ON THE LEBESGUE FUNCTION OF WEIGHTED LAGRANGE INTERPOLATION. II

P. VÉRTESI

(Received 20 June 1997; revised 28 April 1998)

Communicated by J. R. J. Groves

Abstract

The aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange interpolation by considering Erdốs weights on \mathbb{R} and weights on $[-1,1]$. The main results give lower bounds for the Lebesgue function on large subsets of the relevant domains.

1991 Mathematics subject classification (Amer. Math. Soc.): 41A05, 41A10.

1. Introduction, notations and preliminary results

1.1. In [15] it was proved that the weighted Lebesgue function is 'big' on a 'large' subset of $\left[-a_{n}, a_{n}\right]$ for arbitrary fixed interpolatory matrix X considering a class of Freud-type weights on \mathbb{R}. The aim of the present work is to extend this result for Erdốs weights on \mathbb{R} and for weights defined on $[-1,1]$.

1A. Erdős weights on \mathbb{R}

1.2. DEFINITION. We say that $w \in \mathscr{E}(\mathbb{R})$ (w is an Erdős weight on \mathbb{R}) if and only if $w(x)=e^{-Q(x)}$ where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even and is differentiable on $\mathbb{R}, Q^{\prime}>0$ and $Q^{\prime \prime} \geq 0$ in $(0, \infty)$ and the function

$$
\begin{equation*}
T(x):=1+x \frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}, \quad x \in(0, \infty) \tag{1.1}
\end{equation*}
$$

Research supported by The Hungarian National Science Foundation Grant Ns. T 7570, T 17425, T22943 and by the CRA/La Trobe University (Bendigo-Melbourne) Distinguished Visiting Fellowship. (C) 1998 Australian Mathematical Society $0263-6115 / 98 \$$ A $2.00+0.00$
is increasing in $(0, \infty)$, with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} T(x)=\infty ; \quad T(0+):=\lim _{x \rightarrow 0+} T(x)>1 \tag{1.2}
\end{equation*}
$$

Moreover we assume that for some $C_{1}, C_{2}, C_{3}>0$

$$
\begin{equation*}
C_{1} \leq T(x) \frac{Q(x)}{x Q^{\prime}(x)} \leq C_{2} \quad \text { if } \quad x \geq C_{3} \tag{1.3}
\end{equation*}
$$

(see [5, p. 201]).
The prototype of $w \in \mathscr{E}(\mathscr{R})$ is the case when $Q(x)=Q_{k . \alpha}(x)=\exp _{k}\left(|x|^{\alpha}\right)$, $k \geq 1, \alpha>1$ where $\exp _{k}:=\exp (\exp (\ldots))$ denotes the k th iterated exponential. The corresponding w will be denoted by $w_{k . \alpha}$. One can see that in that case

$$
T(x)=\alpha x^{\alpha}\left\{\prod_{j=1}^{k-1} \exp _{j}\left(x^{\alpha}\right)\right\}(1+o(1)), \quad x \rightarrow \infty
$$

(see [9, (1.8)]).
Remark. We use the differentiability of Q on the whole (open) line when we apply a result of Lubinsky [7, Lemma and Theorem 1] (see the 'Proof of Lemma 3.2' and 'Statement 3.5 ' of the present paper). Otherwise, evenness and conditions on the interval $(0, \infty)$ would be enough.
1.3. If $X \subset \mathbb{R}$ is an interpolatory matrix, that is

$$
\begin{equation*}
-\infty<x_{n n}<x_{n-1 . n}<\cdots<x_{2 n}<x_{1 n}<\infty, \quad n \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

for $f \in C(w, R)$ where $w \in \mathscr{E}(\mathscr{R})$ and

$$
C(w, R):=\left\{f: f \text { is continuous on } \mathbb{R} \text { and } \lim _{|x| \rightarrow \infty} f(x) w(x)=0\right\},
$$

one can investigate the weighted Lagrange interpolation defined by

$$
\begin{equation*}
L_{n}(f, w, X, x)=\sum_{k=1}^{n} f\left(x_{k n}\right) w\left(x_{k n}\right) t_{k n}(w, X, x), \quad n \in \mathbb{N}, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{k}(x)=t_{k n}(w, X, x)=\frac{w(x)}{w\left(x_{k n}\right)} l_{k n}(X, x), \quad 1 \leq k \leq n, \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
l_{k}(x)=l_{k n}(X, x)=\frac{\omega_{n}(X, x)}{\omega_{n}^{\prime}\left(X, x_{k n}\right)\left(x-x_{k n}\right)}, \quad 1 \leq k \leq n, \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{n}(x)=\omega_{n}(X, x)=c_{n} \prod_{k=1}^{n}\left(x-x_{k n}\right), \quad n \in N \tag{1.8}
\end{equation*}
$$

The polynomials l_{k} of degree exactly $n-1$ (that is $l_{k} \in \mathscr{P}_{n-1} \backslash \mathscr{P}_{n-2}$) are the fundamental functions of the (usual) Lagrange interpolation while functions t_{k} are the fundamental functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form

$$
\begin{equation*}
\left|L_{n}(f, w, X, x)-f(x) w(x)\right| \leq\left\{\lambda_{n}(w, X, x)+1\right\} E_{n-1}(f, w) \tag{1.9}
\end{equation*}
$$

where the (weighted) Lebesgue function is

$$
\begin{equation*}
\lambda_{n}(w, X, x):=\sum_{k=1}^{n}\left|t_{k n}(w, X, x)\right|, \quad x \in \mathbb{R}, n \in N \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n-1}(f, w):=\inf _{p \in \mathscr{\mathscr { P }}_{n-1}}\|(f-p) w\|, \quad n \in \mathbb{N} \tag{1.11}
\end{equation*}
$$

Here $\|\cdot\|$ is the \sup norm on \mathbb{R}. If $w \in \mathscr{E}(\mathbb{R})$ then it is well-known that $E_{n-1}(f, w) \rightarrow 0$ if $n \rightarrow \infty$ and $f \in C(w, R)$.

Relation (1.9) and its immediate consequence

$$
\begin{equation*}
\left\|L_{n}(f, w, X)-f w\right\| \leq\left\{\Lambda_{n}(w, X)+1\right\} E_{n-1}(f, w) \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{n}(w, X):=\left\|\lambda_{n}(w, X, x)\right\| \tag{1.13}
\end{equation*}
$$

show that the investigation of $\lambda_{n}(w, X, x)$ and $\Lambda_{n}(w, X)$ (weighted Lebesgue constant) are fundamental. (For further motivations, see [15, $\S 1]$.)
1.4. To get estimations for $\Lambda_{n}(w, X)$, at least for certain X, we consider the n different roots

$$
\begin{equation*}
-\infty<y_{n n}\left(w^{2}\right)<y_{n-1, n}\left(w^{2}\right)<\cdots<y_{2 n}\left(w^{2}\right)<y_{1 n}\left(w^{2}\right)<\infty \tag{1.14}
\end{equation*}
$$

of the nth orthonormal polynomial $p_{n}\left(w^{2}, x\right) \in \mathscr{P}_{n} \backslash \mathscr{P}_{n-1}$ with respect to $w^{2} \in \mathscr{E}(\mathbb{R})$ (that is $\left.\int_{R} p_{n}\left(w^{2}\right) p_{m}\left(w^{2}\right) w^{2}=\delta_{n m}\right)$. One can prove that for $Y\left(w^{2}\right)=\left\{y_{k n}\left(w^{2}\right)\right\}$ (see [1, (1.18)])

$$
\begin{equation*}
\Lambda_{n}\left(w, Y\left(w^{2}\right)\right) \sim\left(n T_{n}\right)^{1 / 6}, \quad w \in \mathscr{E}(\mathbb{R}) \tag{1.15}
\end{equation*}
$$

where $T_{n} \rightarrow \infty$ as $n \rightarrow \infty$. (Here, and later, $A_{n} \sim B_{n}$ means that $0<c_{1} \leq A_{n} / B_{n} \leq$ c_{2} where c_{1} and c_{2} do not depend on n, but may depend on other, previously fixed parameters.)

