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Abstract The system Ẋ = TX + Q(X) (in R
n), where T is linear and Q is quadratic, is considered via

commutative algebras. The case of the linearized system having a centre manifold spanned on vectors E1,
E2 (and TE1 = ωE2, TE2 = −ωE1) is studied. It is shown that for span(E1, E2) being a subalgebra (of
the algebra corresponding to the form Q(X)), the system is stable. Necessary and sufficient conditions
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1. Introduction

It is well known (see, for example, [2–4]) that one can completely determine the stability
of a nonlinear flow ẋ = f(x) near a hyperbolic stationary point x = 0 by considering the
Jordan form of the Jacobian matrix Df(0) of the nonlinear flow. This is the statement of
the stable manifold theorem and Hartman’s theorem. The first theorem shows that the
local structure of hyperbolic stationary points of nonlinear flows, in terms of the existence
and transversality of local stable and unstable manifolds, is the same as the linearized
flow, and the second theorem asserts that there is a continuous invertible map in some
neighbourhood of the stationary point which takes the nonlinear flow to the linear flow
preserving the sense of time.

For the non-hyperbolic stationary points of the nonlinear flow, the centre manifold
theorem implies that the system can be written locally in coordinates (x, y, z) ∈ W c ×
W s × W u on the invariant manifolds as

ẋ = g(x),

ẏ = −By,

ż = Cz,


 (1.1)

where B and C are positive definite matrices. The motion on W s (W u) is unequivocally
towards (away from) the stationary point, so the local behaviour can be understood by
solving or analysing the system ẋ = g(x).
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In general, the stability of non-hyperbolic stationary points of a nonlinear non-autono-
mous system is not completely understood; especially if Df(x0) = 0. There are results
on normal forms for non-hyperbolic stationary points in R

2 (see, for example, [2, pp. 79–
83]), the averaging theory for small perturbations of oscillations, i.e. for systems of the
form ẋ = f(x) + εg(x, t), where g(x, t) is periodic (see, for example, [4, pp. 167–226]).
Some partial and special results from the algebraic point of view (see, for example,
Theorem 1 in [16], and § 3 in [7], and Theorems 4.1 and 4.2 in [6], and Theorem 1
in [10]) on (non-)stability of non-hyperbolic stationary points are given for equations
of the form Ẋ = Q(X) and Ẋ = TX + Q(X), where X ∈ R

n, T : R
n → R

n is linear,
and Q : R

n → R
n is a quadratic form. Many theorems on stability of the quadratic

equation Ẋ = Q(X) are also valid if Q(X) becomes homogeneous of any degree (see,
for example, [6, Theorem 4.1]). Koditschek and Narendra (see [8]) suggested a useful
approach to the investigation of the stability characteristics of a class of second-order
differential equations of the type Ẋ = Q(X) and Ẋ = TX + Q(X) in the plane. They
gave necessary and sufficient conditions for stability in the large (i.e. all solutions are
stable and bounded) for the system Ẋ = Q(X) and necessary and sufficient conditions
for asymptotical stability in the large (i.e. all solutions are asymptotically stable and the
domain of the attraction is the entire space) for the system Ẋ = TX + Q(X).

A direct motivation for writing this article is [16]. The method of approach to the
polynomial autonomous dynamical system in [16], as well as in the present article, is via
commutative (non-associative, in general) finite-dimensional algebras. It seems that this
idea originated in 1960 with Marcus [9], where all the commutative algebras in R

2 were
classified. There is a one-to-one correspondence between quadratic systems and the corre-
sponding algebra, and between homogeneous systems of degree n and the corresponding
n-ary algebra (see [14,15,17]). The 3-ary algebras in R

2 are classified in [12] and [13]
as well. For a full survey of this theory the reader can consult, for example, [17], [7], [6]
and [11]. Walcher’s monograph [17] is also a standard reference for the state of the art
in 1990, with many references to older papers.

The quadratic form Q(X) (X ∈ R
n) in the system Ẋ = Q(X) (or Ẋ = TX + Q(X))

can be interpreted as diagonal of the following bilinear form

B(X, Y ) := 1
2 [Q(X + Y ) − Q(X) − Q(Y )], B : R

n × R
n → R

n.

