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Abstract

The aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange
interpolation by considering Erdos weights on K and weights on [—1, 1]. The main results give lower
bounds for the Lebesgue function on large subsets of the relevant domains.

1991 Mathematics subject classification (Amer. Math. Soc): 41A05, 41A10.

1. Introduction, notations and preliminary results

1.1. In [15] it was proved that the weighted Lebesgue function is 'big' on a 'large'

subset of [—an, an] for arbitrary fixed interpolatory matrix X considering a class of

Freud-type weights on K. The aim of the present work is to extend this result for

Erdos weights on R and for weights denned on [—1, 1].

1A. Erdos weights on K

1.2. DEFINITION. We say that w e ^ (K) (w is an Erdos weight on R) if and only

if w{x) = e~QU) where Q: R -> R is even and is differentiable on 1, Q' > 0 and

Q" > 0 in (0, oo) and the function

(1.1) T(x): = l + x | ^ , ore (0,oo),
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146 P. Vertesi [2]

is increasing in (0, oo), with

(1.2) lim T(x) = oo; 7(0+): = lim 7(.r) > 1.

Moreover we assume that for some C\,C2, C3 > 0

(1.3) C, < 7(.v) g ( A ) < C, if x > C3

xQ'(x)

(see [5, p. 201]).

The prototype of w e £(!%) is the case when Q(x) = Qk.a(x) = exp^d*!"),
k > 1, a > 1 where expA: = exp(exp(...)) denotes the kth iterated exponential. The
corresponding w will be denoted by wkM. One can see that in that case

T(x) = axa P{expy(xa) (1 +o( l ) ) , A: - • oo

(see [9, (1.8)]).

REMARK. We use the differentiability of 2 o n t n e w^o/e (open) line when we
apply a result of Lubinsky [7, Lemma and Theorem 1] (see the 'Proof of Lemma 3.2'
and 'Statement 3.5' of the present paper). Otherwise, evenness and conditions on the
interval (0, oo) would be enough.

1.3. IfX c R is an interpolatory matrix, that is

(1.4) -oo < x,m < *,,_!.„ < < xln < xu, < oo, n e N,

for / € C(w, R) where w € £{M) and

C(w, R): = { / : / is continuous on K and lim f(x)w(x) = 0
[ |.v|->oc

one can investigate the weighted Lagrange interpolation defined by

n

(1.5) Ln(f, w, X,x) = ^f(xkn)w{xkn)tkn(w, X,x), n e N,
k=\

where

(1.6) h(x) = tkn(u>, X, x) = - ^ U , , ( X , x ) , \ < k < n ,
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[3] Lebesgue function of weighted Lagrange interpolation 147

(1.7) lk(x)=lkn(X,x) = ,,V
W"{X]X) r, \Sk<n,

(o'll{X,xk,,)(x - xkn)

and

The polynomials lk of degree exactly n — 1 (that is lk e @*n-\ \ &n-i ) are the
fundamental functions of the (usual) Lagrange interpolation while functions tk are the
fundamental functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form

(1.9) \La(f, w, X,x)- f(x)w(x)\ < {kn{w,X,x)+l}E,,-i(f,w)

where the (weighted) Lebesgue function is

n

(1.10) kn(w,X,x): =^2\tkn(w,X,x)\, x<=R,neN

and

(1.11) £„-.(/, w): = inf \\(f-p)wl n € N.

Here || • || is the sup norm on R. If w € &(R) then it is well-known that £„_, (/, w) ->• 0
if n -»• oo and / e C(w, /?).

Relation (1.9) and its immediate consequence

(1.12) ||L,,(/, w, X) - fw\\ < {An(u>, X) + 1}£,,_,(/, w),

where

(1.13) An(w,X): =\\kn(w,X,x)\\

show that the investigationof An(ui, X, x) and Kn(w, X) (weighted Lebesgue constant)
are fundamental. (For further motivations, see [15, §1].)

1.4. To get estimations for An{w, X), at least for certain X, we consider the n
different roots

(1.14) - o o < y n n ( w 2 ) < y n - \ , n ( w 2 ) <••• < yiAw2) < yXn(w
2) < o o

of the nth orthonormal polynomial pn{w2,x) e 2?,,\3Pn-\ with respect to w2 e <(?(R)
(that is / pn(w

2)pm(w2)w2 = Snm). One can prove that for Y{w2) = {ykn{w2)} (see

[1,(1.18)])

(1.15) An(w, Y(w2))~~(nTn)
l/6, w
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where Tn ->• oo as n ->• oo. (Here, and later, An ~ Bn means that 0 < Ci < An/Bn <
C2 where C\ and Ci do not depend on n, but may depend on other, previously fixed
parameters.)

