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The scattering of three-dimensional inertia-gravity waves by a turbulent geostrophic flow
leads to the redistribution of their action through what is approximately a diffusion process
in wavevector space. The corresponding diffusivity tensor was obtained by Kafiabad
et al. (J. Fluid Mech., vol. 869, 2019, R7) under the assumption of a time-independent
geostrophic flow. We relax this assumption to examine how the weak diffusion of wave
action across constant-frequency cones that results from the slow time dependence of
the geostrophic flow affects the distribution of wave energy. We find that the stationary
wave-energy spectrum that arises from a single-frequency wave forcing is localised within
a thin boundary layer around the constant-frequency cone, with a thickness controlled
by the acceleration spectrum of the geostrophic flow. We obtain an explicit analytic
formula for the wave-energy spectrum which shows good agreement with the results of
a high-resolution simulation of the Boussinesq equations.
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1. Introduction

Atmospheric and oceanic inertia-gravity waves (IGWs) propagate in a complex turbulent
flow which is in approximately geostrophic and hydrostatic balance. The inhomogeneities
of this flow result in the scattering of IGWs which redistributes their energy across
wavevector space. This process has long been thought to play a role in the energetics of
the atmosphere and ocean and it has been modelled using a range of approximations (see
Müller 1976, 1977; Watson 1985; Müller et al. 1986; Savva, Kafiabad & Vanneste 2021;
Young 2021).
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Kafiabad, Savva & Vanneste (2019, hereafter KSV) used multiscale asymptotics to show
that the wave-action of linear IGWs propagating in a steady random geostrophic flow of
much larger spatial scale evolves according to the diffusion equation

∂ta + c · ∇xa = ∇k · (D · ∇ka)+ F. (1.1)

Here, a(x,k, t) is the wave-action density in the (x,k) phase space, k is the wavevector,
c = ∇kω is the intrinsic group velocity of IGWs, and F(x,k, t) is a forcing term. The
IGW intrinsic frequency

ω = ( f 2 cos2 θ + N2 sin2 θ)1/2, (1.2)

with f < N the Coriolis and buoyancy frequencies, depends on the angle θ between k and
the vertical. The k-dependent diffusivity tensor D is given in components by

Dij = kmkn

∫ ∞

0
〈∂xiUn(x)∂xjUm(x − cs)〉 ds, (1.3)

where 〈·〉 denotes ensemble average and U is the flow velocity field, with prescribed
homogeneous statistics. A striking prediction of the diffusion equation (1.1) is that forced
IGWs have a stationary spectrum scaling with wavenumber as k−2, consistent with
observed atmospheric mesoscale spectra (Gage & Nastrom 1986; Lindborg 1999) and
oceanic submesoscale spectra (Callies & Ferrari 2013). This provides support to the
interpretation of the dynamics in these ranges as dominated by almost linear IGWs (Dewan
1979; VanZandt 1982; Bühler, Callies & Ferrari 2014; Callies, Ferrari & Bühler 2014;
Callies, Bühler & Ferrari 2016). (The nature of the dynamics and level of nonlinearity
in the atmospheric mesoscales is still a subject of debate; see Li & Lindborg (2018) and
references therein for a contrasting view.)

Crucially, the assumption of time-independent flow implies that the diffusivity tensor
satisfies D · c = 0, as shown in KSV. Thus, noting D is symmetric, the diffusive flux
D · ∇ka is perpendicular to c = ∇kω and hence the diffusion of wave action is restricted
to a constant-frequency surface, namely a cone θ = const. This prediction is the direct
consequence of the assumed linearity and time independence. Simulations of the nonlinear
Boussinesq equations reported by KSV nonetheless indicate that it applies to a good
approximation to small-Rossby-number flows, because their time scale is asymptotically
larger than the IGW propagation time scale. This is illustrated in figure 1 which shows
the result of a forced nonlinear Boussinesq simulation similar to KSV’s (see § 3.2 for
details): the energy density in wavevector space is confined close to the constant-θ cone
corresponding to the forcing frequency.

However, Dong, Bühler & Smith (2020) suggest that the slow diffusion of wave action
across constant-frequency surfaces that results from slow flow time dependence causes
significant transfer of wave action from low to high frequency and demonstrate this for
IGWs in rotating shallow water. The relevance of this result to three-dimensional IGWs is
unclear. It is therefore an open question whether flow time dependence can radically alter
the phenomenology of IGW diffusion by geostrophic turbulence, possibly on time scales
much longer than the length of the simulations reported in KSV and in figure 1.

