present experimental data for the Fro = 15 and 30 fully developed fountains. As
discussed in §§ 8.1 and 8.2, in practice the full model is more appropriate for NBJs
(Milton-McGurk et al. 2021), since this does not require characterising ĝof separately, so
only the fountain cases are pursued here. The model corresponds to the system of equations
(8.5)–(8.7), which are are solved numerically using a constant αe = 0.052 and 0.062 for
the Fro = 15 and 30 fountains, respectively, and linear empirical fits for the OF terms
ŵof and ĝof , and the radial outflow term ûout. Since we do not have data for these terms
near the source, the model is solved from z/D = 9.8 and 13.5 for the Fro = 15 and 30
fountains, respectively. Figures 21(a)–21(c) show the data and model predictions for ŵif ,
r̂if and ĝif . Good agreement is obtained for the velocity scale for both Fro fountains for the
full z/D range shown, and good agreement for the width scale until approximately the start
of the cap region, where the model is not expected to be valid. The buoyancy prediction
for the Fro = 30 fountain agrees well with the data, while the Fro = 15 prediction is less
favourable.

The process of solving the model to produce the predictions shown in figure 21 involved
assuming a constant αe and a linear fit of ûout, and then solving (8.5)–(8.7) for Q̂if , M̂if and
F̂if . The values of αe and ûout were calculated originally in § 8 from the same system of
equations, except using the present data for Q̂if , M̂if and F̂if , and solving for unknowns αe
and ûout. Any discrepancy between the data and predictions of the model must therefore
be attributed to the assumptions made when solving the ODEs for Q̂if , M̂if and F̂if , which
were not present when solving originally for αe and ûout. This includes the assumption
of a constant αe and a linear fit for ûout. Figures 17 and 18 both show more scatter in
the data for αe and ûout for the Fro = 15 fountain than for Fro = 30, which may help to
explain the reduced agreement in the Fro = 15 case. The assumption of a constant αe,
while appropriate for the Fro = 30 case, may therefore be less valid for the lower Fro flow.

Although figure 21 shows that the model makes very good ŵif , r̂if and ĝif predictions for
the Fro = 30 fountain, and good ŵif and r̂if predictions for the Fro = 15 case, knowledge
of the OF is required. This is captured through the terms ŵof and ĝof , and ûout, which
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Figure 21. Predictions of the decomposed top-hat model described by (8.5)–(8.7) alongside experimental data
for the Fro = 15 and 30 fountains. The velocity scale, ŵif , is given in (a), the radius scale, r̂if , in (b), and the
buoyancy scale, ĝif , in (c), all normalised by source quantities.

vary with axial location and depend on Fro. Further research may seek to model explicitly
the OF, as well as the cap region, using a similar decomposed formulation (i.e. one that
does not assume a constant ûout/ŵif ). However, even if the OF is successfully modelled,
knowledge of αe and ûout is still required for a given Fro fountain. Future studies may
therefore seek to formulate a model that can describe the radial flow between the IF and
OF that avoids the need for Fro-dependent empirical terms.

10. Conclusion

Fully developed fountains, with an established IF/OF structure, have been investigated
using velocity and buoyancy measurements obtained from combined PIV and PLIF
experiments. We have aimed to explore the extent to which the IF of a fountain is similar
to an NBJ, which does not have a return flow, and thus reveal the effect of the OF on the IF
in high Fro fountains. Mean and turbulence profiles for fountains and NBJs at similar local
Fr were presented in §§ 3.1 and 3.2. Unlike NBJs, the mean w̄ and c̄ profiles in fountains
do not collapse when normalised by their local centreline value and respective half-widths
across the full width of the profiles, so are not self-similar in this sense. This is consistent
with previous studies that have also obtained data on the internal velocity/scalar fields
(Mizushina et al. 1982; Cresswell & Szczepura 1993; Williamson et al. 2011). Despite
this, the profiles collapse reasonably well in the IF for r � r1/2,w and r � r1/2,c over the
range of axial locations investigated (14 � z/D � 28, 1.25 � Fr � 5.47), with the profile
differences being largest in the OF. Both the NBJ and IF of the fountain have w′u′/w̄2