To be more precise about Tn, we introduce the corresponding Mhaskar-Rahmanov-
Saff (MRS) number a,,(w), the positive root of the equation

(1.16) u = — I — dt, u > 0
n J VI -f2

(see [5, (1.13)]).
As an important application we mention the relations

\\rnw\\ = max \rn(x)w(x)\
(1.17) { \*\<<>Ai»)

rnw\\ > \rn(x)w(x)\ for \x\ > an{w)

valid for rn e g?n and w €
If w = wi „ then

(1.18) a^llog^
I \ ^ J=2 I)

where log0) — log(log(.. .)), is the yth iterated logarithm.
Using an, Tn can be written as

(1.19) Tn = T{an(w)).

Later on we use that Tn = o(n2) (see [9, p. 209, (VIII)]).
k

Again, if w = wLa, then Tn ~ f [ log0) « (see [9, (1.13H1-16)]).

1.5. But we can do better as far as the order of An is concerned. Let y0 = yOn > 0
denote a point such that

(1.20) \Pn(w\ yo)w(yo)\ = \\pn(w
2)w\\.

Then if

V(w2) = {{yin(w
2), l<k<n}U{yOn, -yOn}, n e N)

one can prove the following.
Let w e £(R). Then

(1.21) An(w, V(w2))~logn

(see [1, (1.22)]; concerning the additional points {±y0,,}, see [12]).
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IB. Exponential weights on [—1, 1]

1.6. Instead of R, we can define our weight function w on the interval (—1, 1).
There is a substantial resemblance concerning formulas, definitions and theorems. So
sometimes, especially in proofs, we only refer to the corresponding relations defined
on R. Following the exhaustive memoir of Levin and Lubinsky [4], we define the
class of functions W as follows.

DEFINITION. Let w(x) = e~QM where Q: ( - 1 , 1) -> K, is even and is twice
continuously differentiable in ( - 1 , 1). Assume moreover, that Q' > 0, Q" > 0 in
(0, 1) and lim Q{x) = oo. The function

JT-+ 1—0

(1.22) T(x): = l + x | i ^ , j t€[O, l )

is increasing in [0, 1), moreover

(1.23)
(0 r(o+) > I,
(ii) T(x) ~ Q'(x)/Q(x), x close enough to 1,

(iii) T{x)/{\ — x2) > A > 2, x close enough to 1.

Then we write w e W (see [4, p. 5 and (1.34)]).

REMARKS. (1) Let wo,a(x) = exp(-(l - x2)~"), a > 0 and wk,a(x) =
exp(— expjO — xl)~"), a > 0, k > 1. These strongly vanishing weights at ±1
are from W ([4, §1]).
(2) Consider the ultraspherical Jacobi weight w(a)(x) — (1 — x2)a, a > — 1. Here
Q(x) = -a log( l - x2), that is w(a) ^ W i f - l < a < 0 (the conditions for Q(x)
are not satisfied). If a > 0 then u/a) satisfies all the conditions required for W but
(1.23) (ii), (iii) (by routine calculation, T(x) = 2(1 - x2)"1 while Q'(x)/Q(x) =
-2x{(l - ^2)log(l - x2)}-\ x e ( - 1 , 1)). That means, wia) # W even for non-
negative values of a. However, they are very similar (at least from our point of view)
to weights in W, so we can deal with them (see subsections 1.9 - 1.10).

1.7. Now the interpolatory matrix X = {xkn}, 1 < k < «, n 6 N, is in the
open (!) interval / = (—1, 1); the meaning of C(w, I), Ln(f, w, X,x), kn(w, X,x),
An(w,X), £„_,(/, IO), pn(w

2,x) and {ykn(w
2)} c (-1,1) are clear (see (1.4)-

(1.14)). For example if w e W, then

C(w, I): = { / : / is continuous on / and lim f(x)w(x) = 0
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Again, if w e W, £„_,( / , w) —• 0 whenever / e C(w, / ) , that is the Lebesgue
estimation (1.12) holds true (now || • || = max | • |). As one can prove

(1.24) A,,(w, Y(w2)) ~ (nTn)
l/6

(see [2]) where Tn = T(an) and a,, = a,,(w), w e W, is defined by (1.16). By [4,
(1.16), (1.17)], 1 -a , , ( i%,) ~ n - ' ^ + J ' a n d 1 - an(wkM) ~ (log*«)-' /a whence, by
(1.23) (iii), r,, -* oo. On the other hand, by (1.23) (i) and [4, (3.8)], 1 < Tn = o(n2).