We address this question in this paper by revisiting KSV to account for the slow time
dependence of the geostrophic flow. Our starting point is the McComas & Bretherton
(1977) diffusivity

Dij = kmkn

∫ ∞

0
〈∂xiUn(x, t)∂xjUm(x − cs, t − s)〉 ds, (1.4)

which applies to flows with arbitrary time dependence and was originally derived for
wave–wave interactions in the induced diffusion regime. This diffusivity reduces to (1.3)
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Figure 1. IGW energy spectrum e as a function of the horizontal and vertical wavenumbers (kh, kz) in the
forced Boussinesq simulation described in § 3.2. The wavenumbers are scaled by the forcing wavenumbers
(kh∗, kz∗) indicated by the white crosses. The cone corresponding to the forcing frequency is indicated by the
solid lines. The energy e is rescaled by a characteristic value. The dashed lines indicate the boundary of the
region of validity of the diffusion approximation (see Appendix A).

in the time-independent case. (See Dong et al. (2020) for a derivation using multiscale
asymptotics.) Under the assumption of slow time dependence, encapsulated by a small
parameter ε – the ratio of the geostrophic flow velocity to the IGW group speed – we
approximate (1.4) and solve the associated diffusion equation asymptotically to obtain
the equilibrium action distribution resulting from a steady single-frequency forcing. The
results show that the action remains localised within an O(ε)-thick boundary layer around
the cone corresponding to the forcing frequency. This indicates that the diffusion of
three-dimensional IGWs is largely unaffected by the slow time dependence of geostrophic
turbulence. In particular, the k−2 equilibrium spectrum found by KSV can be recovered
by integration of the solution across the boundary layer. We confirm the main theoretical
predictions by comparison with a high-resolution simulation of the nonlinear Boussinesq
equations as shown in figure 1.

2. Approximation of the diffusivity tensor

In this section we approximate the diffusivity in (1.4) taking advantage of the slow
time dependence of the geostrophic flow. Introducing the velocity correlation tensor
Πmn(y, s) = 〈Um(x + y, t + s)Un(x, t)〉 we rewrite (1.4) as

Dij = −1
2

kmkn

∫ ∞

−∞
∂2Πmn

∂yi∂yj
(cs, s) ds, (2.1)

where we extend the integration range to (−∞,∞) using that kmknΠmn(−cs,−s) =
kmknΠmn(cs, s). In terms of the wavevector–frequency spectrum Π̂mn defined via the
Fourier transform

Πmn(x, t) =
∫

R4
Π̂mn(K ,Ω) exp(i(K · x −Ωt)) dK dΩ (2.2)
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this becomes

Dij = πkmkn

∫
R4

KiKjΠ̂mn(K ,Ω)δ(K · c −Ω) dK dΩ (2.3)

on using
∫

R
exp(i(K · c −Ω)s) ds = 2πδ(K · c −Ω). Using the spherical polar

coordinates (k, θ, φ) for k and (K,Θ,Φ) for K (lowercase symbols for IGW k-space and
uppercase symbols for geostrophic flow K -space), we compute

kmknΠ̂mn(K ,Ω) = (k1K2 − k2K1)
2Eψ(K ,Ω) = 2k2 sin2 θ sin2 γE(K ,Ω), (2.4)

where Eψ is the spectrum of the stream function ψ of the geostrophic flow (that is, the
Fourier transform of 〈ψ(x + y, t + s)ψ(x, t)〉),

γ = Φ − φ, (2.5)

and E(K ,Ω) = K2 sin2ΘEψ/2 is the geostrophic flow kinetic-energy spectrum.
Substituting (2.4)–(2.5) into (2.3) yields

Dij = 2πk2 sin2 θ

∫
R4

KiKj sin2 γE(K ,Ω)δ(K · c −Ω) dK dΩ. (2.6)

Following KSV, we assume that the flow is isotropic in the horizontal so that E(K ,Ω)
is independent of Φ. In spherical polar coordinates, several components of D vanish. To
see this, we replace Φ by γ as an integration variable in (2.6) and express K in the local
spherical basis (ek, eθ , eφ) associated with k. Thus, we write

K = K sinΘ((sin θ cos γ + cotΘ cos θ)ek + (cos θ cos γ − cotΘ sin θ)eθ + sin γ eφ).
(2.7)

We can now use the parity of the integrand in (2.6) with respect to γ , noting that
δ(K · c −Ω) is even since c = ∇kω(θ) implies that c ‖ eθ hence K · c = eθ · K c. The
parity of the integrands giving the components Dkk = ek · D · ek, etc. of D is then
determined by the parity of pairwise products of ek · K , eθ · K and eφ · K . We conclude
from this that the only non-zero components of D are Dkk,Dkθ = Dθk,Dθθ and Dφφ . Thus,
diffusion in the azimuthal direction depends only on azimuthal gradients of action and is
decoupled from the k and θ directions.