To be more precise about T_{n}, we introduce the corresponding Mhaskar-RahmanovSaff (MRS) number $a_{u}(w)$, the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{\sqrt{1-t^{2}}} d t, \quad u>0 \tag{1.16}
\end{equation*}
$$

(see [5, (1.13)]).
As an important application we mention the relations

$$
\left\{\begin{array}{l}
\left\|r_{n} w\right\|=\max _{|x| \leq a_{n}(w)}\left|r_{n}(x) w(x)\right| \tag{1.17}\\
\left\|r_{n} w\right\|>\left|r_{n}(x) w(x)\right| \quad \text { for }|x|>a_{n}(w)
\end{array}\right.
$$

valid for $r_{n} \in \mathscr{P}_{n}$ and $w \in \mathscr{E}(\mathbb{R})$.
If $w=w_{k, \alpha}$ then

$$
\begin{equation*}
a_{n}=\left\{\log _{k-1}\left(\log n-\frac{1}{2} \sum_{j=2}^{k+1} \log _{(j)} n+O(1)\right)\right\}^{1 / \alpha} \tag{1.18}
\end{equation*}
$$

where $\log _{(j)}=\log (\log (\ldots))$, is the j th iterated logarithm.
Using a_{n}, T_{n} can be written as

$$
\begin{equation*}
T_{n}=T\left(a_{n}(w)\right) \tag{1.19}
\end{equation*}
$$

Later on we use that $T_{n}=o\left(n^{2}\right)$ (see [9, p. 209, (VIII)]).
Again, if $w=w_{k, \alpha}$, then $T_{n} \sim \prod_{j=1}^{k} \log _{(j)} n$ (see [9, (1.13)-(1.16)]).
1.5. But we can do better as far as the order of Λ_{n} is concerned. Let $y_{0}=y_{0 n}>0$ denote a point such that

$$
\begin{equation*}
\left|p_{n}\left(w^{2}, y_{0}\right) w\left(y_{0}\right)\right|=\left\|p_{n}\left(w^{2}\right) w\right\| \tag{1.20}
\end{equation*}
$$

Then if

$$
V\left(w^{2}\right)=\left\{\left\{y_{k n}\left(w^{2}\right), 1 \leq k \leq n\right\} \cup\left\{y_{0 n},-y_{0 n}\right\}, n \in N\right\}
$$

one can prove the following.
Let $w \in \mathscr{E}(\mathbb{R})$. Then

$$
\begin{equation*}
\Lambda_{n}\left(w, V\left(w^{2}\right)\right) \sim \log n \tag{1.21}
\end{equation*}
$$

(see $[1,(1.22)]$; concerning the additional points $\left\{ \pm y_{0 n}\right\}$, see [12]).

1B. Exponential weights on [$-1,1$]

1.6. Instead of \mathbb{R}, we can define our weight function w on the interval $(-1,1)$. There is a substantial resemblance concerning formulas, definitions and theorems. So sometimes, especially in proofs, we only refer to the corresponding relations defined on \mathbb{R}. Following the exhaustive memoir of Levin and Lubinsky [4], we define the class of functions W as follows.

DEFINITION. Let $w(x)=e^{-Q(x)}$ where $Q:(-1,1) \rightarrow \mathbb{R}$, is even and is twice continuously differentiable in $(-1,1)$. Assume moreover, that $Q^{\prime} \geq 0, Q^{\prime \prime} \geq 0$ in $(0,1)$ and $\lim _{x \rightarrow 1-0} Q(x)=\infty$. The function

$$
\begin{equation*}
T(x):=1+x \frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}, \quad x \in[0,1) \tag{1.22}
\end{equation*}
$$

is increasing in $[0,1)$, moreover

$$
\begin{cases}\text { (i) } & T(0+)>1, \tag{1.23}\\ \text { (ii) } & T(x) \sim Q^{\prime}(x) / Q(x), \quad x \text { close enough to } 1 \\ \text { (iii) } & T(x) /\left(1-x^{2}\right) \geq A>2, \quad x \text { close enough to } 1\end{cases}
$$

Then we write $w \in W$ (see [4, p. 5 and (1.34)]).
REMARKS. (1) Let $w_{0, \alpha}(x)=\exp \left(-\left(1-x^{2}\right)^{-\alpha}\right), \alpha>0$ and $w_{k, \alpha}(x)=$ $\exp \left(-\exp _{k}\left(1-x^{2}\right)^{-\alpha}\right), \alpha>0, k \geq 1$. These strongly vanishing weights at ± 1 are from $W([4, \S 1])$.
(2) Consider the ultraspherical Jacobi weight $w^{(\alpha)}(x)=\left(1-x^{2}\right)^{\alpha}, \alpha>-1$. Here $Q(x)=-\alpha \log \left(1-x^{2}\right)$, that is $w^{(\alpha)} \notin W$ if $-1<\alpha<0$ (the conditions for $Q(x)$ are not satisfied). If $\alpha \geq 0$ then $w^{(\alpha)}$ satisfies all the conditions required for W but (1.23) (ii), (iii) (by routine calculation, $T(x)=2\left(1-x^{2}\right)^{-1}$ while $Q^{\prime}(x) / Q(x)=$ $\left.-2 x\left\{\left(1-x^{2}\right) \log \left(1-x^{2}\right)\right\}^{-1}, x \in(-1,1)\right)$. That means, $w^{(\alpha)} \notin W$ even for nonnegative values of α. However, they are very similar (at least from our point of view) to weights in W, so we can deal with them (see subsections $1.9-1.10$).
1.7. Now the interpolatory matrix $X=\left\{x_{k n}\right\}, 1 \leq k \leq n, n \in \mathbb{N}$, is in the open (!) interval $I=(-1,1)$; the meaning of $C(w, I), L_{n}(f, w, X, x), \lambda_{n}(w, X, x)$, $\Lambda_{n}(w, X), E_{n-1}(f, w), p_{n}\left(w^{2}, x\right)$ and $\left\{y_{k n}\left(w^{2}\right)\right\} \subset(-1,1)$ are clear (see (1.4)(1.14)). For example if $w \in W$, then

$$
C(w, I):=\left\{f: f \text { is continuous on } I \text { and } \lim _{|x| \rightarrow 1} f(x) w(x)=0\right\}
$$

Again, if $w \in W, E_{n-1}(f, w) \rightarrow 0$ whenever $f \in C(w, I)$, that is the Lebesgue estimation (1.12) holds true (now $\|\cdot\|=\max _{-1 \leq x \leq 1}|\cdot|$). As one can prove

$$
\begin{equation*}
\Lambda_{n}\left(w, Y\left(w^{2}\right)\right) \sim\left(n T_{n}\right)^{1 / 6}, \quad w \in W \tag{1.24}
\end{equation*}
$$

(see [2]) where $T_{n}=T\left(a_{n}\right)$ and $a_{n}=a_{n}(w), w \in W$, is defined by (1.16). By [4, (1.16), (1.17)], $1-a_{n}\left(w_{0 \alpha}\right) \sim n^{-1 /\left(\alpha+\frac{1}{2}\right)}$ and $1-a_{n}\left(w_{k . \alpha}\right) \sim\left(\log _{k} n\right)^{-1 / \alpha}$ whence, by (1.23) (iii), $T_{n} \rightarrow \infty$. On the other hand, by (1.23) (i) and [4, (3.8)], $1<T_{n}=o\left(n^{2}\right)$.
1.8. As in subsection 1.5 , using some additional points 'close' to $a_{n}(w)$, for the corresponding matrix $V\left(w^{2}\right)$ we get (see [2])

$$
\begin{equation*}
\Lambda_{n}\left(w, V\left(w^{2}\right)\right) \sim \log n, \quad w \in W \tag{1.25}
\end{equation*}
$$

1.9. In subsections $1.9-1.10$ we deal with Jacobi weights and their generalizations. First we give the rather general definition (see [10]; the present paper uses only a special case of [10; Definition 1.1]).

In what follows, $L^{p}[a, b]$ denotes the set of functions F such that

$$
\begin{cases}\|F\|_{L^{p}[a, b]}:=\left\{\int_{a}^{b}|F(t)|^{p} d t\right\}^{1 / p} & \text { if } \quad 0<p<\infty \\ \|F\|_{\infty}:=\underset{a \leq t \leq b}{\operatorname{ess} \sup |F(t)|} & \text { if } \quad p=\infty\end{cases}
$$

is finite. If $p \geq 1$ it is a norm; for $0<p<1$ its p th power defines a metric in $L^{p}[a, b]$.