1.8. As in subsection 1.5, using some additional points 'close' to an(w), for the
corresponding matrix V(w2) we get (see [2])

(1.25) An(w, V(w2)) ~log«, weW.

1.9. In subsections 1.9-1.10 we deal with Jacobi weights and their generalizations.
First we give the rather general definition (see [10]; the present paper uses only a
special case of [10; Definition 1.1]).

In what follows, Lp[a, b] denotes the set of functions F such that

f * V"
\\F\\LnaM- = U\F{t)\Pdt\ if 0 < / > < O C ,

\F\oc\ = ess sup|F(OI if p = oo
a<t<b

is finite. If p > 1 it is a norm; for 0 < p < 1 its pth power defines a metric in
L"[a,bl

By a modulus of continuity we mean a nondecreasing, continuous semiadditive
function a>(8) on [0, oo) with co(0) = 0. If, in addition,

oo(8) + OJ(T]) < 2co(8/2 + r]/2) for any 8, rj > 0,

then a>(8) is a concave modulus of continuity, in which case 8/co(8) is nondecreasing
for 8 > 0. We define a>(f,8)p = sup \\f(k + •) - f(-)\\p, the modulus of continuity

of f in Lp (where Lp stands for Lp[0, 2rc]).

For a fixed m > 0 let

- 1 = Um + 1 < Um < • • • < Mi < Mo = 1

and with /,. e N (r — 0, 1, . . . , m + 1)

' , •

wr(S): = Y\{cors(8)}a(rs\
s = l
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[7] Lebesgue function of weighted Lagrange interpolation 151

w h e r e a>,5(<5) a re c o n c a v e m o d u l i o f c o n t i n u i t y w i t h a(r, s) > 0 (s — 1 , 2 , . . . , / , . ;

r = 0 , l , . . . , m + 1).

F u r t h e r let H(x) be a positive continuous f unc t i on o n [—1, 1] s u c h tha t for h(&): =

/ / ( c o s # )

co(h,8)x8-1 € L'[0, 1] or <y(/*, S)2 = 0(^5), <5-* 0.

DEFINITION. The function

(1.26)

is a generalized Jacobi weight (w e G7), with singularities M, (0 < r < m + 1).

REMARK. Since cors(x) < cors(S) (0 < r < 8),

s

(1.27) I w,(T)dr < 5u;,.(5);
o

in [10, Definition 1.10] where a(r, s) might be negative, this important inequality had
to be assumed (see [10, (1.12)]). Actually by (1.27) and [10, (1.24)] we get

s

(1.28) I W,.(T)CIT ~ 8w,.(8), r = 0, l , . . . , w + 1.

o

1.10. If S(w) = S := {u, : r = 1, 2, . . . , m) denotes the set containing the inner
singularities of w € GJ, a natural condition for an interpolatory X c (1, 1) is that

x n s = 0.

As above, one can define matrices V(w2) c (—1, 1) \ S, w e GJ, with

(1.29) An(w, V(w2))~\ogn

(see [8], [11], [16]).

2. New results

2.1. It is natural to seek to prove that the order of the estimations A(w, V(w2)) ~
log n (see (1.21), (1.25) and (1.29)) is the best amongst the interpolatory matrices. We
can get much more.
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THEOREM 2.1. Let w e <?(R) and 0 < e < 1 be fixed. Then for any fixed
interpolator? matrix X c R f/ier^ ex/if seta //„ = Hn(w, e, X) with \Hn\ < ean(w)
such that

(2.1) A.,,(to, X, x) > ——-elogn // * € [-an(u>), an(u;)] \ / / „ ,

whenever n > «i.

REMARK. Here (and later) n, depends on e and to but not on X.