We now restrict our attention to flows that are slowly time dependent in the sense that
their typical frequencies Ω and wavevectors K satisfy Ω � K · c. For realistic turbulent
flows, Ω ∼ UK, hence this condition is equivalent to the condition U � c that underpins
the diffusion approximation (1.1), the limitation of which is discussed in Appendix A. To
make the smallness of Ω relative to K · c explicit, we introduce a bookkeeping parameter
ε � 1 to mark out asymptotically small terms. The delta function δ(K · c −Ω) in (2.6)
becomes δ(K · c − εΩ) and can be expanded as

δ(K · c − εΩ) = δ(K · c)− εδ′(K · c)Ω + ε2δ′′(K · c)Ω2/2 + O(ε3). (2.8)

Using this alongside the evenness of E(K ,Ω) in Ω leads to the approximation

D = D(0) + ε2D(1) + O(ε4). (2.9)

Here

D(0)ij = 2πk2 sin2 θ

∫
R3

KiKj sin2 γE(K)δ(K · c) dK , (2.10)

where E(K) is the geostrophic flow kinetic energy spectrum marginalised over
frequencies, recovers the diffusivity of time-independent flows obtained by KSV (up to
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a factor (2π)3 corresponding to a different Fourier transform convention, see (2.2)). For
a horizontally isotropic geostrophic flow, D(0)ij has two non-zero components in spherical
polar coordinates, namely

D(0)kk = 4πk3ω sin2 θ

(N2 − f 2)| cos5 θ |
∫ ∞

−∞

∫ π−θ

θ

K3 cos2Θ(cot2 θ − cot2Θ)1/2E(K,Θ) dK dΘ,

(2.11a)

D(0)φφ = 4πk3ω sin4 θ

(N2 − f 2)| cos5 θ |
∫ ∞

−∞

∫ π−θ

θ

K3 sin2Θ(cot2 θ − cot2Θ)3/2E(K,Θ) dK dΘ.

(2.11b)

(These equations are (A 13) in KSV, up to the (2π)3 factor and a typographical correction
in the lower limit of Θ .)

The leading-order correction to (2.10) induced by the slow flow time dependence is

D(1)ij = πk2 sin2 θ

∫
R3

KiKj sin2 γA(K)δ′′(K · c) dK , (2.12)

and depends on the geostrophic-flow acceleration spectrum

A(K) =
∫

R

E(K ,Ω)Ω2 dΩ, (2.13)

a natural measure of the flow’s unsteadiness.
It turns out that the only dynamically significant component of D(1) is D(1)θθ ,

corresponding to across-cone diffusion, on which we now concentrate. Contracting (2.12)
twice with eθ = c/c, we obtain

D(1)θθ = c · D(1) · c
c2 = πk2 sin2 θ

c2

∫
R3
(K · c)2 sin2 γA(K)δ′′(K · c) dK . (2.14)

Noting that ∫
R

x2f (x)δ′′(x) dx = 2
∫

R

f (x)δ(x) dx (2.15)

for any smooth f (x) reduces (2.14) to

D(1)θθ = 2πk2 sin2 θ

c2

∫
R3

sin2 γA(K)δ(K · c) dK . (2.16)

Representing K in the polar spherical coordinates (K,Θ, γ ) and expanding K · c using
(2.7) gives

D(1)θθ = 2πk2 sin2 θ

c2

∫ ∞

0
dK

∫ π

0
dΘ

∫ π

−π

dγK2 sinΘ sin2 γA(K,Θ)

×δ
(

Kc sinΘ cos θ
(

cos γ − cotΘ
cot θ

))
, (2.17)

where we use horizontal isotropy to write A(K) = A(K,Θ). Under the change of variable
ζ = cos γ this simplifies into

D(1)θθ = 4πk2 sin2 θ

c3| cos θ |
∫ ∞

0
dK

∫ π

0
dΘ

∫ 1

−1
dζ K(1 − ζ 2)1/2A(K,Θ)δ

(
ζ − cotΘ

cot θ

)
,

(2.18)
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where the factor of 2 arises from the evenness of cos γ . Only values of Θ for which
| cotΘ/ cot θ | < 1 contribute to the integral, which reduces the integration range to
(θ,π − θ). Integrating over ζ then yields