Defining X · Y = B(X, Y ), we can interpret the resulting system of ordinary differential
equations (ODEs) as a Riccati equation Ẋ = X2 (or Ẋ = TX + X2) in the commutative
algebra A = (Rn, ·).

In [16] the following theorem is proved.

Theorem 1.1. Let Ft(X) denote the solution to Ẋ = TX + X2 in A such that
F0(X) = X. Let E ∈ A be an idempotent satisfying TE = 0. Then

(1) if a �= 0, Ft(aX) blows up in finite time; and

(2) the origin is an unstable equilibrium.

For the proof the reader should refer to [16].
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Remark 1.2. For f(X) = TX + X2 we have f(0) = 0 and the Jacobian at the origin
is Df(0) = T , so the condition TE = 0 implies non-hyperbolicity of the origin. Thus the
origin is an unstable non-hyperbolic stationary point of the equation

Ẋ = TX + X2. (1.2)

We can interpret the existence of the idempotent E in Theorem 1.1 as RE = {xE; x ∈
R} being a one-dimensional subalgebra of A.

In this article, however, we would like to consider the case of purely imaginary eigenval-
ues of Df(0) = T with corresponding eigenvectors forming a two-dimensional subalgebra
of A. So there exist vectors E1 �= E2 �= 0 such that

TE1 = ωE2,

TE2 = −ωE1

}
(1.3)

and span(E1, E2) is a subalgebra of A. This implies that in (real) normal form the matrix
T contains a block of the form [

0 −ω

ω 0

]

for some positive real ω.

2. Main theorems

Before proving the main theorem let us consider some additional special algebraic prop-
erties of equation (1.2).

Let E be an idempotent of the algebra A corresponding to equation (1.2) and let E

be an eigenvector of the matrix T for some non-zero real eigenvalue λ. Let us consider
the initial-value problem

F0(X) = aE, Ẋ = TX + X2.

We seek a solution of the form Ft(X) = f(t)E:

f ′(t)E = Tf(t)E + (f(t)E)2

= f(t)TE + f2(t)E2

= λf(t)E + f2(t)E,

and obtain the differential equation

f ′(t) = λf(t) + f2(t) in R.

Thus, a special solution on the subspace RE is

Ft(X) =
(λa/(a + λ))etλ

1 − (a/(a + λ))etλ
E. (2.1)
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From (1.2) we see that the point X = −λE is stationary:

TX + X2 = T (−λE) + (−λE)2 = −λTE + λ2E2 = −λ2E + λ2E = 0.

If λ > 0, then the origin is of course unstable. And from (2.1) we can deduce that for
a > 0 we have blow up in finite time

t0 =
1
λ

ln
(

a + λ

a

)
.

If we linearize (1.2) around the stationary point X = −λE, we get the system

Ẏ = (T − 2λLE)︸ ︷︷ ︸
T

Y,

where LE is the left multiplication by E. We define T := T − 2λLE . Using E · E = E

and TE = λE we get

TE = TE − 2λE · E = λE − 2λE = −λE.

Thus E is an eigenvector of T and −λ is the corresponding eigenvalue. We have shown
the following proposition.

Proposition 2.1. Let E be the eigenvector of T corresponding to eigenvalue λ and
let E be an idempotent of algebra A corresponding to the equation (1.2). If λ �= 0, the
system (1.2) has at least two critical points X = 0 and X = −λE and they cannot both
be stable at the same time.

It is well known that the system Ẋ = X2 may have infinitely many unstable critical
points. In R

2 every commutative algebra which contains a nilpotent of index 2 (except
for the trivial case of the nil algebra) has infinitely many unstable critical points. In the
next proposition we will see that the system (1.2) may also have infinitely many unstable
critical points.

Proposition 2.2. Let N �= 0 be a nilpotent of order 2 of algebra A, corresponding to
equation (1.2). Let E and N be eigenvectors of matrix T corresponding to eigenvalues
λ and 0, respectively. Assume that NE = µE, where µ is non-zero. Then there exist
infinitely many unstable critical points of system (1.2). (If λ > 0, the origin is one of
them.)