By a modulus of continuity we mean a nondecreasing, continuous semiadditive function $\omega(\delta)$ on $[0, \infty)$ with $\omega(0)=0$. If, in addition,

$$
\omega(\delta)+\omega(\eta) \leq 2 \omega(\delta / 2+\eta / 2) \quad \text { for any } \delta, \eta \geq 0
$$

then $\omega(\delta)$ is a concave modulus of continuity, in which case $\delta / \omega(\delta)$ is nondecreasing for $\delta \geq 0$. We define $\omega(f, \delta)_{p}=\sup _{|\lambda| \leq \delta}\|f(\lambda+\cdot)-f(\cdot)\|_{p}$, the modulus of continuity of f in L^{p} (where L^{p} stands for $L^{p}[0,2 \pi]$).

For a fixed $m \geq 0$ let

$$
-1=u_{m+1}<u_{m}<\cdots<u_{1}<u_{0}=1
$$

and with $l_{r} \in \mathbb{N}(r=0,1, \ldots, m+1)$

$$
w_{r}(\delta):=\prod_{s=1}^{l_{r}}\left\{\omega_{r s}(\delta)\right\}^{\alpha(r \cdot s)}
$$

where $\omega_{r s}(\delta)$ are concave moduli of continuity with $\alpha(r, s)>0\left(s=1,2, \ldots, l_{r}\right.$; $r=0,1, \ldots, m+1)$.

Further let $H(x)$ be a positive continuous function on $[-1,1]$ such that for $h(\vartheta):=$ $H(\cos \vartheta)$

$$
\omega(h, \delta)_{\infty} \delta^{-1} \in L^{1}[0,1] \quad \text { or } \quad \omega(h, \delta)_{2}=0(\sqrt{\delta}), \quad \delta \rightarrow 0
$$

Definition. The function

$$
\begin{equation*}
w(x)=H(x) w_{0}(\sqrt{1-x}) w_{m+1}(\sqrt{1+x}) \prod_{r=1}^{m} w_{r}\left(\left|x-u_{r}\right|\right), \quad-1 \leq x \leq 1 \tag{1.26}
\end{equation*}
$$

is a generalized Jacobi weight $(w \in G J)$, with singularities $u_{r}(0 \leq r \leq m+1)$.

REMARK. Since $\omega_{r s}(\tau) \leq \omega_{r s}(\delta)(0 \leq \tau \leq \delta)$,

$$
\begin{equation*}
\int_{0}^{\delta} w_{r}(\tau) d \tau \leq \delta w_{r}(\delta) \tag{1.27}
\end{equation*}
$$

in [10, Definition 1.10] where $\alpha(r, s)$ might be negative, this important inequality had to be assumed (see [10, (1.12)]). Actually by (1.27) and [10, (1.24)] we get

$$
\begin{equation*}
\int_{0}^{\delta} w_{r}(\tau) d \tau \sim \delta w_{r}(\delta), \quad r=0,1, \ldots, m+1 \tag{1.28}
\end{equation*}
$$

1.10. If $S(w)=S:=\left\{u_{r}: r=1,2, \ldots, m\right\}$ denotes the set containing the inner singularities of $w \in G J$, a natural condition for an interpolatory $X \subset(1,1)$ is that $X \cap S=\emptyset$.

As above, one can define matrices $V\left(w^{2}\right) \subset(-1,1) \backslash S, w \in G J$, with

$$
\begin{equation*}
\Lambda_{n}\left(w, V\left(w^{2}\right)\right) \sim \log n \tag{1.29}
\end{equation*}
$$

(see [8], [11], [16]).

2. New results

2.1. It is natural to seek to prove that the order of the estimations $\Lambda\left(w, V\left(w^{2}\right)\right) \sim$ $\log n$ (see (1.21), (1.25) and (1.29)) is the best amongst the interpolatory matrices. We can get much more.

Theorem 2.1. Let $w \in \mathscr{E}(\mathbb{R})$ and $0<\varepsilon<1$ be fixed. Then for any fixed interpolatory matrix $X \subset \mathbb{R}$ there exist sets $H_{n}=H_{n}(w, \varepsilon, X)$ with $\left|H_{n}\right| \leq \varepsilon a_{n}(w)$ such that

$$
\begin{equation*}
\lambda_{n}(w, X, x)>\frac{1}{3840} \varepsilon \log n \quad \text { if } \quad x \in\left[-a_{n}(w), a_{n}(w)\right] \backslash H_{n} \tag{2.1}
\end{equation*}
$$

whenever $n \geq n_{1}$.
REMARK. Here (and later) n_{1} depends on ε and w but not on X.
2.2. Similarly on $(-1,1)$ (see (1.25) and (1.29)), we state (with $S=\emptyset$ when $w \in W$) the following theorem.

THEOREM 2.2. Let $w \in W \cup G J$ and $0<\varepsilon<1$ be fixed. Then for any $X \subset$ $(-1,1) \backslash S$ there exist sets $H_{n}=H_{n}(w, \varepsilon, X)$ with $\left|H_{n}\right| \leq \varepsilon$ such that

$$
\begin{equation*}
\lambda_{n}(w, X, x)>\eta(\varepsilon, w) \log n \quad \text { if } x \in(-1,1) \backslash H_{n} \tag{2.2}
\end{equation*}
$$

whenever $n \geq n_{1}$. Especially, $\eta(\varepsilon, w)=\varepsilon / 3840$ if $w \in W$ or $w=\left(1-x^{2}\right)^{\alpha}, \alpha \geq 0$.

3. Proofs

3.1. Proof of Theorem 2.1 (subsections 3.1-3.10). First we state some properties of $p_{n}=p_{n}\left(w^{2}\right)$ and $p_{n} w, w \in \mathscr{E}(\mathscr{R})$.

Let $0<\varepsilon<1$ be fixed and consider the interval $I_{n}=I_{n}(\varepsilon)=\left[-b_{n}, b_{n}\right]=$ $\left[-a_{n}(1-\varepsilon / 5), a_{n}(1-\varepsilon / 5)\right]$. By definition $\left|\left[-a_{n}, a_{n}\right] \backslash I_{n}\right|=2 \varepsilon a_{n} / 5$. First we deal with the interval I_{n}.

By (1.14), $p_{n}(x)=p_{n}\left(w^{2}, x\right)=\gamma_{n}\left(w^{2}\right) \prod_{k=1}^{n}\left(x-y_{k n}\left(w^{2}\right)\right)$. Using the notation $y_{k n}=y_{k n}\left(w^{2}\right)$, we have

Statement 3.1. Let $w \in \mathscr{E}(\mathbb{R})$. Then uniformly in k and $n \in \mathbb{N}$

$$
\begin{gather*}
\widetilde{c}_{1} \frac{a_{n}}{n} \leq y_{k n}-y_{k+1, n} \leq c_{1} \frac{a_{n}}{n}, \quad y_{k, n}, y_{k+1, n} \in I_{n} \tag{3.1}\\
\left|p_{n}^{\prime}\left(y_{k n}\right) w\left(y_{k n}\right)\right| \sim \frac{n}{a_{n}^{3 / 2}}, \quad y_{k n} \in I_{n} \tag{3.2}
\end{gather*}
$$

Moreover, uniformly in k, x and $n \in \mathbb{N}$

$$
\begin{equation*}
\left|p_{n}(x) w(x)\right| \leq c\left|x-y_{k n}\right| \frac{n}{a_{n}^{3 / 2}} ; \quad x, y_{k n} \in I_{n} \tag{3.3}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\left|p_{n}(x) w(x)\right| \leq c a_{n}^{-1 / 2}\left(n T_{n}\right)^{1 / 6}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

See [5, (1.24) and the remark after the formula] for (3.1); [5, last formula on p. 285] for (3.2); [5, (10.28)] for (3.3), and [5, (1.26)] for (3.4). We used that $\psi_{n}(x) \sim \varphi_{n}(x) \sim 1$ whenever $x \in I_{n} .\left(\psi_{n}(x)\right.$ and $\varphi_{n}(x)$ are defined by $[5 ;(1.19)$ and (10.11), (10.12)], respectively.)