D(1)θθ = 4πk2 sin2 θ

c3| cos θ |
∫ ∞

0
dK

∫ π−θ

θ

dΘ K

(
1 −

(
cotΘ
cot θ

)2
)1/2

A(K,Θ). (2.19)

Substituting in

c = |∇kω| = 1
k
∂θ ( f 2 cos2 θ + N2 sin2 θ)1/2 = (N2 − f 2)| sin θ cos θ |

ωk
, (2.20)

and rearranging gives the final form

D(1)θθ = 4πω3k5

(N2 − f 2)3| cos5 θ |
∫ ∞

0

∫ π−θ

θ

K(cot2 θ − cot2Θ)1/2A(K,Θ) dK dΘ. (2.21)

In summary, the diffusivity with time-dependent geostrophic flow has three significant
components: Dkk = D(0)kk and Dφφ = D(0)φφ given by (2.11) and dependent on the energy

spectrum of the geostrophic flow, and Dθθ = ε2D(1)θθ given by (2.21) and dependent on the
flow acceleration spectrum. The small, non-zero Dθθ for non-vanishing flow acceleration
captures the weak across-cone diffusion pointed out by Dong et al. (2020).

3. Equilibrium spectrum

3.1. Solution of the steady diffusion equation
We now focus on the response to the spatially homogeneous, azimuthally isotropic steady
forcing

F(k) = δ(k − k∗)δ(θ − θ∗) (3.1)

corresponding to a single IGW frequency. (The response to a forcing with arbitrary
dependence on k and θ can be obtained by integration.) We aim to show that the action
density reaches an equilibrium a(k, θ) that is localised near θ = θ∗ – in other words, that
the frequencies remain close to the forcing frequency for all time. This is in contrast with
the two-dimensional case of Dong et al. (2020) for which no such localised equilibrium
exists.

For ease of interpretation, we replace the action density by the energy density e(k, θ) =
2πk2 sin θωa(k, θ), such that e dk dθ is the energy contained in the box [k, k + dk] and
[θ, θ + dθ ]. Equation (1.1) then reduces to

∂k

(
k2
(

D(0)kk + ε2D(1)kk

)
∂k

e
k2 + ε2 sin θω

k
D(1)kθ ∂θ

e
sin θω

)

+ε2ωk∂θ

(
1
ω

D(1)kθ ∂k
e
k2 + sin θ

k3 D(1)θθ ∂θ
e

sin θω

)
= −δ(k − k∗)δ(θ − θ∗), (3.2)

where we ignore unimportant prefactors on the right-hand side. We seek solutions
localised in θ in a boundary layer of thickness ε around θ∗, assuming

σ = (θ − θ∗)/ε = O(1). (3.3)
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To leading-order in ε, (3.2) reduces to

∂k

(
k2D(0)kk (θ∗)∂k

e
k2

)
+ 1

k2 D(1)θθ (θ∗)∂σσ e = −δ(k − k∗)δ(σ ), (3.4)

ignoring again a prefactor on the right-hand side (in this case 1/ε). Note that D(1)θθ is the
only correction to the diffusivity tensor induced by flow time dependence that appears in
(3.4). (This also applies to anisotropic IGWs in the sense that ∂φa 
= 0.) This correction
appears at leading order, even though the corresponding diffusivity ε2D(1)θθ is small,
because of the large gradients in θ of the solution.

We make the dependence on k of the diffusivity components D(0)kk and D(1)θθ in (2.11a)
and (2.21) explicit by writing

D(0)kk = Q(θ)k3 and D(1)θθ = R(θ)k5. (3.5a,b)

Under the change of variables

e = ē/(Q∗R∗)1/2 and σ = σ̄ (R∗/Q∗)1/2, (3.6a,b)

where Q∗ = Q(θ∗) and R∗ = R(θ∗), (3.4) becomes

k3∂kkē + k2∂kē − 4kē + k3∂σ̄ σ̄ ē = −δ(k − k∗)δ(σ̄ ). (3.7)

In the following, we drop the overbars for simplicity.
We now solve the rescaled problem (3.7). Taking a Fourier transform in σ , with l the

corresponding Fourier variable, we find

k3∂kkê + k2∂kê − 4kê − k3l2ê = −δ(k − k∗)
2π

, (3.8)

where the hat denotes the Fourier transform. The solution to the homogeneous problem
can be written in terms of modified Bessel functions (DLMF 2022, Chapter 10), leading
to the piecewise expression

ê(k, l) =
{

A(l)I2(|l|k)+ B(l)K2(|l|k), for 0 < k < k∗,
C(l)I2(|l|k)+ D(l)K2(|l|k), for k > k∗,