2.2. Similarly on ( - 1 , 1) (see (1.25) and (1.29)), we state (with S = 0 when
w € W) the following theorem.

THEOREM 2.2. Let w e W U GJ and 0 < e < 1 be fixed. Then for any X c
( - 1 , 1) \ 5 there exist sets Hn = Hn(w, s, X) with \Hn\ <e such that

(2.2) Xn(w,X,x) >rj(e,w)logn ifxe(-l,l)\Hn

whenever n > n\. Especially, t){e, w) = e/3840 ifweWorw = (l— x2)a, a > 0.

3. Proofs

3.1. PROOF OF THEOREM 2.1 (subsections 3.1-3.10). First we state some properties
of pn = pn(w

2) and pnw, w e S(M).
Let 0 < s < 1 be fixed and consider the interval /„ = /„(£) = [—bn,bn] =

[—an(\ — e/5), an(\ — e/5)]. By definition |[—an, an] \ In\ — 2ean/5. First we deal
with the interval /„.

n

By (1.14), pn{x) = pn(w
2,x) = yn(w

2) \~[(x - ykn{w2)). Using the notation

ykn = ykn(w
2),weha\e

STATEMENT 3.1. Let w e §(R). Then uniformly in k and n e N

(3.1) cx— < ykn - yk+Un < d — , yk,n, yk+],n € /„ ,
n n

(3.2) \p'n{ykn)w(ykn)\ ~ -3/2, y^ e /„.
an

Moreover, uniformly ink, x and n e N

(3.3) \pn{x)w(x)\ < C|JC - J t j ^ ^ ; -«, ykn € /„.

Finally,

(3.4) I ^ W i o t o l < ca; 1 / 2 («7;)1 / 6 , x e R , n e H.
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See [5, (1.24) and the remark after the formula] for (3.1); [5, last formula on
p. 285] for (3.2); [5, (10.28)] for (3.3), and [5, (1.26)] for (3.4). We used that
VOiC*) ~ <Pn(*) ~ 1 whenever x e /„. (irn{x) and <pn(x) are defined by [5; (1.19) and
(10.11), (10.12)], respectively.)

Now let yj = yjn = yj{n,x),n be defined by

(3.5) \x - yjn\ = min |* - ykn\.

LEMMA 3.2. We have, uniformly in x e /„,

(3.6) \pn(x)w(x)\ ~ \p'n(yjn)w(yjn)\ \x - yjn\ ~ - ^ I* - yjn\.
On

REMARKS. (1) The constants in formula (3.1)—<3.3) and (3.6) do depend one.
(2) By definition, (3.5) and (3.6) mean that \(tjn(Y(w2), x)\ ~ 1 whenever x € /„.

PROOF OF LEMMA 3.2. Using [1, (2.16)],

(3.7) \\hn(Y(w2))l <c, 1 <k <n, n e N.

Consider the polynomial xkn(x) = lkn(Y(w2),x)w~\yk) e &n-\. By definition,
hn{x) = rk(yk)w(yk) = 1; further, using (3.7) we get \rk(x)w(x)\ < c for any k, n
and x e R. Then, applying a Markov-Bernstein inequality in [6, (1.26)],

\h(x)\ = |rt(*)u;(jc)| = \rk(yk)w(yk) + (rk^)w^))'(x - yk)\

(3.8) > \l-cr,na;1 -ann'l\ > 1/2 if \x - yk\ < r,an/n

( | between x and yk, x, yk e /„), whenever we choose r) > 0, fixed, properly small.
Notice that r/ > 0 does not depend on k and n.
Now, relations (3.7) and (3.8) give (3.6) at least for x satisfying relations \x — y}• | <

x]an/n,x € /„.
We can finish the proof of the lemma as follows. For a fixed /, denote by z

the unique maximum point in (yh j ; _0 of \pn(x)w(x)\, 2 < I < n (for uniqueness
consult Lubinsky [7, Lemma]). Using (3.3) if x e (yi, )>/-i) C h and k = /, gives
that \pn(z)w(z)\ < cann~lna~3/2 ~ a~1/2. On the other hand if zx = y, + rjan/n,
?2 = yi-i -?? an/n, we get relations |p«(z,)u;(z,) | ~ann^na;V2 = a;l/2 (see (3.6)),
whence yi-\—z ~ 2—y, ~ an/n is obvious. Then, we can choose r\ > Osothatz—zx ~
Zj — z ~ an/n. Now, if x e (z,, z2), by the monotonicity of pnw (see [7, Lemma]),
a-"2 ~ \pm[z)w{z)\ > |pH(jc)w(jc)| > mindp.CzOwCz,)!, |/7n(z2)u;(z2)|) ~ a;1/2

which, using that now \x — yj\ ~ an/n, gives relation (3.6).
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3.2. Next, we prove Theorem 2.1 for x € /„ = /,,(e). Fix n and let K,, = {k : xkn e
/„}. First suppose that \K,,\: = N = N,, > 0 and denote the corresponding nodes
{xkl,} C /„ by zln, z2n, ..., zNn. We order them as