Now let $y_{j}=y_{j n}=y_{j(n, x), n}$ be defined by

$$
\begin{equation*}
\left|x-y_{j n}\right|=\min _{1 \leq k \leq n}\left|x-y_{k n}\right| . \tag{3.5}
\end{equation*}
$$

Lemma 3.2. We have, uniformly in $x \in I_{n}$,

$$
\begin{equation*}
\left|p_{n}(x) w(x)\right| \sim\left|p_{n}^{\prime}\left(y_{j n}\right) w\left(y_{j n}\right)\right|\left|x-y_{j n}\right| \sim \frac{n}{a_{n}^{3 / 2}}\left|x-y_{j n}\right| \tag{3.6}
\end{equation*}
$$

REmARKS. (1) The constants in formula (3.1)-(3.3) and (3.6) do depend on ε.
(2) By definition, (3.5) and (3.6) mean that $\mid\left(t_{j n}\left(Y\left(w^{2}\right), x\right) \mid \sim 1\right.$ whenever $x \in I_{n}$.

Proof of Lemma 3.2. Using [1, (2.16)],

$$
\begin{equation*}
\left\|t_{k n}\left(Y\left(w^{2}\right)\right)\right\| \leq c, \quad 1 \leq k \leq n, \quad n \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

Consider the polynomial $\tau_{k n}(x)=l_{k n}\left(Y\left(w^{2}\right), x\right) w^{-1}\left(y_{k}\right) \in \mathscr{P}_{n-1}$. By definition, $t_{k n}(x)=\tau_{k}\left(y_{k}\right) w\left(y_{k}\right)=1$; further, using (3.7) we get $\left|\tau_{k}(x) w(x)\right| \leq c$ for any k, n and $x \in \mathbb{R}$. Then, applying a Markov-Bernstein inequality in [6, (1.26)],

$$
\begin{align*}
\left|t_{k}(x)\right| & =\left|\tau_{k}(x) w(x)\right|=\left|\tau_{k}\left(y_{k}\right) w\left(y_{k}\right)+\left(\tau_{k}(\xi) w(\xi)\right)^{\prime}\left(x-y_{k}\right)\right| \\
& \geq\left|1-c \eta n a_{n}^{-1} \cdot a_{n} n^{-1}\right| \geq 1 / 2 \quad \text { if } \quad\left|x-y_{k}\right| \leq \eta a_{n} / n \tag{3.8}
\end{align*}
$$

(ξ between x and $y_{k}, x, y_{k} \in I_{n}$), whenever we choose $\eta>0$, fixed, properly small.
Notice that $\eta>0$ does not depend on k and n.
Now, relations (3.7) and (3.8) give (3.6) at least for x satisfying relations $\left|x-y_{j}\right| \leq$ $\eta a_{n} / n, x \in I_{n}$.

We can finish the proof of the lemma as follows. For a fixed l, denote by z the unique maximum point in $\left(y_{l}, y_{l-1}\right)$ of $\left|p_{n}(x) w(x)\right|, 2 \leq l \leq n$ (for uniqueness consult Lubinsky [7, Lemma]). Using (3.3) if $x \in\left(y_{l}, y_{l-1}\right) \subset I_{n}$ and $k=l$, gives that $\left|p_{n}(z) w(z)\right| \leq c a_{n} n^{-1} n a_{n}^{-3 / 2} \sim a_{n}^{-1 / 2}$. On the other hand if $z_{1}=y_{l}+\eta a_{n} / n$, $z_{2}=y_{l-1}-\eta a_{n} / n$, we get relations $\left|p_{n}\left(z_{i}\right) w\left(z_{i}\right)\right| \sim a_{n} n^{-1} n a_{n}^{-3 / 2}=a_{n}^{-1 / 2}$ (see (3.6)), whence $y_{l-1}-z \sim z-y_{l} \sim a_{n} / n$ is obvious. Then, we can choose $\eta>0$ so that $z-z_{1} \sim$ $z_{2}-z \sim a_{n} / n$. Now, if $x \in\left(z_{1}, z_{2}\right)$, by the monotonicity of $p_{n} w$ (see [7, Lemma]), $a_{n}^{-1 / 2} \sim\left|p_{n}(z) w(z)\right| \geq\left|p_{n}(x) w(x)\right|>\min \left(\left|p_{n}\left(z_{1}\right) w\left(z_{1}\right)\right|,\left|p_{n}\left(z_{2}\right) w\left(z_{2}\right)\right|\right) \sim a_{n}^{-1 / 2}$ which, using that now $\left|x-y_{j}\right| \sim a_{n} / n$, gives relation (3.6).
3.2. Next, we prove Theorem 2.1 for $x \in I_{n}=I_{n}(\varepsilon)$. Fix n and let $K_{n}=\left\{k: x_{k n} \in\right.$ $\left.I_{n}\right\}$. First suppose that $\left|K_{n}\right|:=N=N_{n}>0$ and denote the corresponding nodes $\left\{x_{k n}\right\} \subset I_{n}$ by $z_{1 n}, z_{2 n}, \ldots, z_{N n}$. We order them as

$$
\begin{equation*}
z_{N+1 . n}:=-b_{n} \leq z_{N n}<z_{N-1 . n}<\cdots<z_{2 n}<z_{1 n} \leq z_{0 n}:=b_{n} \tag{3.9}
\end{equation*}
$$

We introduce some other notations and definitions. Let

$$
\left\{\begin{array}{l}
J_{k}=J_{k n n}(Z):=\left[z_{k+1, n}, z_{k n}\right], \quad\left(J_{k}\right):=\left(J_{k n}(Z)\right)=\left(z_{k+1, n}, z_{k n}\right) \tag{3.10}\\
J_{k}\left(q_{k}\right)=J_{k n}\left(q\left(J_{k n}\right)\right):=\left[z_{k+1}+q_{k}\left|J_{k}\right|, z_{k}-q_{k}\left|J_{k}\right|\right] \\
\overline{J_{k}}=\overline{J_{k}\left(q_{k}\right)}:=J_{k} \backslash J_{k}\left(q_{k}\right) \text { with } 0<q_{k} \leq \frac{1}{2} \text { and } 0 \leq k \leq N
\end{array}\right.
$$

The interval J_{k} is called short if and only if $\left|J_{k}\right| \leq a_{n} \delta_{n}$, where $\delta_{n}=n^{-1 / 6}$, say; the others are called long. (Actually, arbitrary $\delta_{n}=n^{-\alpha}, 0<\alpha<1$, works.)
3.3. For the long intervals we prove (see [15, Lemma 3.3] and the references there).

Lemma 3.3. Let $w \in \mathscr{E}(\mathbb{R}), J_{k} \subset I_{n}, a_{n} \delta_{n}<\left|J_{k}\right|, c_{0} /\left(n \delta_{n}\right)<q_{k}<\frac{1}{4}$ and define $\varrho=\varrho(k, n):=\left[\left(q_{k} / 2\right)\left|J_{k}\right|\left(n / c_{1} a_{n}\right)\right]$. Then for a proper $h_{k n} \subset J_{k}$ we have

$$
\begin{equation*}
\lambda_{n}(w, X, x)>c_{2} \frac{3^{\varrho(k, n)}}{n^{7 / 6} T_{n}^{1 / 6} \delta_{n}} \quad \text { if } x \in J_{k n} \backslash h_{k n} \tag{3.11}
\end{equation*}
$$

Here $\left|h_{k n}\right| \leq 4 q_{k}\left|J_{k}\right|, 0 \leq k \leq N, n \geq n_{0} ;$ the constants n_{0} and c_{0} are properly chosen.