c
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and w′2/w̄2
c profiles that increase with axial distance, which is due primarily to the mean

flow, characterised by w̄c, decreasing at a greater rate than the turbulence quantities. The
magnitudes of these profiles are considerably larger in the fountain than in the NBJ at
similar Fr, likely due to interactions between the IF and OF resulting in an increase in
turbulence in the IF. When considering the w̄ and c̄ profiles of fountains with different Fro
at locations where the local Fr values were similar, the profiles collapsed approximately
for r � rd, the location of ‘maximum return flow’. This suggests that for r � rd, the mean
profiles of a fountain are well characterised by the mean local integral scales for the IF,
captured here by Fr. This was not the case for the turbulence quantities, such as w′u′/w̄2

c
and u′c′/w̄ c̄ in figure 12, where there is a clear Fro dependence on both the shape and
magnitude of the profiles. In Fro = 10 and 30 NBJs, these profiles were similar at locations
of similar Fr. The difference in the two fountains is therefore attributed to the effect of the
OF at a particular Fr location, and contributes to differences in entrainment in different
Fro fountains.

Another aim of this study was to investigate the extent to which entrainment in the
IF of fountains is affected by the turbulent OF. This was pursued in §§ 7 and 8, where
entrainment between the IF and OF in fountains is compared to entrainment between an
NBJ and a quiescent ambient. An expression for the entrainment coefficient valid for both
fountains and NBJs, as well as neutral/positively buoyant jets and plumes, was derived
and presented in (7.20). Along with (7.16), this was used to estimate α in fountains and
NBJs in figure 16, showing a strong Ri dependence on entrainment in both flows. For both
fountains, α < 0 over a large portion of their height, a finding consistent with previous
studies by Williamson et al. (2011) (Fro = 7) and Cresswell & Szczepura (1993) (Fro =
3.2).

An alternative formulation of entrainment, the ‘decomposed top-hat model’ was
introduced in § 8, where α is split into inflow and outflow components, αe and ûout/ŵif .
These were estimated along the fountains and NBJ using the present experimental data,
finding that αe was approximately constant whilst ûout/ŵif varied with Ri. This formulation
was shown to be broadly consistent with a simplified version of the ‘full model’ in § 8.2,
where entrainment can also be expressed as the sum of a constant and an Ri-dependent
component. These depend on the dimensionless turbulence production terms δm and Δm,
which vary with Ri in both NBJs and fountains. Despite NBJs and fountains generally
having a non-constant α, the decomposed top-hat formulation provides an interpretation
of entrainment that is similar to the classical jet and plume description used by Morton
et al. (1956) – that is, that turbulent entrainment can be expressed by a characteristic
velocity at that height multiplied by a constant entrainment coefficient. However, for an
NBJ or fountain IF, there is also an Ri-dependent radial outflow arising due to the flow’s
(negative) buoyancy.

The present study has found certain similarities between NBJs without a return flow
and fully developed fountains. These include turbulence profiles that increase with axial
location due to a strongly decelerating mean flow, and a non-constant entrainment
coefficient that reverses sign after some distance. The entrainment coefficient in the
Fro = 15 fountain is consistently lower than in the Fro = 30 case, although both are
approximately linear with Ri. This apparent Fro dependence on α likely arises due to
differences in the OF in these fountains, and presents a challenge for predicting accurately
entrainment for arbitrary Fro fountains. Future research may seek to develop a description
of the local, Ri-dependent, entrainment in fountains that can more easily be applied to
different Fro cases. Such a study would likely involve more directly modelling of the OF,
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and could benefit from additional internal velocity/scalar measurements along the fountain
for a greater range of Fro. The present study has also focused primarily on entrainment
between the IF and OF of a fountain, whereas future research may seek to investigate it
between the ambient and OF, including in the cap region.
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Appendix A. Alternative entrainment and body-force formulations