(3.9) ZN+I.,, '• = — b,, < zNn < zN-i.n < • • • < z2n < zln < zOn: = ft,,.

We introduce some other notations and definitions. Let

(3.10)

Jk = Jkn(Z): = [zk+Ln, zkn], (Jk): = (Jtn(Z)) = (zk+Un, zkn),

J k ( i k ) = J k , , ( q ( J k n ) ) • = [ z k + , + q k \ J k \ , z k - q k \ J k \ \ ,

Tk = Jk(qk): = Jk \ Jk{qk) with 0 < qk < \ and 0 < k < N.

The interval Jk is called short if and only if \Jk\ < a,,8n, where 8n = n l /6, say; the
others are called long. (Actually, arbitrary <$„ = n~", 0 < a < 1, works.)

3.3. For the long intervals we prove (see [15, Lemma 3.3] and the references there).

LEMMA 3.3. Let w € <f (R). Jk C /„, a,,8n < \Jk\, co/(n8n) < qk < \ and define
Q — Q(k,n): = [(qk/2)\Jk\(n/c^an)]. Then for a proper hkn C Jk we have

3<?a.«)
(3.11) Xn(w,X,x) > c2 6 ifx G Jkn\hkn.

n'lbTn 8n

Here \hkn\ < 4qk\Jk\, 0 < k < N, n > n0; the constants n0 and c0 are properly
chosen.

PROOF. Let us consider those roots y,n of pn{x) which are in Jk(qk). By (3.1), their

number is not less than

„ i

c(l -2qk)n8n.
C\an

Let us define the set hk = hkn by

f , ,
hk = Jk(qk)l)l ( J A, (ft)

where A, = A,(K) = [_y,-, _y;+1] and (A,), A,(qk), A, are defined according to (3.10).
(We use the same qk = q(Jk) for every A,.) By construction,

1**1 < 4qk\Jk\.
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[11] Lebesgue function of weighted Lagrange interpolation 155

To prove (3.11), let y € Jk\hk = Jk(qk) \ hk and consider the interval

containing at least

(3.12) I"?!7*!—1 = 6 > c qkn8n > 1
|_2 c{an\

roots of pn{x) if c0 > 0 is properly chosen.
Consider the polynomial r(x) = F I ^ M O ) ^ ~~ y>)- Si

we have

Here, if x g (Jk), by construction

y-y>

w(x)pn(x) -i—r y — y,
w(x)r(x)= )Pn) 'w(y)r(y) U > Y

l

3'x -y,

(see (3.4)). Finally if yt = yj(y) is the nearest root of pn to y, by construction,
n

\w(y)Pn(y)\ > c\p'n(yj)w(yj)(y - yj)\

(see (3.6)). So, as coq^1 < n 8n, we get

c
\w(x)r(x)\ < c\w(y)r(y)\ — _1/2 ^

(3.13) <c|u>(y)r(y)| / I^(3g
r ' ' ) ' / 6 , x*{Jk).

On the other hand, since Q > 1, r(x) e ^n_i whence, using Lagrange interpolation,

(3.14) u>(y)r(y) = } wjx^rjxj) lt(y) = } wjx^rjx^tiiy).

Using Xi $ (Jk), (3.13) and (3.14) yield

I" 8"K(w,y),

whence as w(y)r(y) ^ 0, we get (3.11) with a constant c2 > 0, actually for every
0 < SH < 1/2 (say).
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3.4. Let us apply Lemma 3.3 for every long interval Jk with qk = 1/logn, say.
By (3.12), we get the relation Q(k,n) > nSn/ log2 n ~3> n2/3, whence by (3.11) and
\<Tn= o(n2)

(3.15) A.,,(u;,x)»n, xeDln\Hin,

where Du, = \J{Jk : Jk is long} and Hln = \J{hk : Jk is long}. By construction
k k

(3.16) I^MI < £ > * ! < 4 V V | / t | < - an,
^ *—' log n

where the summations are over k : Jk c Din c /„. That is (2.1) holds for the long
intervals in /„, apart from a set of measure < 4an/ logn. If \Kn\ = 0, the same
argument works for the whole interval Jkn = /„.