Proof. Let us consider those roots $y_{i n}$ of $p_{n}(x)$ which are in $J_{k}\left(q_{k}\right)$. By (3.1), their number is not less than

$$
\left[\left(1-2 q_{k}\right)\left|J_{k}\right| \frac{n}{c_{1} a_{n}}\right]>c\left(1-2 q_{k}\right) n \delta_{n}
$$

Let us define the set $h_{k}=h_{k n}$ by

$$
h_{k}=\overline{J_{k}\left(q_{k}\right)} \cup\left\{\bigcup_{\Delta_{i} \subset J_{k}\left(q_{k}\right)} \overline{\Delta_{i}\left(q_{k}\right)}\right\},
$$

where $\Delta_{i}=\Delta_{i}(Y)=\left[y_{i}, y_{i+1}\right]$ and $\left(\Delta_{i}\right), \Delta_{i}\left(q_{k}\right), \overline{\Delta_{i}}$ are defined according to (3.10). (We use the same $q_{k}=q\left(J_{k}\right)$ for every Δ_{i}.) By construction,

$$
\left|h_{k}\right|<4 q_{k}\left|J_{k}\right|
$$

To prove (3.11), let $y \in J_{k} \backslash h_{k}=J_{k}\left(q_{k}\right) \backslash h_{k}$ and consider the interval

$$
M(y)=\left[y-\frac{q_{k}}{4}\left|J_{k}\right|, y+\frac{q_{k}}{4}\left|J_{k}\right|\right] \subset J_{k}\left(\frac{3 q_{k}}{4}\right)
$$

containing at least

$$
\begin{equation*}
\left[\frac{q_{k}}{2}\left|J_{k}\right| \frac{n}{c_{1} a_{n}}\right]=\varrho>c q_{k} n \delta_{n} \geq 1 \tag{3.12}
\end{equation*}
$$

roots of $p_{n}(x)$ if $c_{0}>0$ is properly chosen.
Consider the polynomial $r(x)=\prod_{y, \notin M(y)}\left(x-y_{i}\right)$. Since

$$
p_{n}(u)=\gamma_{n} r(u) \prod_{y \in M(y)}\left(u-y_{i}\right),
$$

we have

$$
w(x) r(x)=\frac{w(x) p_{n}(x)}{w(y) p_{n}(y)} w(y) r(y) \prod_{y_{i} \in M(y)} \frac{y-y_{i}}{x-y_{i}}
$$

Here, if $x \notin\left(J_{k}\right)$, by construction

$$
\begin{gathered}
\left|\frac{y-y_{i}}{x-y_{i}}\right| \leq \frac{1}{3} \\
\left|w(x) p_{n}(x)\right| \leq c a_{n}^{-1 / 2}\left(n T_{n}\right)^{1 / 6}
\end{gathered}
$$

(see (3.4)). Finally if $y_{i}=y_{j}(y)$ is the nearest root of p_{n} to y, by construction,

$$
\left|w(y) p_{n}(y)\right| \geq c\left|p_{n}^{\prime}\left(y_{j}\right) w\left(y_{j}\right)\left(y-y_{j}\right)\right| \sim n a_{n}^{-3 / 2} q_{k} \frac{a_{n}}{n}=q_{k} a_{n}^{-1 / 2}
$$

(see (3.6)). So, as $c_{0} q_{k}^{-1}<n \delta_{n}$, we get

$$
\begin{align*}
|w(x) r(x)| & \leq c|w(y) r(y)| \frac{a_{n}^{-1 / 2}\left(n T_{n}\right)^{1 / 6}}{q_{k} a_{n}^{-1 / 2}} 3^{-Q} \\
& \leq c|w(y) r(y)| \frac{n \delta_{n}\left(n T_{n}\right)^{1 / 6}}{3^{e}}, \quad x \notin\left(J_{k}\right) . \tag{3.13}
\end{align*}
$$

On the other hand, since $\varrho \geq 1, r(x) \in \mathscr{P}_{n-1}$ whence, using Lagrange interpolation,

$$
\begin{equation*}
w(y) r(y)=\sum_{i=1}^{n} w\left(x_{i}\right) r\left(x_{i}\right) \frac{w(y)}{w\left(x_{i}\right)} l_{i}(y)=\sum_{i=1}^{n} w\left(x_{i}\right) r\left(x_{i}\right) t_{i}(y) \tag{3.14}
\end{equation*}
$$

Using $x_{i} \notin\left(J_{k}\right)$, (3.13) and (3.14) yield

$$
|w(y) r(y)| \leq c|w(y) r(y)| \frac{n^{7 / 6} T_{n}^{1 / 6} \delta_{n}}{3^{e}} \lambda_{n}(w, y)
$$

whence as $w(y) r(y) \neq 0$, we get (3.11) with a constant $c_{2}>0$, actually for every $0<\delta_{n} \leq 1 / 2$ (say).
3.4. Let us apply Lemma 3.3 for every long interval J_{k} with $q_{k}=1 / \log n$, say. By (3.12), we get the relation $\varrho(k, n)>n \delta_{n} / \log ^{2} n \gg n^{2 / 3}$, whence by (3.11) and $1<T_{n}=o\left(n^{2}\right)$

$$
\begin{equation*}
\lambda_{n}(w, x) \gg n, \quad x \in D_{1 n} \backslash H_{1 n} \tag{3.15}
\end{equation*}
$$

where $D_{1 n}=\bigcup_{k}\left\{J_{k}: J_{k}\right.$ is long $\}$ and $H_{1 n}=\bigcup_{k}\left\{h_{k}: J_{k}\right.$ is long $\}$. By construction

$$
\begin{equation*}
\left|H_{1 n}\right| \leq \sum\left|h_{k}\right| \leq 4 \sum q_{k}\left|J_{k}\right| \leq \frac{4}{\log n} a_{n} \tag{3.16}
\end{equation*}
$$

where the summations are over $k: J_{k} \subset D_{1 n} \subset I_{n}$. That is (2.1) holds for the long intervals in I_{n}, apart from a set of measure $\leq 4 a_{n} / \log n$. If $\left|K_{n}\right|=0$, the same argument works for the whole interval $J_{k n}=I_{n}$.
3.5. Next, we consider the short intervals (subsections 3.5-3.9). Let φ_{n} denote the number of short intervals $J_{k n}, 1 \leq k \leq N-1$. If $\varphi_{n} \leq n^{\gamma}$, then their total measure $\leq n^{\gamma} a_{n} \delta_{n}=o\left(a_{n}\right)$, whenever $0<\gamma<1 / 6$, which we suppose from now on. So adding them to the exceptional set H_{n}, we get, using (3.16) and (3.11),

$$
\left|H_{n}\right| \leq\left|H_{1 n}\right|+o\left(a_{n}\right)+2 a_{n} \delta_{n}+2\left(a_{n}-b_{n}\right)<\varepsilon a_{n}
$$

that is we would get the theorem (the third term, $2 a_{n} \delta_{n}$, estimates the measure of the (possibly) short interval(s) $J_{N n}$ and (or) $J_{0 n}$; the fourth one measures the set $\left[-a_{n}, a_{n}\right] \backslash I_{n}$.
3.6. So from now on we can suppose $\varphi_{n}>n^{\gamma}$. First we introduce some further notations. With $\Omega_{n}(x)=\omega_{n}(x) w(x)$, let $u_{k}=u_{k}\left(q_{k}\right)$ be defined by

$$
\left|\Omega_{n}\left(u_{k}\right)\right|:=\min _{x \in J_{k}\left(q_{k}\right)}\left|\Omega_{n}(x)\right|, \quad 1 \leq k \leq N-1
$$

($\left|\Omega_{n}\left(u_{k}\right)\right|>0$, as $q_{k}>0$). Further let

$$
\begin{array}{rlrl}
\left|J_{i}, J_{k}\right| & :=\max \left(\left|z_{i+1}-z_{k}\right|,\left|z_{k+1}-z_{i}\right|\right), & & 1 \leq i, k \leq N-1, \\
\varrho\left(J_{i}, J_{k}\right) & :=\min \left(\left|z_{i+1}-z_{k}\right|,\left|z_{k+1}-z_{i}\right|\right), & 1 \leq i, k \leq N-1 .
\end{array}
$$

We prove (see [15, Lemma 3.4 and its references]) the following lemma.
Lemma 3.4. Let $1 \leq k, r \leq N-1$. Then if $w \in \mathscr{E}(\mathbb{R})$,

$$
\begin{equation*}
\left|t_{k}(x)\right|+\left|t_{k+1}(x)\right|>\frac{1}{4} \frac{\left|\Omega_{n}\left(u_{r}\right)\right|}{\left|\Omega_{n}\left(u_{k}\right)\right|} \frac{\left|\bar{J}_{k}\right|}{\left|J_{r}, J_{k}\right|}, \quad n \geq 2 \tag{3.17}
\end{equation*}
$$

whenever $x \in J_{r}\left(q_{r}\right), \varrho\left(J_{r}, J_{k}\right) \geq a_{n} \delta_{n}$ and $\left|J_{r}\right| \leq a_{n} \delta_{n}$. Here t_{k} and t_{k+1} are the fundamental functions corresponding to z_{k} and z_{k+1}, respectively.