Proof. Obviously, the line RN is the line of critical points for

T (yN) + (yN)2 = yTN + y2N2 = 0 + 0 = 0 for all y ∈ R.

The linearized equation around X = yN is

Ẏ = (T + 2yLN )︸ ︷︷ ︸
Υ

Y,
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where LN is the left multiplication by N . We define Υ := T + 2yLN . Using E · E = E,
TE = λE, TN = 0 and N · E = µE, µ �= 0, we get

ΥE = TE + 2yN · E = λE + 2yµE = (λ + 2yµ)E.

Thus for y > −λ/2µ the matrix Υ has at least one positive eigenvalue, and this finishes
the proof. �

Corollary 2.3. If λ > 0 and N · E = 0, then X = yN is unstable for every real y.

For the very simple case of an algebra (and the corresponding system) discussed in the
above proposition see the following example.

Example 2.4. Let us consider the system

ẋ = 0,

ẏ = λy + 2µxy + y2,

of the form Ẋ = TX + X2. Its linear part is defined by the matrix

T =

[
0 0
0 λ

]

with eigenvectors N = (1, 0) and E = (0, 1) corresponding to eigenvalues 0 and λ,
respectively. Its nonlinear part X2 = X ◦ X is defined by the following multiplication
table

◦ N E

N 0 µE

E µE E

µ �= 0.

By Proposition 2.1 for every y > −λ/2µ the critical point X = yN is unstable.

In the next theorem let us consider the main result; the stability of the origin in
system (1.2) with a two-dimensional centre. For the unstable, stable and centre manifold
of the linearized equation (as well as for the nonlinearized equation), we will use the
commonly used notation Eu, Es and Ec (and W u, W s and W c), respectively.

Theorem 2.5. Let E1 �= E2 �= 0 satisfy condition (1.3) and suppose span(E1, E2) is
a subalgebra of A. Assume Eu = ∅ and Ec = span(E1, E2). Then the origin is a stable
critical point of the ODE (1.2).

Proof. The unstable manifold is empty by the centre manifold theorem. Equation
(1.2) can be written (in coordinates x in the direction of Ec and y in the direction of
Es) as

x′ =

[
0 −ω

ω 0

]
x + f1(x, y),

y′ = −By + f1(x, y),
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where the eigenvalues of B all have strictly positive real parts and the functions fi,
i = 1, 2, represent nonlinear terms. Since span(E1, E2) is a subalgebra of A, we have

x′ = T/Ecx + Q/Ec(x),

y′ = T/Esy + Q/Es(x, y).

By the centre manifold theorem W c always exists and, since span(E1, E2) is a subalgebra
of A (i.e. f1(x, y) = f1(x)) for any choice of W c (i.e. for any centre manifold with
equation y = h(x), where h must be at least a quadratic homogeneous function in
every component), equation (1.1), which defines the stability on the centre manifold,
is [

ẋ

ẏ

]
=

[
0 −ω

ω 0

] [
x

y

]
+

[
a1x

2 + 2b1xy + c1y
2

a2x
2 + 2b2xy + c2y

2

]
. (2.2)

To analyse the stability of such a centre (i.e. the stability of a perturbed Hamiltonian
system) let us refer to Arnold’s book [1, pp. 149–151], where the stability of the sys-
tem

ẋ = −ωy + εf1(x, y),

ẏ = ωx + εf2(x, y),

}
ε � 1, x2 + y2 � R2, (2.3)

is studied via the increment of energy (the Hamiltonian) E = − 1
2ω(x2 + y2) over one

revolution about the origin. We can study the increment of energy over the trajecto-
ries of the linear system (i.e. over circles CR = {(x, y); x = R cos φ, y = R sin φ}).
Thus

∆E = ε

∮
[f2(x, y) dy − f1(x, y) dx] + O(ε2),

where the integral I =
∮

[f2(x, y) dy − f1(x, y) dx] is taken counterclockwise over CR. By
Green’s Theorem we have

I = −
∫∫

int(CR)

(
∂f1(x, y)

∂x
+

∂f2(x, y)
∂y

)
dx dy. (2.4)

If the increment of energy (i.e. the integral (2.4)) is positive (negative), the trajecto-
ries near the origin of the perturbed equation (2.3) are expanding (contracting) spi-
rals, i.e. the origin is unstable (stable). If the integral (2.4) equals zero, the trajecto-
ries near the origin of the perturbed equation (2.3) are cycles and the origin is sta-
ble.