3.5. Next, we consider the short intervals (subsections 3.5-3.9). Let <pn denote the
number of short intervals Jkn, 1 < k < N — I. If <pn < ny, then their total measure
< nyanSn = o(an), whenever 0 < y < 1/6, which we suppose from now on. So
adding them to the exceptional set //„, we get, using (3.16) and (3.11),

\Hn\ < \HXn\ + o(an) + 2an8n + 2{an - bn) < san

that is we would get the theorem (the third term, 2an8n, estimates the measure of
the (possibly) short interval(s) JNn and (or) JOn; the fourth one measures the set

[-an,a,,]\ln).

3.6. So from now on we can suppose <pn > nY. First we introduce some further
notations. With Qn(x) = con(x)w(x), let uk = uk(qk) be defined by

| : = m i n \Qn(x)\, l < k < N - l ,
xeJt(it)

(\Qn(uk)\ > 0, as qk > 0). Further let

I/,-, Jk\ :=max(|z,+1 - zk\, \zM - z,|), 1 < / ,* < N - 1,

t, Jk) :=min(|z,+1 - zk\, \zk+l - z,|), 1 < i, * < N - 1.

We prove (see [15, Lemma 3.4 and its references]) the following lemma.

LEMMA 3.4. Let I < k, r < N - 1. Then ifw e £(1),

(3.17) I§iMJZiL
4 Jr, Jk\

whenever x e Jr(qr), Q{Jr, Jk) > an8n and \Jr\ < an8n. Here tk and tk+\ are the
fundamental functions corresponding to zk and zk+l, respectively.
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PROOF. The proof of this lemma is similar to the one in [ 15]. We include it for sake
of completeness. First we verify relation

!',(*) I =
- zs)

u, - zs

7

(3.18)

Indeed,

1
> -\ts(ur)\ ifs=k,k+l andx e J,(q,)-

\ur - zs\ {\ur - zs\ +a,,8n} ~anSn > _ an8n

\ur-zs\+anSn

which gives (3.18). So we can write if r < k, say,

\tk+l(x)\ > -{\h(u,)\ + \tM(ur)\]

2an8n 2 '

Q(ur)
\tk(uk)\-

- zk

(3.19)

u, - zk+l

, x e J,{q,).
- 2 \n(uk)\ \j,.,Jk\

To obtain (3.17), we use [7, Theorem 1] which is stated as follows.

STATEMENT 3.5. Let (a, b) £ R and w = e~Q: (a, b) -+ (0, oo). Assume that Q'
exists and is non-decreasing in (a,b). Then for 1 < k < n — 1

(3.20) \tkn(w, X, x)\ + \tk+Un(w, X, x)\ > 1 if x e [xk+hn, xkn]

for arbitrary interpolatory X c (a,b).

Applying (3.20) we obtain (3.17), considering that 2qk\Jk\ = \Jk\.

REMARKS. (1) Actually, if x e [xk+uxk], then ts(x) > 0 (s = k, k + 1).
(2) Relation (3.20) is a generalization of an old theorem of Erdos and Turan which

says that for an arbitrary interpolatory X,

lkn(X,x) + lk+l,n(X,x)>\ i f x e [xk+hn,xkn], 1 < £ < n - 1

(see [3; Lemma 4, p. 529]).
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3.7. The following statement gives a result of Vertesi [14, Lemma 3.3] in a slightly
different form.

STATEMENT 3.6. Let Fk = [Ak, Bk], 1 < k < t, t > 2 be any t intervals in [—A, A]

with \Fk n Fj\ = 0 (k ^ j), \Fk\< AS (1 <k, j < t), £ \Tk\ = An. Let £ > 8. If

with a fixed integer /? > 4 we have \x > 2R£, then there exists the index s (I < s < t)
such that

(3.21) 5 : = - " * ' ~ * " 3

* = i \F,,Fk\ - 8 2

Fs will be called the accumulation interval of {Fk}'k=r

Here the definitions of Fk = Fk{qk), \FS, Fk\ and Q(FS, Fk) correspond to the
previous ones; /u, S and £ are fixed positive real numbers.