Proof. The proof of this lemma is similar to the one in [15]. We include it for sake of completeness. First we verify relation

$$
\begin{align*}
\left|t_{s}(x)\right| & =\left|\frac{\Omega(x)}{\Omega^{\prime}\left(z_{s}\right)\left(x-z_{s}\right)}\right|=\frac{|\Omega(x)|}{\left|\Omega\left(u_{r}\right)\right|}\left|\frac{u_{r}-z_{s}}{x-z_{s}}\right|\left|t_{s}\left(u_{r}\right)\right| \\
& \geq \frac{1}{2}\left|t_{s}\left(u_{r}\right)\right| \quad \text { if } s=k, k+1 \text { and } x \in J_{r}\left(q_{r}\right) . \tag{3.18}
\end{align*}
$$

Indeed,

$$
\frac{\left|u_{r}-z_{s}\right|}{\left|x-z_{s}\right|} \geq \frac{\left\{\left|u_{r}-z_{s}\right|+a_{n} \delta_{n}\right\}-a_{n} \delta_{n}}{\left|u_{r}-z_{s}\right|+a_{n} \delta_{n}} \geq 1-\frac{a_{n} \delta_{n}}{2 a_{n} \delta_{n}}=\frac{1}{2},
$$

which gives (3.18). So we can write if $r<k$, say,

$$
\begin{align*}
\left|t_{k}(x)\right| & +\left|t_{k+1}(x)\right| \geq \frac{1}{2}\left\{\left|t_{k}\left(u_{r}\right)\right|+\left|t_{k+1}\left(u_{r}\right)\right|\right\} \\
& =\frac{1}{2}\left|\frac{\Omega\left(u_{r}\right)}{\Omega\left(u_{k}\right)}\right|\left\{\left|t_{k}\left(u_{k}\right)\right| \frac{z_{k}-u_{k}}{u_{r}-z_{k}}+\left|t_{k+1}\left(u_{k}\right)\right| \frac{u_{k}-z_{k+1}}{u_{r}-z_{k+1}}\right\} \\
& \geq \frac{1}{2} \frac{\left|\Omega\left(u_{r}\right)\right|}{\left|\Omega\left(u_{k}\right)\right|} \frac{q_{k}\left|J_{k}\right|}{\left|J_{r}, J_{k}\right|}\left\{\left|t_{k}\left(u_{k}\right)\right|+\left|t_{k+1}\left(u_{k}\right)\right|\right\}, \quad x \in J_{r}\left(q_{r}\right) . \tag{3.19}
\end{align*}
$$

To obtain (3.17), we use [7, Theorem 1] which is stated as follows.

STATEMENT 3.5. Let $(a, b) \subseteq \mathbb{R}$ and $w=e^{-Q}:(a, b) \rightarrow(0, \infty)$. Assume that Q^{\prime} exists and is non-decreasing in (a, b). Then for $1 \leq k \leq n-1$

$$
\begin{equation*}
\left|t_{k n}(w, X, x)\right|+\left|t_{k+1, n}(w, X, x)\right| \geq 1 \quad \text { if } x \in\left[x_{k+1, n}, x_{k n}\right] \tag{3.20}
\end{equation*}
$$

for arbitrary interpolatory $X \subset(a, b)$.
Applying (3.20) we obtain (3.17), considering that $2 q_{k}\left|J_{k}\right|=\left|\bar{J}_{k}\right|$.

Remarks. (1) Actually, if $x \in\left[x_{k+1}, x_{k}\right]$, then $t_{s}(x) \geq 0(s=k, k+1)$.
(2) Relation (3.20) is a generalization of an old theorem of Erdôs and Turán which says that for an arbitrary interpolatory X,

$$
l_{k n}(X, x)+l_{k+1, n}(X, x) \geq 1 \quad \text { if } \quad x \in\left[x_{k+1, n}, x_{k n}\right], \quad 1 \leq k \leq n-1
$$

(see [3; Lemma 4, p. 529]).
3.7. The following statement gives a result of Vértesi [14, Lemma 3.3] in a slightly different form.

STATEMENT 3.6. Let $F_{k}=\left[A_{k}, B_{k}\right], 1 \leq k \leq t, t \geq 2$ be any t intervals in [$-A, A$] with $\left|F_{k} \cap F_{j}\right|=0(k \neq j),\left|F_{k}\right| \leq A \delta(1 \leq k, j \leq t), \sum_{k=1}^{\prime}\left|\bar{F}_{k}\right|=A \mu$. Let $\xi \geq \delta$. If with a fixed integer $R \geq 4$ we have $\mu \geq 2^{R} \xi$, then there exists the index $s(1 \leq s \leq t)$ such that

$$
\begin{equation*}
S:=\sum_{\substack{k=1 \\ e\left(k_{s}, F_{k}\right) \geq-4 \xi}}^{1} \frac{\left|\bar{F}_{k}\right|}{\left|F_{s}, F_{k}\right|} \geq \frac{R \mu}{8}-\frac{3}{2} \tag{3.21}
\end{equation*}
$$

F_{s} will be called the accumulation interval of $\left\{F_{k}\right\}_{k=1}^{\prime}$.
Here the definitions of $\bar{F}_{k}=\overline{F_{k}\left(q_{k}\right)},\left|F_{s}, F_{k}\right|$ and $\varrho\left(F_{s}, F_{k}\right)$ correspond to the previous ones; μ, δ and ξ are fixed positive real numbers.
3.8. Now we define q_{k} for the short intervals. Let $D_{2 n}:=\bigcup_{k=1}^{n-1}\left\{J_{k}:\left|J_{k}\right| \leq a_{n} \delta_{n}\right\}$ and $K_{2 n}:=\left\{k:\left|J_{k}\right| \leq a_{n} \delta_{n}, 1 \leq k \leq N-1\right\},\left|K_{2 n}\right|=\varphi_{n}$. If m_{k} denotes the middle point of J_{k}, let

$$
\begin{aligned}
\beta_{k n} & =\max \left\{y: z_{k+1} \leq y \leq m_{k} \text { and (2.1) does not hold for } y\right\} \\
\gamma_{k n}: & =\min \left\{y: m_{k} \leq y \leq z_{k} \text { and (2.1) does not hold for } y\right\} \\
d_{k n}: & =\max \left(\beta_{k}-z_{k+1}, z_{k}-\gamma_{k}\right)
\end{aligned}
$$

finally

$$
\begin{equation*}
q_{k n}=q\left(J_{k n}\right)=d_{k n} /\left|J_{k n}\right|, \quad k \in K_{2 n} \tag{3.22}
\end{equation*}
$$

Using $\lambda_{n}\left(w, x_{k}\right)=1$, we obtain that $q_{k}>0$. Further by definition, (2.1) holds true whenever x is from the interior of $J_{k}\left(q_{k}\right), k \in K_{2 n}$. For the remaining 'bad' sets \bar{J}_{k} we prove relation

$$
\begin{equation*}
\sum_{k \in K_{2 n}}\left|\bar{J}_{k}\right|:=a_{n} \mu_{n} \leq \frac{a_{n} \varepsilon}{2} \quad \text { if } \quad n \geq n_{1} \tag{3.23}
\end{equation*}
$$

Clearly, we can suppose that $n \in\left\{n_{i}\right\}=N_{1}$ for which $\mu_{n}>\varepsilon / 2$. Now we can apply Statement 3.6 with the cast $\left\{F_{r}\right\}=\left\{J_{k n}\right\}_{k \in K_{2 n}}=D_{2 n}, A=a_{n}, \xi=\delta=\delta_{n}, \mu=\mu_{n}$, $R=\left[\log _{2} n^{1 / 7}\right]$ and $n \in N_{1}$.