Introducing the coordinates εX = x, εY = y, ε � 1, into (2.2) yields a (2.3)-like
system

Ẋ = −ωY + ε(a1X
2 + 2b1XY + c1Y

2),

Ẏ = ωX + ε(a2X
2 + 2b2XY + c2Y

2),

}
(2.5)
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which can be analysed by the sign of (2.4). The straightforward computation

I = −
∫∫

int(CR)

(
∂f1

∂X
+

∂f2

∂Y

)
dX dY

= −
∫∫

int(CR)
(2a1X + 2b1Y + 2b2X + 2c2Y ) dX dY

= −2
∫ 2π

0
((a1 + b2) cos φ + (b1 + c2) sin φ) dφ ·

∫ R

0
r2 dr

= 0

shows that system (2.5) has cycle orbits near the origin for every R > 0, and the equa-
tions εX = x, εY = y imply cycle orbits near the origin for every 0 < R < ε, ε � 1.
Thus the origin of (2.2) is stable. �

The similar change of coordinates

m−1
√

εX = x, m−1
√

εY = y

into the equation

x′ = Tx + Q(x), (2.6)

where Q is homogeneous of degree m > 2, yields a (2.3)-like system. A straightforward
computation shows that the integral (2.4) equals zero for every even m. Thus we can
state the following theorem.

Theorem 2.6. Let E1, E2 satisfy the condition (1.3) and let span(E1, E2) be a subal-
gebra of a m-ary algebra A (where m is even). Suppose Eu = ∅ and Ec = span(E1, E2).
Then the origin is a stable critical point for (2.6).

For m = 3, however, we have the following theorem.

Theorem 2.7. Let E1, E2 satisfy the condition (1.3) and let span(E1, E2) be a sub-
algebra of a 3-ary algebra A. Suppose Eu = ∅ and Ec = span(E1, E2). Then the origin
is stable for (2.6) if

3(a1 + a2) + 2(c1 + c2) � 0,

where a1, a2, c1, c2 ∈ R are coefficients from (2.7).

Proof. Let us consider the system

Ẋ = −ωY + ε(a1X
3 + 2b1X

2Y + 2c1XY 2 + d1Y
3),

Ẏ = ωX + ε(d2X
3 + 2c2X

2Y + 2b2XY 2 + a2Y
3),

}
(2.7)
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in span(E1, E2). From (2.4) we see that

I = −
∫∫

int(CR)

(
∂f1

∂X
+

∂f2

∂Y

)
dX dY

= −
∫∫

int(CR)
(3a1X

2 + 4b1XY + 2c1Y
2 + 3a2Y

2 + 4b2XY + 2c2X
2) dX dY

= −
∫ R

0
r3 dr

∫ 2π

0
((3a1 + 2c2) cos2 φ + (3a2 + 2c1) sin2 φ + 2(b1 + b2) sin 2φ) dφ

= − 1
4R4(π(3a1 + 2c2) + π(3a2 + 2c1))

= − 1
4R4π(3a1 + 3a2 + 2c1 + 2c2).