The decomposed model presented in § 8.1 describes radial flow from the OF to the IF
as proportional to the IF velocity, as implied by the definition of αe in (8.4). This was
the entrainment formulation used by Hunt & Debugne (2016) and also considered by
Bloomfield & Kerr (2000) in their theoretical models of a fountain, and will be referred
to as E1. McDougall (1981) used an alternative formulation, which was also considered
by Bloomfield & Kerr (2000), where ûe is instead proportional to the relative velocity
difference between the IF and OF. In this case, the entrainment coefficient in (8.4) would
be defined using the substitution

ûe = αe(ŵif + ŵof ), (A1)

which will be referred to as E2, the second entrainment formulation. Note that the positive
sign in front of ŵof corresponds to the positive downward direction of ŵof implied by
figure 1.

Another way in which the fountain model could be modified is to consider alternative
body-force formulations. McDougall (1981) considered two formulations. The first was
that the buoyancy force acting on the IF depends on the density difference between the IF
and the ambient fluid. This follows from the assumption that the pressure is hydrostatic
everywhere and that lines of constant pressure are horizontal. This will be referred to as
B1, and was the formulation used in § 8.1 in the momentum equations (8.2) and (8.6). The
second body-force formulation considered by McDougall (1981), and also by Bloomfield
& Kerr (2000) and Hunt & Debugne (2016), is to treat the OF as an effective ‘ambient’
with respect to the IF. The buoyancy force acting on the IF would then be related to the
density difference between the IF and OF. This body-force formulation will be denoted
B2, and results in an alternative momentum equation for the IF,

dM̂if

dz
= −2r̂if ûeŵof − 2r̂if ûoutŵif + r̂2

if

(
ĝif − ĝof + ŵof

dŵof

dz

)
, (A2)

which would replace (8.2) (McDougall 1981; Bloomfield & Kerr 2000; Hunt & Debugne
2016). Here, the third term in parentheses, ŵof dŵof /dz, arises due to the accelerating
reference frame (i.e. the OF) (McDougall 1981).

There are then four combinations of entrainment and body-force formulations, each of
which were considered by Bloomfield & Kerr (2000), and which can be expressed as
B1E1, B1E2, B2E1 and B2E2. Bloomfield & Kerr (2000) also used entrainment relations
to describe radial flow from the IF to the OF, and from the ambient to the IF, and assumed
constant entrainment coefficients. By combining these with a system of equations similar
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Figure 22. The entrainment coefficient, αe, for (a) B1E2, (b) B2E1, and (c) B2E2, for Fro = 15 and 30
fountains under the decomposed top-hat model, as estimated from the present experimental data.

B1E1 B1E2 B2E1 B2E2

αe (Fro = 15) 0.052 0.044 0.068 0.056
αe (Fro = 30) 0.062 0.051 0.073 0.059

Table 2. Mean values of αe for Fro = 15 and 30 fountains in the decomposed top-hat model for the
alternative body-force and entrainment formulations, as estimated from the present experimental data.

to (8.1)–(8.3) but for the OF, they solved their fountain model for the four formulations.
In the present study, instead, we have used experimental data to estimate the inflow
entrainment coefficient, αe, and outflow component, ûout, without making any further
assumptions. Figures 17 and 18, and the discussion in § 8.1, correspond to this approach
applied to formulation B1E1.