(3.9)

where I and K are modified Bessel functions of the first and second kind, and A,B,C and
D are so far arbitrary functions of l. These functions are determined by the boundary and
jump conditions. Finiteness as k → 0 and k → ∞ requires that B(l) = C(l) = 0. Imposing

continuity at k∗ and the jump [∂kê]k+∗
k−∗

= −1/(2πk3∗) then gives(
A
D

)
= 1

2πW{K2(|l|k∗), I2(|l|k∗)}|l|k3∗

(
K2(|l|k∗)
I2(|l|k∗)

)
= 1

2πk2∗

(
K2(|l|k∗)
I2(|l|k∗)

)
, (3.10)

where W is the Wronskian and we use that W{K2(z), I2(z)} = 1/z (DLMF 2022,
Eq. (10.28.2)). Hence the solution in Fourier space is

ê(k, l) = 1
2πk2∗

×
{

K2(|l|k∗)I2(|l|k), for 0 < k < k∗,
I2(|l|k∗)K2(|l|k), for k > k∗.

(3.11)

We invert the Fourier transform. As ê is symmetric in l, the inverse of (3.11) is

e(k, σ ) = 1
πk2∗

×
{∫∞

0 K2(lk∗)I2(lk) cos(σ l) dl, for 0 < k < k∗,∫∞
0 I2(lk∗)K2(lk) cos(σ l) dl, for k > k∗.

(3.12)
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Figure 2. IGW energy spectrum e in (3.14) scaled by k3∗ as a function of the scaled angle σ/k∗ for a few
values of non-dimensionalised total wavenumber k/k∗.

This can be evaluated exactly using Equation (4), § 6.672 of Gradshteyn & Ryzhik (2014),

∫ ∞

0
Kv(ax)Iv(bx) cos(cx) dx = 1

2(ab)1/2
Qv−1/2

(
a2 + b2 + c2

2ab

)
, (3.13)

which holds provided that Re(a) > |Re(b)| and Re(v) > −1/2. Here, Qv−1/2 is the
Legendre function of the second kind (DLMF 2022, Chapter 14). Clearly, the condition
on v is satisfied for (3.12). For 0 < k < k∗, a = k∗ > k = b; for k > k∗, a = k > k∗ = b.
Therefore, the condition on a and b also holds. Due to the symmetry of the solution under
exchanges of a and b, both integrals in (3.12) are equivalent, leading to

e(k, σ ) = 1

2πk5/2
∗ k1/2

Q3/2

(
k2∗ + k2 + σ 2

2k∗k

)
. (3.14)

Equation (3.14) is the main result of the paper. It gives the form of the equilibrium
distribution of IGW energy forced at a single wavenumber and frequency, accounting for
the time dependence of the turbulence. Since Q3/2 decays rapidly as its argument increases,
(3.14) shows that the IGW energy is localised within an O(ε) layer around the constant
frequency cone θ = θ∗ (recall (3.3)). Note that e(k, σ ) has a mild, logarithmic singularity
as σ → 0 for k = k∗.

We illustrate the form of the energy spectrum predicted by (3.14) in figure 2.
Here, e scaled by k3∗ is plotted against the scaled angle σ/k∗ for a few values of
non-dimensionalised total wavenumber k/k∗. In figure 3, e is shown as a function of
horizontal and vertical wavenumber and is scaled to approximately match the energy level
of the simulation in § 3.2. The value of R∗/Q∗ is also required for figure 3 and is chosen
to match simulation results.

A useful approximation to (3.14) is obtained from the asymptotics of the Legendre
function for large argument,

e(k, σ ) ∼ 3
16

k−3
(

1 + k2∗ + σ 2

k2

)−5/2

, (3.15)
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Figure 3. IGW energy spectrum e in (3.14) as a function of horizontal and vertical wavenumbers (kh, kz).
The wavenumbers are scaled by the forcing wavenumbers (kh∗, kz∗) indicated by the white crosses. The cone
corresponding to the forcing frequency is indicated by the solid lines. The parameters Q∗ and R∗ are chosen to
match the simulation results in § 3.2 (cf. figure 1).

which applies for k → 0, k → ∞ or σ → ∞. In particular, it makes it possible to
characterise the angular localisation of the energy by the power law

e(k, σ ) ∼ 3
16

k2

σ 5 as σ → ∞. (3.16)

Equation (3.15) further shows that at fixed σ , that is, at fixed angle θ or frequency,
e(k, σ ) ∝ k−3 as k → ∞, and e(k, σ ) ∝ k2 for k � k∗.