This finishes the proof. �

In the remainder of this section we want to improve Theorem 2.5. Let us now consider
the system

ẋ = −ωy + q1(x, y, z),

ẏ = ωx + q2(x, y, z),

ż = −Az + Q(x, y, z),


 (2.8)

where x, y ∈ R, z = (z1, . . . , zn) ∈ R
n, A has strictly positive (different) eigenvalues, and

Q(x, y, z) = (Q1, . . . , Qn), q1(x, y, z), q2(x, y, z) are quadratic. Let us assume that the
upper system is written in normal form (i.e. A is diagonal):

ẋ = −ωy + a1x
2 + 2b1xy + c1y

2 + µ1i

∑
i

xzi + ν1j

∑
j

yzj + ξ1kl

∑
k,l

zkzl,

ẏ = ωx + a2x
2 + 2b2xy + c2y

2 + µ2i

∑
i

xzi + ν2j

∑
j

yzj + ξ2kl

∑
k,l

zkzl,

ż1 = −λ1z1 + α1x
2 + 2β1xy + γ1y

2 + M1i

∑
i

xzi + N1j

∑
j

yzj + Ξ1,kl

∑
k,l

zkzl,

ż2 = −λ2z2 + α2x
2 + 2β2xy + γ2y

2 + M2i

∑
i

xzi + N2j

∑
j

yzj + Ξ2,kl

∑
k,l

zkzl,

...

żn = −λnzn + αnx2 + 2βnxy + γny2 + Mni

∑
i

xzi + Nnj

∑
j

yzj + Ξn,kl

∑
k,l

zkzl.



(2.9)

By the centre manifold theorem (see [3, p. 204]) we seek the centre manifold

z(x, y) = h(x, y) = (h1(x, y), h2(x, y), . . . , hn(x, y))

https://doi.org/10.1017/S0013091501000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000281


On the stability of a Riccati differential equation 609

with equation


∂h1

∂x

∂h1

∂y

∂h2

∂x

∂h2

∂y
...

...

∂hn

∂x

∂hn

∂y




([
−ωy

ωx

]
+

[
q1(x, y, h(x, y))
q2(x, y, h(x, y))

])
=




−λ1z1

−λ2z2
...

−λnzn


 +




Q1(x, y, h(x, y))
Q2(x, y, h(x, y))

...
Qn(x, y, h(x, y))


 .

(2.10)
The functions hi(x, y) must be at least quadratic, for h(0, 0) = 0 and Dh(0, 0) = 0 must
hold on the centre manifold. Thus, for i = 1, 2, . . . , n,

hi(x, y) = Aix
2 + 2Bixy + Ciy

2 + higher terms.

From (2.10) we get the following system (restricted to quadratic terms x2, xy and y2)
for i = 1, 2, . . . , n:

xy : − 2Aiω + 2Biλi + 2Ciω = 2βi,

x2 : Aiλi + 2Biω = αi,

y2 : − 2ωBi + Ciλi = γi,


 (2.11)

whose solutions are

Ai =
2ω2γi + 2ω2αi − 2ωβiλi + αiλ

2
i

(4ω2 + λ2
i )λi

,

Bi =
ωαi + βiλi − ωγi

4ω2 + λ2
i

Ci =
2ω2γi + 2ω2αi + 2ωβiλi + γiλ

2
i

(4ω2 + λ2
i )λi

.




(2.12)

Due to the fact that λi(4ω2 + λ2
i ) �= 0, the coefficients Ai, Bi and Ci are unique.

Putting zi = hi(x, y) = Aix
2 + 2Bixy + Ciy

2 into

ẋ = −ωy + a1x
2 + 2b1xy + c1y

2 + µ1i

∑
i

xzi + ν1j

∑
j

yzj + ξ1kl

∑
k,l

zkzl,

ẏ = ωx + a2x
2 + 2b2xy + c2y

2 + µ2i

∑
i

xzi + ν2j

∑
j

yzj + ξ2kl

∑
k,l

zkzl,


 (2.13)

yields the centre manifold system

ẋ = −ωy + a1x
2 + 2b1xy + c1y

2 + µ1i

∑
i

xhi + ν1j

∑
j

yhj + ξ1kl

∑
k,l

hkhl,

ẏ = ωx + a2x
2 + 2b2xy + c2y

2 + µ2i

∑
i

xhi + ν2j

∑
j

yhj + ξ2kl

∑
k,l

hkhl.