3.8. Now we define qk for the short intervals. Let Dln: = UI'Ii {̂ * : IAI < ^n5n}
and ^2,,: = {k : \Jk\ < a,,8n, 1 < k < N — 1}, |^2nl = <P«- If WA denotes the middle
point of Jk, let

j ^ : zk+i < ^ < mk and (2.1) does not hold for _y},

ykn; = min{y: mk < y < zk and (2.1) does not hold for _y},

dkn: = max(ft - zk+l,zk - yk),

finally

(3.22) qkn =q{Jkn)= dknl\Jkn\, ke K2n.

Using X,,(w, xk) = l,we obtain that qk > 0. Further by definition, (2.1) holds true
whenever x is from the interior of Jk(qk), k e K2n. For the remaining 'bad' sets Jk

we prove relation

(3.23) J 3 | 7 t | : =aBMB < — if n > «,.
keK2l,

Clearly, we can suppose that n e {«,} = A^ for which /xn > e/2. Now we can apply
Statement 3.6 with the cast {F,} = {Jkn}keK,,, = D2n, A = a,,, § = 8 = 8,,, /J. = //„,
R = [log2 n

l/1] and n e N\.
We get the accumulation interval and we denote it by M\ = M,,, (1st step).

Dropping MXn we apply Statement 3.6 again, for the intervals [Fr] = D2n \ M]n
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with fx = n,, — \M\n\/an > /x,, — 8,, > ix,,/2 and with the same A, §, 8, R and Nt.

We get the accumulation interval M2n (2nd step). At the ith step (3 < /' < V») w e

drop Mi,,, M2n, . . . , M,-_|.„ and apply Statement 3.6 again for the intervals {F,} =
/-I /-I

Dm \ U M,n wi th fx = /x,, — J2 \M,,,\/an a n d wi th t he s a m e A,!-,8, R a n d /V,. H e r e
/=i 1=1

\j/n denotes the first index for which

(3.24) ] T | M , | < ^ but J T \ M , \ > ^ , « € / V , .
/=i z /=i l

Denoting by M^i+i.,,, M^+2.,,, . . . , AfVn.,, the remaining (that is not accumulation)
intervals of Dln, from relation (3.21) we get, if nx is big enough,

(3.25) > > > , 1 < ;• < w.,, n e N.

fe \M,.,Mk\ ~ 2 - 7 - 8 2 120 "
Here and later the dash on the summation indicates that we omit those indices k for
which Q(M,., Mk) < an8n.

3.9. By (3.22), we can choose the 'bad' points vin € Min{qin/2) such that (2.1)
does not hold for vin (1 < / < <pn, n e Nu qin = qin(Min)).

If for a fixed n e /V, there exists an index t (1 < t < <pn) such that

(3.26) Xn(w,vn:) >2c/xnlogn

(where c > 0 will be determined later), then, using (2.1), we get relation ce logn >
Xn(w, vln), whence by (3.26), 2fin < s. That means, we obtained (3.23). We shall
verify (3.26) for every fixed n e Nt with a proper / = t{n). Indeed, otherwise for a
certain m e N\

(3.27)
km(w, vrm) < 2c ix,, logw, vrm € Mrm(qrm/2), for every r, 1 < r < cpm.

Then, by (3.27) and (3.23)
(pm

(3.28) Y^ \Mrm\km(w, vrm) < 2camy}m logm.

On the other hand, applying (3.17) with qkn{Mkn)/2 we can write (with the same |M,|,
as above)

IA/,1 £lfc(u™)| > -|M,.| J2 '{\h(vrn)\ + \tk+](vrn)\}
k=\ keKi,,

l ^ , f , l ^ ( « r ) l \Mk\
> — M, > , 1 < r < <»„,

16' " ^ | ^ ( ) | | M M | ' - - ^ " '
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for arbitrary n e N, (here |fl(Z7/)| = min |fi(x)|). Then, using relation a+a~~x >
.veM/(<7,/2)

2, (3.24) and (3.25), we get for n e Nt

r)| ifo
)l l«(

= 2 c an fi
2
n log « if c = 1 /3840.

But this contradicts (3.28), that is (3.26) must hold for any n e Ni with a proper
t = t(n). So (3.23) has been proved.