Another limit of interest deduced from (3.15) is

e(k, σ ) ∼ 3
16

k−3
(

1 +
(σ

k

)2
)−5/2

as k → ∞, σ/k = O(1), (3.17)

which shows that the spectrum broadens in σ like k. Consequently, integration of (3.15)
across angles results in a spectrum decaying like k−2. In fact, the integrated spectrum
is exactly proportional to k−2 for k > k∗: indeed, integration of (3.7) with respect to σ̄
recovers the equation found by KSV for time-independent flows, with solution proportional
to k−2 for k > k∗ and k2 for k < k∗.

In dimensional terms, the thickness of the boundary layer around the cone is
proportional to the square root of the ratio R∗/Q∗ (see (3.6b)), which roughly amounts
to the ratio of the flow acceleration variance to its energy, and can be interpreted as the
relevant flow frequency. This increases when the flow becomes more transient resulting in
a thicker boundary layer.

3.2. Comparison with Boussinesq simulations
We compare the analytical prediction (3.14) with the results of a high-resolution
three-dimensional Boussinesq simulation. We solve the non-hydrostatic Boussinesq
equations using a dealiased pseudospectral code adopted from that in Waite & Bartello
(2006). A third-order Adams–Bashforth scheme with timestep 0.0044/f is employed
for time integration. The triply periodic domain [0, 2π]2 × [0, 2πf /N] is discretised
with 23043 grid points. A hyperdissipation of the form νh(∂

2
x + ∂2

y )
4 + νz∂

8
z , with

νh = 7.8 × 10−23 and νz = 7.1 × 10−35 (in dimensionless units, with the domain size

958 A21-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.83


M.R. Cox, H.A. Kafiabad and J. Vanneste

as reference length and f −1 as reference time), is implemented in the momentum and
buoyancy equations. We take N/f = 32, a representative value of mid-depth ocean
stratification. We initialise the simulation with a fully developed geostrophic turbulent
flow, which is the output of a decaying quasigeostrophic model with the initial energy
spectrum proportional to exp (−(((K2

h + f 2K2
z /N

2)1/2 − 24)/10)2). This model is run
until the energy spectrum fills the spectral space, peaking at Kh = 4 and scaling
approximately as K−3

h and K−3
z . The flow parameters are selected such that the Rossby

number based on the vertical vorticity ζ is Ro = 〈ζ 2〉1/2/f = 0.11. Throughout the
simulation, an Ornstein–Uhlenbeck forcing with short correlation time (three timesteps)
is applied to the linear wave modes with (kh∗, kz∗) = (12, 221) corresponding to the fixed
IGW frequency of 2f . This relatively low frequency is chosen so that the aspect ratio of
the IGWs is similar to the aspect ratio N/f of the geostrophic flow and thus the IGWs
are well resolved with the anisotropic grid we use. The simulation is performed until
t = 160/f by which time the statistics are approximately stationary. We separate IGWs
from the mean flow (both for forcing and extracting energy spectra) using the normal-mode
decomposition of Bartello (1995).

We compare the functional form implied by (3.14) with the spectrum e(kh, kz) obtained
in the simulation. This involves fitting two parameters, one that fixes the scale of e
and corresponds to strength of the forcing, and the other that fixes the scale of σ and
corresponds to (R∗/Q∗)1/2 (see (3.6b)). We estimate these two parameters by matching
the simulation spectrum as a function of θ − θ∗ for k � 5k∗ as shown in figure 4. These
values of k are large enough for the perturbation induced by the non-ideal nature of
the forcing in the simulation to be negligible, and for discretisation effects to play only
a minor role. A difficulty, evident in figure 4, is that the simulation spectrum is not
symmetric. We attribute this to an edge effect caused by the proximity of the IGW
frequency ω = 2f to the minimum allowable frequency ω = f , and to the breakdown
of the diffusion approximation when ω is close to f (see Appendix A for details). (The
forcing frequency cone has a small opening angle, θ∗ = tan−1(kh∗/kz∗) ≈ 3◦, a feature
obscured by the anisotropic scaling of the axes in figures 1 and 3.) We therefore carry out
the parameter fitting based on the parts of the curves in figure 4 right of their maxima.
We further allow for an offset of θ − θ∗, likely the result of the coarse discretisation of the
wavevector in the forcing region.