 (2.14)
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If at least one of the coefficients a1, b1, c1, a2, b2, c2 does not vanish, then by change
of coordinates εX = x, εY = y, the above system yields (2.5). On the other hand, if
a1 = b1 = c1 = a2 = b2 = c2 = 0, then by change of coordinates

√
εX = x,

√
εY = y,

the above system yields a (2.7)-like system

ẋ = −ωy + ε

[∑
i

µ1ix(Aix
2 + 2Bixy + Ciy

2) + ν1j

∑
j

ν1jy(Ajx
2 + 2Bjxy + Cjy

2)
]
,

ẏ = ωx + ε

[∑
i

µ2ix(Aix
2 + 2Bixy + Ciy

2) +
∑

j

ν2jy(Ajx
2 + 2Bjxy + Cjy

2)
]
,

which can be treated by Theorem 2.7 using the following coefficients

ã1 =
n∑

i=1

µ1iAi, c̃1 =
n∑

i=1

µ1iCi + 2
n∑

i=1

ν1iBi,

ã2 =
n∑

i=1

ν2iCi, c̃2 = 2
n∑

i=1

µ2iBi +
n∑

i=1

ν2iAi.

Thus in the case of a1 = b1 = c1 = a2 = b2 = c2 = 0 the system (2.9) is stable if

3(ã1 + ã2) + 2(c̃1 + c̃2) � 0,

3
n∑

i=1

(µ1iAi + ν2iCi) + 2
n∑

i=1

(µ1iCi + 2ν1iBi + 2µ2iBi + ν2iAi) � 0,

n∑
i=1

(3µ1iAi + 3ν2iCi + 2µ1iCi + 4ν1iBi + 4µ2iBi + 2ν2iAi) � 0,

n∑
i=1

[(3µ1i + 2ν2i)Ai + 4(ν1i + µ2i)Bi + (3ν2i + µ1i)Ci] � 0.

This yields the following theorems for systems of the form (2.9).

Theorem 2.8. The origin is the stable critical point of the equation (2.9) for all
algebras A in which at least one of the products E1E1, E1E2 or E2E2 contain some
non-zero vector ξEi, i ∈ {1, 2}.

Theorem 2.9. The stability of system (2.9) in the case when neither E1E1, E1E2

nor E2E2 contain any vectors ξEi, i ∈ {1, 2}, is completely determined by the following
inequality:

n∑
i=1

[(3µ1i + 2ν2i)Ai + 4(ν1i + µ2i)Bi + (3ν2i + µ1i)Ci] � 0, (2.15)

i.e. for all algebras A for which condition (2.15) holds, the origin is a stable critical point.
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Let us now consider the case when the matrix A in (2.8) has a double (real) eigenvalue.
Let us assume that A contains a block[

−λ 1
0 −λ

]

for some zi, zi+1. Without loss of generality we can take i = 1 (i.e. λ1 = λ2 = λ). The
centre manifold equation is the following:


∂h1

∂x

∂h1

∂y

∂h2

∂x

∂h2

∂y
...

...

∂hn

∂x

∂hn

∂y




([
−ωy

ωx

]
+

[
q1(x, y, h(x, y))
q2(x, y, h(x, y))

])
=




−λz1 + z2

−λz2
...

−λnzn


 +




Q1(x, y, h(x, y))
Q2(x, y, h(x, y))

...
Qn(x, y, h(x, y))


 .

Hence for i = 1 the coefficients A1, B1 and C1 are given by

xy : − 2A1ω + 2B1λ + 2C1ω = 2β1 + 2B2,

x2 : A1λ + 2B1ω = α1 + A2,

y2 : − 2ωB1 + C1λ = γ1 + C2,

and for i = 2 we have

xy : − 2A2ω + 2B2λ + 2C2ω = 2β2,

x2 : A2λ + 2B2ω = α2,

y2 : − 2ωB2 + C2λ = γ2.