We get the accumulation interval and we denote it by $M_{1}=M_{1 n}$ (1st step). Dropping $M_{1 n}$ we apply Statement 3.6 again, for the intervals $\left\{F_{r}\right\}=D_{2 n} \backslash M_{1 n}$
with $\mu=\mu_{n}-\left|\bar{M}_{1 n}\right| / a_{n} \geq \mu_{n}-\delta_{n}>\mu_{n} / 2$ and with the same A, ξ, δ, R and N_{1}. We get the accumulation interval $M_{2 n}$ (2nd step). At the i th step ($3 \leq i \leq \psi_{n}$) we drop $M_{1 n}, M_{2 n}, \ldots, M_{i-1, n}$ and apply Statement 3.6 again for the intervals $\left\{F_{r}\right\}=$ $D_{2 n} \backslash \bigcup_{t=1}^{i-1} M_{t n}$ with $\mu=\mu_{n}-\sum_{t=1}^{i-1}\left|\bar{M}_{t n}\right| / a_{n}$ and with the same A, ξ, δ, R and N_{1}. Here ψ_{n} denotes the first index for which

$$
\begin{equation*}
\sum_{t=1}^{\psi_{n}-1}\left|\bar{M}_{t}\right| \leq \frac{a_{n} \mu_{n}}{2} \quad \text { but } \quad \sum_{t=1}^{\psi_{n}}\left|\bar{M}_{t}\right|>\frac{a_{n} \mu_{n}}{2}, \quad n \in N_{1} . \tag{3.24}
\end{equation*}
$$

Denoting by $M_{\psi_{n}+1 . n}, M_{\psi_{n}+2 . n}, \ldots, M_{\varphi_{n}, n}$ the remaining (that is not accumulation) intervals of $D_{2 n}$, from relation (3.21) we get, if n_{1} is big enough,

$$
\begin{equation*}
\sum_{k=r}^{\varphi_{n}}, \frac{\left|\bar{M}_{k}\right|}{\left|M_{r}, M_{k}\right|} \geq \frac{\mu_{n} \log n}{2 \cdot 7 \cdot 8}-\frac{3}{2}>\frac{\mu_{n} \log n}{120}, \quad 1 \leq r \leq \psi_{n}, \quad n \in N \tag{3.25}
\end{equation*}
$$

Here and later the dash on the summation indicates that we omit those indices k for which $\varrho\left(M_{r}, M_{k}\right)<a_{n} \delta_{n}$.
3.9. By (3.22), we can choose the 'bad' points $v_{i n} \in M_{i n}\left(q_{i n} / 2\right)$ such that (2.1) does not hold for $v_{i n}\left(1 \leq i \leq \varphi_{n}, n \in N_{1}, q_{i n}=q_{i n}\left(M_{i n}\right)\right)$.

If for a fixed $n \in N_{1}$ there exists an index $t\left(1 \leq t \leq \varphi_{n}\right)$ such that

$$
\begin{equation*}
\lambda_{n}\left(w, v_{t n}\right) \geq 2 c \mu_{n} \log n \tag{3.26}
\end{equation*}
$$

(where $c>0$ will be determined later), then, using (2.1), we get relation $c \varepsilon \log n \geq$ $\lambda_{n}\left(w, v_{n}\right)$, whence by (3.26), $2 \mu_{n} \leq \varepsilon$. That means, we obtained (3.23). We shall verify (3.26) for every fixed $n \in N_{1}$ with a proper $t=t(n)$. Indeed, otherwise for a certain $m \in N_{\mathrm{l}}$

$$
\begin{equation*}
\lambda_{m}\left(w, v_{r m}\right)<2 c \mu_{n} \log m, \quad v_{r m} \in M_{r m}\left(q_{r m} / 2\right), \quad \text { for every } r, \quad 1 \leq r \leq \varphi_{m} \tag{3.27}
\end{equation*}
$$

Then, by (3.27) and (3.23)

$$
\begin{equation*}
\sum_{r=1}^{\varphi_{m}}\left|\bar{M}_{r m}\right| \lambda_{m}\left(w, v_{r m}\right)<2 c a_{m} \mu_{m}^{2} \log m \tag{3.28}
\end{equation*}
$$

On the other hand, applying (3.17) with $q_{k n}\left(M_{k n}\right) / 2$ we can write (with the same $\left|\bar{M}_{i}\right|$, as above)

$$
\begin{aligned}
\left|\bar{M}_{r}\right| \sum_{k=1}^{n}\left|t_{k}\left(v_{r n}\right)\right| & \geq \frac{1}{2}\left|\bar{M}_{r}\right| \sum_{k \in K_{2 n}}\left\{| | t_{k}\left(v_{r n}\right)\left|+\left|t_{k+1}\left(v_{r n}\right)\right|\right\}\right. \\
& >\frac{1}{16}\left|\bar{M}_{r}\right| \sum_{k=1}^{\varphi_{n}}, \frac{\left|\Omega\left(\bar{u}_{r}\right)\right|}{\left|\Omega\left(\bar{u}_{k}\right)\right|} \frac{\left|\bar{M}_{k}\right|}{\left|M_{r}, M_{k}\right|}, \quad 1 \leq r \leq \varphi_{n}
\end{aligned}
$$

for arbitrary $n \in N_{1}$ (here $\left|\Omega\left(\bar{u}_{i}\right)\right|=\min _{x \in \mathcal{M}_{i}(q, 12)}|\Omega(x)|$). Then, using relation $a+a^{-1} \geq$ 2 , (3.24) and (3.25), we get for $n \in N_{1}$

$$
\begin{aligned}
\sum_{r=1}^{\varphi_{n}} & \left|\bar{M}_{r}\right| \lambda_{n}\left(w, v_{r n}\right)>\frac{1}{16} \sum_{r=1}^{\varphi_{n}} \sum_{k=1}^{\varphi_{n}}, \frac{\left|\Omega\left(\bar{u}_{r}\right)\right|}{\left|\Omega\left(\bar{u}_{k}\right)\right|} \frac{\left|\bar{M}_{r}\right|\left|\bar{M}_{k}\right|}{\left|M_{r}, M_{k}\right|} \\
& =\frac{1}{16} \sum_{r=1}^{\varphi_{n}} \sum_{k=r}^{\varphi_{n}},\left\{\frac{\left|\Omega\left(\bar{u}_{r}\right)\right|}{\left|\Omega\left(\bar{u}_{k}\right)\right|}+\frac{\left|\Omega\left(\bar{u}_{k}\right)\right|}{\left|\Omega\left(\bar{u}_{r}\right)\right|}\right\} \frac{\left|\bar{M}_{r}\right|\left|\bar{M}_{k}\right|}{\left|M_{r}, M_{k}\right|} \\
& \geq \frac{1}{8} \sum_{r=1}^{\varphi_{n}}\left|\bar{M}_{r}\right| \sum_{k=r}^{\varphi_{n}} \frac{\left|\bar{M}_{k}\right|}{\left|M_{r}, M_{k}\right|}>\frac{a_{n} \mu_{n}^{2} \log n}{8 \cdot 2 \cdot 120} \\
& =2 a_{n}^{2} \log n \quad \text { if } c=1 / 3840 .
\end{aligned}
$$

But this contradicts (3.28), that is (3.26) must hold for any $n \in N_{1}$ with a proper $t=t(n)$. So (3.23) has been proved.
3.10. Finally, we estimate H_{n}. If $J_{0_{n}}$ is short, it should belong to H_{n}; the same holds for $J_{N n}$. So by (3.16) and (3.23) (see subsection 3.5)

$$
\left|H_{n}\right| \leq 4 \frac{a_{n}}{\log n}+\frac{a_{n} \varepsilon}{2}+2 a_{n} \delta_{n}+2\left(a_{n}-b_{n}\right) \leq \varepsilon a_{n}
$$

which gives the theorem if $n \geq n_{1}(\varepsilon)$.
3.11. Proof of Theorem 2.2. The proof is analogous to the previous one after establishing the corresponding formula, so we only sketch it (subsections 3.11-3.14).
3.12. First let $w \in W$. The fact is that we have the same relations as before (for example, again $\left.y_{k n}\left(w^{2}\right)-y_{k+1, n}\left(w^{2}\right) \sim a_{n} / n, y_{k n} \in I_{n}\right)$, but of course, now $I_{n}, y_{k n}\left(w^{2}\right)$, $a_{n}(w)$, and so on, are defined for $w \in W$.