The prediction of (3.14) with the two fitted parameters is shown by the dashed curves in
figure 4. The agreement with the numerical results is good: (3.14) captures the localisation
of e and the general form of its decrease with θ − θ∗ at different values of k. (We emphasise
that the same two parameters are used for all the curves.) A complementary view is
provided by figure 5 which shows e obtained in the simulation as a function of θ − θ∗
(figure 5a) and of k/k∗ (figure 5b) in log–log coordinates. The power laws σ−5 (equivalent
to (θ − θ∗)−5), k−3 and k2 derived in (3.15)–(3.16) from (3.14) are shown in their range
of expected validity. The σ−5 and k−3 power laws are consistent with the data albeit over
a limited wavenumber range. We regard this as a reasonable match given the difficulties
in capturing such rapid decay in a numerical model, and the pollution by the forcing. The
k2 power law is a poorer match. This is to be expected since the spatial scale-separation
assumption between IGWs and geostrophic flow that underpins the diffusion equation
(1.1) is not satisfied for wavenumbers smaller than the forcing wavenumber. The numerical
spectrum for small k is also strongly affected by discretisation effects. Note that the abrupt
drop in the tail of spectra in figure 5(b) comes from the truncation of data due to storage
limitation; the total energy spectrum shows a smooth transition to dissipation range (not
shown).
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Figure 4. IGW energy spectrum e versus θ − θ∗ for several values of k/k∗: comparison between simulation
results (solid lines) and analytical prediction (3.14) (dashed lines). The scalings of e and σ ∝ θ − θ∗ are chosen
for the analytical prediction to best match the simulation data (scaling σ corresponds to estimating (R∗/Q∗)1/2,
see (3.3) and (3.6b)).
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Figure 5. IGW energy spectrum e from simulation data in log–log coordinates: (a) as a function of θ − θ∗
for several values of k/k∗; and (b) as a function of k/k∗ for several values of θ − θ∗. Predicted power laws are
indicated by dashed lines.

Overall, the simulation results compare as well with (3.14) as can be expected
given the numerical challenges posed by the finite resolution, non-ideal forcing and
an IGW signal that has both low amplitude and decreases rapidly with k and θ − θ∗.
We note that it is in principle possible to compute the scaling parameter (R∗/Q∗)1/2
from simulation data using the explicit expressions for R∗ and Q∗ deduced from
(2.11a), (2.21) and (3.5a,b). KSV evaluate Q∗ based on the energy spectrum of the
geostrophic flow they estimate from simulation data. An analogous evaluation of R∗
requires the acceleration spectrum of the geostrophic flow. We leave this computation for
future work.
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4. Discussion

This paper is part of a sequence of works that apply techniques of waves in random
media to address the role of the geostrophic flow in shaping the energy distribution of
atmospheric and oceanic IGWs (Danioux & Vanneste 2016; Savva & Vanneste 2018;
Kafiabad et al. 2019; Savva et al. 2021). Their main assumption is that the flow is
weak enough to be regarded as a small perturbation to what would otherwise be IGWs
propagating in a medium at rest. The perturbation, physically refraction, can be interpreted
as arising from resonant triadic interactions involving two IGW modes and a geostrophic
(or vortical) mode – these are known as ‘catalytic interactions’ in recognition of the fact
that the geostrophic mode is left unaffected (Lelong & Riley 1991; Bartello 1995). The
present paper further assumes that the IGWs have spatial scales much smaller than the
flow scales. In this case, the impact of the flow, modelled as a random field, on the IGWs
is a diffusion of wave action in wavevector space. (This is the induced diffusion regime
considered by McComas & Bretherton (1977) in the context of wave–wave interactions.)
KSV examined this process in some detail and showed, in particular, that it leads to IGW
characteristics such as a k−2 stationary spectrum that are consistent with atmospheric and
oceanic observations.

To obtain these results, KSV treated the geostrophic flow as time independent, on
the grounds that it evolves on a time scale much longer than the IGW periods. With
this assumption, the geostrophic mode has a zero frequency. The (resonant) catalytic
interactions therefore involve two IGW modes with exactly the same frequency, and wave
action exchanges are restricted to a constant-frequency surface in wavevector space. Here,
we revisit this assumption by taking the geostrophic flow to be slowly evolving. In this
case, the catalytic interactions are between a low frequency geostrophic mode and two
IGWs with slightly different frequencies, and action diffuses across the constant-frequency
surface. The question is therefore whether this leads to qualitative changes in the statistics
of IGWs, for instance by enabling IGW frequencies to diffuse freely and wave action
to spread unimpeded across wavevector space (as was recently shown to be the case
for two-dimensional waves by Dong et al. (2020)). The answer is no: we show that the
stationary spectrum established by forcing single-frequency IGWs is localised within
a boundary layer close to the cone of constant frequency associated with the forcing.
Thus, even in the infinite-time limit corresponding to this stationary response, the time
dependence of the geostrophic flow has only a minor impact on the IGW scattering. Hence,
the conclusions of KSV drawn by neglecting the time dependence hold for realistic slowly
evolving flows. In particular, scattering by geostrophic flow does not control the frequency
distribution of IGWs which, in the absence of other mechanisms, is determined by the
forcing or initial conditions. This is only strictly true over a finite range of wavenumbers
k, since the thickness of the boundary layer increases with k (see (3.17)). However, at large
k the hypotheses of weak flow and linear waves also break down (see KSV) and may have
a larger impact than the flow time dependence (see Appendix A for a discussion of the
restriction on k imposed by the weak-flow hypothesis).