The solutions for A1, B1, C1, A2, B2 and C2 still remain unique:

A2 =
2ω2γ2 + 2ω2α2 − 2ωβ2λ + α2λ

2

(4ω2 + λ2)λ
,

B2 =
ωα2 + β2λ − ωγ2

4ω2 + λ2 ,

C2 =
2ω2γ2 + 2ω2α2 + 2ωβ2λ + γ2λ

2

(4ω2 + λ2)λ
,

A1 =
2γ1ω

2 + 2ω2α1 − 2β1λω + α1λ
2

(4ω2 + λ2)λ
+

A2(λ2 + 2ω2) − 2B2λω + 2C2ω
2

(4ω2 + λ2)λ
,

B1 =
−γ1ω + ωα1 + β1λ

4ω2 + λ2 +
A2ω + B2λ − C2ω

4ω2 + λ2 ,

C2 =
2γ1ω

2 + 2ω2α1 + 2β1λω + λ2γ1

(4ω2 + λ2)λ
+

2A2ω
2 + 2B2λω + C2(λ2 + 2ω2)

(4ω2 + λ2)λ
.




(2.16)
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On the other hand, let us assume that A contains a block[
−λ 0
0 −λ

]

for some zi, zi+1. Without loss of generality we can take i = 1 (i.e. λ1 = λ2 = λ with
two different corresponding eigenvectors). The centre manifold equation is as follows:



∂h1

∂x

∂h1

∂y

∂h2

∂x

∂h2

∂y
...

...

∂hn

∂x

∂hn

∂y




([
−ωy

ωx

]
+

[
q1(x, y, h(x, y))
q2(x, y, h(x, y))

])
=




−λz1

−λz2
...

−λnzn


 +




Q1(x, y, h(x, y))
Q2(x, y, h(x, y))

...
Qn(x, y, h(x, y))


 .

Hence for i = 1, 2 we have

Ai =
2ω2γi + 2ω2αi − 2ωβiλ + αiλ

2

(4ω2 + λ2)λ
,

Bi =
ωαi + βiλ − ωγi

4ω2 + λ2 ,

Ci =
2ω2γi + 2ω2αi + 2ωβiλ + γiλ

2

(4ω2 + λ2)λ
.




(2.17)

In a similar way we can show that the coefficients Ai, Bi, Ci remain unique if A has
triple eigenvalues. For the block 

−λ 1 0
0 −λ 1
0 0 −λ


 ,

the coefficients Ai, Bi and Ci for i = 1, 2, 3 are determined by the following system:

xy : − 2A1ω + 2C1ω = −2B1λ + 2B2 + 2β1 + 2β2,

x2 : 2B1ω = −A1λ + A2 + α1 + α2,

y2 : − 2ωB1 = −C1λ + C2 + γ1 + γ2.

xy : − 2A2ω + 2C2ω = −2B2λ + 2B3 + 2β2 + 2β3,

x2 : 2B2ω = −A2λ + A3 + α2 + α3,

y2 : − 2ωB2 = −C2λ + C3 + γ2 + γ3,

xy : − 2A3ω + 2C3ω = −2B3λ + 2β3,

x2 : 2B3ω = −A3λ + α3,

y2 : − 2ωB3 = −C3λ + γ3,
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whose solution is

A3 =
2ω2γ3 + 2ω2α3 − 2ωβ3λ + α3λ

2

(4ω2 + λ2)λ
,

B3 =
−ωγ3 + ωα3 + β3λ

4ω2 + λ2 ,

C3 =
2ω2γ3 + 2ω2α3 + 2ωβ3λ + γ3λ

2

(4ω2 + λ2)λ
,

A2 =
2ω2γ3 + 2ω2α3 + 2ω2γ2 + 2α2ω

2 − 2β2λω − 2ωβ3λ + α3λ
2 + λ2α2

(4ω2 + λ2)λ

+
2ω2C3 + 2A3ω

2 − 2ωB3λ + λ2A3

(4ω2 + λ2)λ
,

B2 =
ωα2 + A3ω − ωγ3 + ωα3 − C3ω − ωγ2 + β3λ + β2λ + B3λ

4ω2 + λ2 ,

C2 =
2ω2γ3 + 2ω2α3 + 2ω2γ2 + 2α2ω

2 + 2β2λω + 2ωβ3λ + λ2γ2 + γ3λ
2

(4ω2 + λ2)λ

+
2ω2C3 + 2A3ω

2 + 2ωB3λ + λ2C3

(4ω2 + λ2)λ
,

A1 =
2λ2α2ω

2 − 8λ2ω3β2 + 2λ3ω2γ2 − 2λ4ωβ2 + 6λ3ω2α2 + 8λω4γ1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
8ω4λα2 + 8λγ2ω