To be more precise, let $I_{n}=\left[-b_{n}, b_{n}\right]$ where, with $0<\varepsilon<1, b_{n}=a_{n}(1-\varepsilon / 5)$. As we know $a_{n} \rightarrow 1$ (see [4, p. 30, (ii)], say).

Relations corresponding to Statement 3.1 are [4, (1.35); p. 130, last row; (12.7) and (1.39)] respectively. Notice that we used relations $a_{n} \sim 1,\left|y_{k n}\right| \leq b_{n}=a_{n}(1-\varepsilon / 5)$, $\delta_{n}:=\left(n T_{n}\right)^{-2 / 3}=o(1)($ see $[4,(1.23)]), \Psi_{n}(x) \sim \Phi_{n}(x) \sim 1$, if $x \in I_{n}([4,(11.11)$ and (11.10)]).

The relation corresponding to (3.6) can be proved as in the proof of Lemma 3.2: the relation corresponding to (3.7) is $[4,(12.5)]$; the corresponding Markov-Bernstein inequality is now [4, (12.16)].

Moreover, the definition of the class W (see subsection 1.6) ensures that [7, Lemma] and $[7$, Theorem 1] hold true, whence, among others, Statement 3.5 can be applied.

Other details, which are based on the previously mentioned relations, can be left to the reader.
3.13. Let $w \in G J$ be defined by formula (1.26), further let

$$
I_{n}:=[-1,1] \backslash \bigcup_{r=0}^{m+1}\left(u_{r}-\frac{\varepsilon}{10(m+1)}, u_{r}+\frac{\varepsilon}{10(m+1)}\right)
$$

(actually, I_{n} does not depend on n, but for convenience, we keep this notation). Replacing a_{n} by 1 , the formulae corresponding to (3.1), (3.2) and (3.6) come from [10; Theorems 3.2 and 3.3].

Indeed, (3.1) is immediate from [10, (3.4)]. To get (3.2), first let us remark that in $I_{n}, w(n, x) \sim w(x) \sim 1$, where $w(n, x)=w_{0}(\sqrt{1-x}+1 / n) w_{m+1}(\sqrt{1+x}+$ $1 / n) \prod_{r=1}^{m} w_{r}\left(\left|x-u_{r}\right|+1 / n\right)$. Now [10, (3.5)] yields formula (3.2), because for $\varphi(x)=\sin \vartheta(x=\cos \vartheta), \varphi(x) \sim 1$ if $x \in I_{n}$.

To get (3.6) (which is an improvement of (3.3)), we use [10, (3.6)] and the fact $w(x) \sim w(n, x) \sim 1, x \in I_{n}$, again.

Finally we verify

$$
\begin{equation*}
\left\|p_{n}\left(w^{2}\right) w\right\| \leq c \sqrt{n} \tag{3.30}
\end{equation*}
$$

(which corresponds to (3.4) if we replace T_{n} by n^{2}). We use relation

$$
\begin{equation*}
\left\|Q_{n}(x) w(n, x)\right\| \sim\left\|Q_{n}(x) w(x)\right\| \tag{3.31}
\end{equation*}
$$

valid for any $Q_{n} \in \mathscr{P}_{n}$ supposing that the weight w satisfies the inequality

$$
\begin{equation*}
w(x) \leq \frac{c}{|I|} \int_{I} w(x) d x \tag{3.32}
\end{equation*}
$$

for all intervals $I \subset[-1,1]$ and $x \in I$ where $c>0$ is independent of I and x (see [9, (5.1) and (6.26)]).

However, if $w \in G J$, then relation (1.28) involves (3.32), that means (3.31) holds true whenever $w \in G J$. Then, if $y_{j}=y_{j n}\left(w^{2}\right)$ is the closest root to x of $p_{n}\left(w^{2}, x\right)$ we can write

$$
\begin{align*}
\left|p_{n}\left(w^{2}, x\right) w(n, x)\right| & \sim\left|p_{n}\left(w^{2}, x\right) w\left(n, y_{j}\right)\right| \\
& \sim\left|p_{n}^{\prime}\left(w^{2}, y_{j}\right) w\left(n, y_{j}\right)\right|\left|x-y_{j}\right| \\
& \leq c \frac{n}{\left(\sin \vartheta_{j}\right)^{3 / 2}} \frac{\sin \vartheta_{j}}{n} \leq c \sqrt{n}, \quad|x| \leq 1 \tag{3.33}
\end{align*}
$$

(see [10; (3.4)-(3.6)] moreover, relations $w(n, x) \sim w\left(n, y_{j}\right)$ and $\left.\left|x-y_{j}\right| \leq \sin \vartheta_{j} / n\right)$, whence by (3.31) we get (3.30).
3.14. The above mentioned relations yield the analogue of Lemma 3.3 (again replacing T_{n} by n^{2}). However to get the relation corresponding to (3.20) we cannot use Statement 3.5 because we do not have the conditions for Q^{\prime}; we choose another
way. By definition, $w(x) \sim 1$ whenever $x \in I_{n}$; so by the Erdős-Turán relation (see subsection 3.6, Remark 2) we can write

$$
\begin{equation*}
t_{k}(x)+t_{k+1}(x)=\frac{w(x)}{w\left(x_{k}\right)} l_{k}(x)+\frac{w(x)}{w\left(x_{k+1}\right)} l_{k+1}(x) \geq c\left\{l_{k}(x)+l_{k+1}(x)\right\} \geq c \tag{3.34}
\end{equation*}
$$

if $x \in J_{k} \subset I_{n}$; here c does depend on ε and w. Other details in proving (2.2) when $w \in G J$ are analogous to the previous ones, so they are left to the reader.

References

[1] S. Damelin, 'The Lebesgue function and Lebesgue constant of Lagrange interpolation for Erdós weights', J. Approx. Theory (to appear).
[2] S. Damelin, 'Lebesgue bounds for exponential weights on [-1, 1]', Acta Math. Hungar. (to appear).
[3] P. Erdốs and P. Turán, 'On interpolation. III', Ann. of Math. 41 (1940), 510-553.
[4] A. L. Levin and D. S. Lubinsky, Christoffel functions and orthogonal polynomials for exponential weights on [-1, 1], Mem. Amer. Math. Soc. 535, Vol. 111 (1994).
[5] A. L. Levin and D. S. Lubinsky and T. Z. Mtembu, 'Christoffel functions and orthogonal polynomials for Erdốs weights on $(-\infty, \infty)^{\prime}$, Rend. Mat. Appl. (7) 14 (1994), 199-289.
[6] D. S. Lubinsky,' L_{∞} Markov and Bernstein inequalities for Erdős weights', J. Approx. Theory 60 (1990), 188-230.
[7] D. S. Lubinsky, 'An extension of the Erdős-Turán inequality for the sum of successive fundamental polynomials', Ann. of Numer. Math. 2 (1995), 305-309.
[8] G. Mastroianni and M. G. Russo, 'Weighted Lagrange interpolation for Jacobi weights', Technical Report.
[9] G. Mastroianni and V. Totik; 'Weighted polynomial inequalities with doubling and A_{∞} weights', J. Approx. Theory (to appear).
[10] G. Mastroianni and P. Vértesi, 'Some applications of generalized Jacobi weights', Acta Math. Hungar. 77, (1997), 323-357.
[11] J. Szabados, 'Weighted Lagrange interpolation polynomials', J. Inequal. Appl. 1 (1997), 99-123.
[12] J. Szabados,' Weighted Lagrange and Hermite-Fejér interpolation on the real line', Technical Report.
[13] J. Szabados and P. Vértesi, Interpolation of functions (World Scientific, Singapore, New Jersey, London, Hong Kong, 1990).
[14] PVértesi,' New estimation for the Lebesgue function of Lagrange interpolation', Acta Math. Acad. Sci. Hungar: 40 (1982), 21-27.
[15] P. Vértesi,' On the Lebesgue function of weighted Lagrange interpolation. I', Constr. Approx. (to appear).
[16] P. Vértesi,' Weighted Lagrange interpolation for generalized Jacobi weights', Technical Report (to appear).

Mathematical Institute of the Hungarian Academy of Sciences
Budapest P.O.B. 127
Hungary, 1364
e-mail: reter@math inst.hu