It is worth commenting on the sharp difference between the conclusion drawn here
for three-dimensional IGWs in a three-dimensional geostrophic flow and that drawn by
Dong et al. (2020) in a two-dimensional set up. This difference stems from the very
different geometry of the constant-frequency surfaces which are compact in dimension
two (circles) and non-compact in dimension three (cones). In the compact case, an initial
distribution of action quickly relaxes to become uniform on constant-frequency circles,
then slowly spreads across these circles because of the flow time dependence. The flux
of action perpendicular to the constant-frequency circles is small, but it allows for the
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wave frequencies to change without restriction over long time scales. In contrast, for the
(non-compact) cones of the three-dimensional case, there is a non-zero action flux along
cones, even in the absence of flow time dependence, corresponding to a forward cascade
towards small scales. The flux across cones introduced by the slow time dependence of
the geostrophic flow acts therefore only as a small perturbation which barely affects the
(non-equilibrium) stationary spectrum at finite distances along the cones.
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Appendix A. Limitation of the diffusion approximation

The diffusion approximation (1.1) on which (3.14) and KSV rely is valid for U � c.
Defining the velocity-based Rossby number, Ro = UKh/f (rather than the vorticity-based
definition of § 3.2), and using c in (2.20), we can rewrite this condition as

kh

Kh
�

(
(N/f )2 − 1

)
sin2 θ cos θ

Ro
(
(N/f )2 sin2 θ + cos2 θ

)1/2 , (A1)

where kh = k sin θ is the horizontal wavenumber and we have taken 0 ≤ θ ≤ π/2 without
loss of generality. Figure 6 displays the right-hand side of (A1) against θ for a range of
values of N/f typical of the ocean and atmosphere. The figure shows that, for realistic,
small Rossby numbers (Ro ∈ [10−2, 10−1]), the range of kh over which the diffusion
approximation is valid extends to 20–200 times the typical flow wavenumber Kh for
all IGWs except those with frequencies very close to f (θ = 0) and N (θ = π/2). (A
scattering theory tailored to IGWs with frequencies close to f , that is, near-inertial waves,
is developed in Danioux & Vanneste (2016).)

To determine the range of kh and kz for which condition (A1) is met in our simulation,
we recast (A1) in terms of k/k∗ as used in figures 4 and 5 to obtain

k
k∗

= kh sin θ∗
kh∗ sin θ

= kz cos θ∗
kz∗ cos θ

�
(
(N/f )2 − 1

)
sin θ cos θ

Ro
(
(N/f )2 sin2 θ + cos2 θ

)1/2 Kh

k∗
. (A2)

The simulation parameters are: N/f = 32, k∗ = 221.3 and Kh = 4. The velocity-based
Rossby number is estimated to be Ro = 0.05. Using these parameters we compute the
curve in the (kh, kz)-plane where (A2) is satisfied as an equality and show the result in
figure 7. The two lobes labelled C and D indicate the region of validity of the diffusion
approximation. The rectangles labelled A (also shown in the inset) and B show the ranges
of kh and kz used in figure 1 and resolved in the simulation, respectively. This confirms
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Figure 6. Upper bound of Ro kh/Kh given by the right-hand side of (A1) as a function of θ for a range of N/f
values including our simulation value, N/f = 32.
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Figure 7. Region of validity of the diffusion approximation in the simulation: inequality (A2) holds in regions
C and D, where the diffusion approximation applies; rectangle A (also in the inset) reproduces figure 1 in
showing the energy density e; rectangle B shows the ranges of kh and kz resolved in the simulation.

that the diffusion approximation applies to the typical wavenumbers considered in our
analysis. However, because of the rapid change of kz as θ decreases from θ∗, the diffusion
approximation can be expected to break down around θ − θ∗ ≈ −0.03 in figure 4. This
likely explains the mismatch between theoretical prediction and simulation results to the
left of the curves’ maxima in the figure.
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