4 + 8γ3ω
4 + 8ω4α3 + 2λ3ω2γ1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
−2λ4ωβ1 + 6λ3ω2α1 + 6λ2ω2γ3 + 2λ2ω2α3 − 8λ2ω3β1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
−4λ3ωβ3 + 8λω4α1 + λ4α2 + λ5α2 + λ4α3

λ2(λ4 + 8λ2ω2 + 16ω4)

+
λ5α1 + 6ω2λ2γ2 − 4λ3ωβ2 + 8ω4γ2 + 8ω4α2

λ2(λ4 + 8λ2ω2 + 16ω4)

+
8C3ω

4 + 8ω4A3 + 2λ2ω2A3 − 4λ3ωB3 + 6λ2ω2C3 + λ4A3

λ2(λ4 + 8λ2ω2 + 16ω4)
,

B1 = −−λ3β2 + ωλ2γ1 + ωλ2γ2 − λ3β1 − λ2α2ω − λ2α1ω − 2A3ωλ

λ4 + 8λ2ω2 + 16ω4

− 2ωγ3λ − 2ωα3λ − 4ω2β1λ − 4ω2β2λ − λ2B3

λ4 + 8λ2ω2 + 16ω4

− −λ2β3 − 2λα2ω − λ2β2 + 2ωλγ2 + 4ω2β3 + 4ω2B3

λ4 + 8λ2ω2 + 16ω4

− 2ωC3λ + 4ω2β2 − 4ω3α1 + 4ω3γ2 − 4ω3α2 + 4ω3γ1

λ4 + 8λ2ω2 + 16ω4 ,




(2.18)
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C1 =
6λ2α2ω

2 + 8λ2ω3β2 + 6λ3ω2γ2 + 2λ4ωβ2 + 2λ3ω2α2

λ2(λ4 + 8λ2ω2 + 16ω4)

+
8λω4γ1 + 8ω4λα2 + 8λγ2ω

4 + 8C3ω
4

λ2(λ4 + 8λ2ω2 + 16ω4)

+
8γ3ω

4 + 8ω4A3 + 8ω4α3 + 6λ3ω2γ1 + 2λ4ωβ1 + 2λ3ω2α1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
6λ2ω2A3 + 2λ2ω2γ3 + 6λ2ω2α3 + 8λ2ω3β1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
4λ3ωB3 + 4λ3ωβ3 + 2λ2ω2C3 + 8λω4α3

1

λ2(λ4 + 8λ2ω2 + 16ω4)

+
2ω2λ2γ2 + 4λ3ωβ2 + λ4γ3 + λ5γ1 + λ4C3

λ2(λ4 + 8λ2ω2 + 16ω4)4

+
λ4γ2 + λ5γ2 + 8ω4γ2 + 8ω4α2

λ2(λ4 + 8λ2ω2 + 16ω4)
.




(2.18 cont.)

For A having multiple (we have just shown for double and triple) eigenvalues, Theo-
rems 2.8 and 2.9 still remain valid for equations of type (2.8).

Theorem 2.10. The origin is a stable critical point of the equation (2.8) for all
algebras A in which at least one of the products E1E1, E1E2 or E2E2 contain some
non-zero vector ξEi, i ∈ {1, 2}.

Theorem 2.11. The stability of system (2.8) in the case when neither E1E1, E1E2 nor
E2E2 contain any vectors ξEi, i ∈ {1, 2}, is completely determined by inequality (2.15).
The coefficients Ai, Bi and Ci are determined by (2.16), (2.17) or (2.18) for double and
triple eigenvalue λ. For other multiple eigenvalues, similar formulae for the coefficients
Ai, Bi and Ci could be derived.
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