The same procedure is now applied to the remaining three entrainment/body-force
formulations, B1E2, B2E1 and B2E2 – that is, solving simultaneously conservation
equations (8.1) and either (8.2) or (A2), while using either entrainment relation for ûe,
to calculate αe and ûout at a range of axial locations along the fountain. The value of
αe for these formulations is plotted with Ri in figures 22(a–c). Similarly to figure 17
corresponding to B1E1, αe is reasonably constant in each formulation with no significant
trend with Ri. The mean αe value for each case is summarised in table 2, which shows the
largest values in B2E1, and consistently higher values in the Fro = 30 fountain than in the
Fro = 15 fountain.
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Figure 23. The radial velocity outflow component, ûout, for (a) B1E2, (b) B2E1, and (c) B2E2, for Fro = 15
and 30 fountains under the decomposed top-hat model, as estimated from the present experimental data. In
each case, ûout is normalised so that it is consistent with the definition of αe.

While the value of the outflow component, ûout, is affected by the body-force
formulation, it is independent of the choice of αe substitution when solving simultaneously
the conservation of volume and momentum equations using the present data. For
example, the conservation equations could be solved simultaneously for ûe and ûout before
substituting in the chosen entrainment relation, resulting in the same value of ûout for E1
and E2. However, when comparing with αe, it is useful to normalise ûout in a way that
is consistent with the definition of αe. For example, in B1E2, αe = ûe/(ŵif + ŵof ), so it
is useful to consider ûout/(ŵif + ŵof ). The normalised outflow component is presented
in figure 23 for B1E2, B2E1 and B2E2, along with horizontal lines corresponding to the
mean αe value to indicate the start of the region where there is a net radial outflow from
the IF to the OF (since this occurs when ûout > ûe). Similarly to figure 18, all cases show
that the normalised outflow component is strongly dependent on Ri. The precise values
differ slightly for each entrainment/body-force formulation, but are nevertheless broadly
similar.

McDougall (1981) and Bloomfield & Kerr (2000) assumed that the radial outflow
component was proportional to the OF velocity by a constant entrainment coefficient when
solving their fountain models. In the present case, it was desirable to formulate a model
that was also compatible with NBJs, which have ŵof = 0 but can still be subject to a net
radial outflow. In this case, an entrainment relation that assumes ûout ∼ ŵof is not well
defined and so has not been considered until now. Despite this, we now briefly consider
ûout/ŵof for the two body-force formulations in the Fro = 15 and 30 fountains, shown in
figure 24, recalling that the value of ûout is the same in both entrainment formulations.
Figure 24 shows a strong Ri dependence on ûout/ŵof , with broadly similar values for both

939 A29-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.152


Characterising entrainment in fountains and NBJs

–0.5–0.4–0.3–0.2–0.10

0.2

0.4

0.6

0.8

1.0

1.2

Ri

B1 (Fro = 30)

B1 (Fro = 15)

B2 (Fro = 30)

B2 (Fro = 15)
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Figure 24. The radial velocity outflow component, ûout, normalised by the OF velocity, ŵof , for Fro = 15 and
30 fountains under the decomposed top-hat model.

body-force formulations for each Fro fountain. Bloomfield & Kerr (2000) assumed that
this quantity was a constant equal to ûout/ŵof = 0.147, which is similar to the present
values near Ri � −0.05, but lower than those further along the fountain.

Although the precise values of αe are affected by the choice of body-force and
entrainment formulations, and ûout by the choice of body-force formulation only, the
overall trends for both quantities are very similar – that is, the Ri dependence of the outflow
component shown in figures 23 and 24, and the approximately constant αe in figure 22 and
table 2. The arguments put forward in § 8.1 corresponding to B1E1 may therefore also
be applied to the other formulations, namely, that the approximately constant αe can be
interpreted as representing ‘turbulent entrainment’ from the OF to the IF, similar to the
classical description of entrainment in pure jets and plumes (Morton et al. 1956). The
outflow component then represents the fluid ejected from the IF to the OF as a result of
the decelerating and expanding IF, as well as capturing other complex interactions with
the OF. Although all four formulations are similar in this way, the B1E1 formulation most
closely resembles the ‘full model’ discussed in § 7, which relates α to IF quantities only.
For this reason, we considered B1E1 primarily in this investigation, and all references to
the ‘decomposed top-hat model’ outside this appendix correspond to this formulation.
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