3.10. Finally, we estimate //„. If JOn is short, it should belong to //„; the same
holds for JNn. So by (3.16) and (3.23) (see subsection 3.5)

\Hn\ < 4-^- + ^ + 2an8n + 2{an - bn) < eanlogn 2

which gives the theorem if n > ri\{e).

3.11. PROOF OF THEOREM 2.2. The proof is analogous to the previous one after
establishing the corresponding formula, so we only sketch it (subsections 3.11-3.14).

3.12. First let w e W. The fact is that we have the same relations as before (for
example, again ykn(w

2)-yk+l,n(w
2) ~an/n,ykn e /„), but of course, now In,ykn(w

2),
a,,(w), and so on, are defined for w e W.

To be more precise, let /„ = [—bn, bn] where, with 0 < s < 1, bn = an{\ — e/5).
As we know an -> 1 (see [4, p. 30, (ii)], say).

Relations corresponding to Statement 3.1 are [4, (1.35); p. 130, last row; (12.7) and
(1.39)] respectively. Notice that we used relations an ~ 1, \ykn\ < bn = an{\ — e/5),
Sn: = (nTn)-

2'3 = o(l) (see [4, (1.23)]), VH{x) ~ <Pn(x) ~ 1, if x e /„ ([4, (11.11)
and (11.10)]).

The relation corresponding to (3.6) can be proved as in the proof of Lemma 3.2:
the relation corresponding to (3.7) is [4, (12.5)]; the corresponding Markov-Bernstein
inequality is now [4, (12.16)].

Moreover, the definition of the class W (see subsection 1.6) ensures that [7, Lemma]
and [7, Theorem 1] hold true, whence, among others, Statement 3.5 can be applied.

Other details, which are based on the previously mentioned relations, can be left to
the reader.
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3.13. Let w € G J be defined by formula (1.26), further let
m+l

(actually, /„ does not depend on n, but for convenience, we keep this notation).
Replacing an by 1, the formulae corresponding to (3.1), (3.2) and (3.6) come from
[10; Theorems 3.2 and 3.3].

Indeed, (3.1) is immediate from [10, (3.4)]. To get (3.2), first let us remark that
in /„, w(n,x) ~ w(x) ~ 1, where w(n,x) = wo(\/l — x + l/n)wm+i(*Jl + x +

\/n) f\ wr(\x - u,\ + l/n). Now [10, (3.5)] yields formula (3.2), because for

<p(x) = sin# (x = cosd),(p(x) ~ 1 if x e /„.
To get (3.6) (which is an improvement of (3.3)), we use [10, (3.6)] and the fact

w(x) ~ w(n, x) ~ 1, x e /„, again.
Finally we verify

(3.30) \pn{w2)w\\ < c ^

(which corresponds to (3.4) if we replace Tn by n2). We use relation

(3.31) \Qn(x)w(n,x)\ ~ \QH(x)w(x)\

valid for any Qn e &„ supposing that the weight w satisfies the inequality

(3.32) w(x) <^-j w(x)dx,

for all intervals / C [—1, 1] and x € / where c > 0 is independent of / and x (see [9,
(5.1) and (6.26)]).

However, if w e GJ, then relation (1.28) involves (3.32), that means (3.31) holds
true whenever w e GJ. Then, if _yy = yJn(w

2) is the closest root to x of pn(w
2, x)

we can write

\pn(w
2, x)w(n,x)\ ~ \pn(w

2,x)w(n,yj)\

~ \p'n(w
2, yj)w(n, y;)\\x - yj\

(3.33) < ^ ^

(see [10; (3.4)-(3.6)] moreover, relations w(n, x) ~ w(n, yj) and \x~yj | < sin &j/n),
whence by (3.31) we get (3.30).

3.14. The above mentioned relations yield the analogue of Lemma 3.3 (again
replacing Tn by n2). However to get the relation corresponding to (3.20) we cannot
use Statement 3.5 because we do not have the conditions for Q'; we choose another
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way. By definition, w(x) ~ 1 whenever x e /„; so by the Erdos-Turan relation (see
subsection 3.6, Remark 2) we can write

w(x) w(x)
(3.34) tk(x) + tk+l(x) = -r4/*(Jc) + , \U+i(x) >c{lk(x) + /,+,(*)} > c,

if A- e Jk c /„; here c does depend on e and w. Other details in proving (2.2) when
w e G J are analogous to the previous ones, so they are left to the reader.
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