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We establish a priori bounds, existence and qualitative behaviour of positive radial
solutions in annuli for a class of nonlinear systems driven by Pucci extremal
operators and Lane-Emden coupling in the superlinear regime. Our approach is
purely nonvariational. It is based on the shooting method, energy functionals,
spectral properties, and on a suitable criteria for locating critical points in annular
domains through the moving planes method that we also prove.
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1. Introduction

In this note we study a priori bounds, existence and qualitative behaviour of positive
radial solutions for fully nonlinear elliptic partial differential systems such as

⎧⎪⎪⎨
⎪⎪⎩
M±(D2u) + vp = 0 in Aa,b

M±(D2v) + uq = 0 in Aa,b

u, v > 0 in Aa,b

u, v = 0 on ∂Aa,b

(1.1)

in the superlinear regime pq > 1 for p, q > 0 where for some a, b > 0,

Aa,b = {x ∈ R
N : a < |x| < b}, with 0 < a < b < +∞,
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Radial solvability for Pucci-Lane-Emden systems in annuli 495

is an annulus in R
N for N � 2. Here M± are the Pucci’s extremal operators, which

play an essential role in stochastic control theory and mean field games. We deal
with classical solutions of (1.1) that are C2 in Aa,b.

The analysis of the associated ODE problem for proving existence of annular or
exterior domain solutions has been performed in many papers in the semilinear case
[1, 11, 14]. Up to our knowledge, for the Lane-Emden system, only the case when
p, q > 1 is available, see [7] whose proof is based on degree theoretic methods. It is
worth mentioning that the change of variables employed in [11], which eliminates
u′ e v′ from the ODE problem, does not work for Pucci’s extremal operators.
Therefore, a completely different approach in this case is required.

In the case of the Lane-Emden system involving the Laplacian operator, since

W 1,s
rad(Aa,b) ↪→ C(Aa,b) for any s > 1,

its possible to use the standard Mountain Pass theorem to prove existence of a
positive radial solution. Nevertheless, regarding a priori bounds, only partial results
are known in the Lipschitz superlinear case p, q � 1, see [4]. The proof there explores
a differentiability notion of the nonlinearities besides relying on the variational
formulation of the problem. Here we obtain new results in order to give a full
picture for the standard Lane-Emden system. Furthermore, since our approach is
nonvariational, we are able to develop an existence theory for operators with fully
nonlinear structure. We mention that, under no radial symmetry assumptions on
the domain, the best known existence result for systems involving Pucci operators
requires bounds from above on the exponents p and q, see [15].

In the sequel we state our main result.

Theorem 1.1. For any p, q > 0 with pq > 1, and 0 < a < b < +∞, problem (1.1)
has a radial solution pair in the annulus Aa,b. Moreover, there exists a constant C =
C(a, b, N, λ, Λ, p, q) > 0 that bounds the L∞-norm of all solutions. In addition,
for a fixed a > 0, the two components of any solution blow up as b → a.

The proof of theorem 1.1 consists on a careful study of the ODE problem through
the shooting method, asymptotics, energy and topological arguments, spectral prop-
erties, and on a suitable criteria for critical points produced via the moving planes
method that we also prove. We highlight that degree theory in cones and fully
nonlinear operators in the scalar setting were also combined in [8, 16].

More than that, we prove uniform bounds for the maximum positive inclination
of the solutions

C2(a, b, N, λ,Λ, p, q) � u′(a), v′(a) � C1(a, b, N, λ,Λ, p, q) > 0, (1.2)

which ends up characterizing the admissible shooting parameters in the respective
ODE problem in order to produce solutions in the annulus. This is particularly
interesting feature since uniqueness of solutions is a delicate issue when it refers to
systems.

We highlight that all arguments in this paper could be performed in order to
address Hardy-Henón type weights |x|a, |x|b with a, b ∈ R. Indeed, the energy esti-
mates are a little bit more involved, see [12] for a single equation. However, the
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difficulty in obtaining the a priori bounds remains the same since one just plug
a � |x| � b on the estimates. In addition, we could also treat more general radial
fully nonlinear operators, in light of [9]. We prefer to skip overload notation to
keep the presentation simpler and to concentrate in the difficulties produced by the
nature of the system above all.

The paper is organized as follows. In § 2 we introduce some basic properties of
the second order ODE problem associated to (1.1). In § 3 we obtain the crucial a
priori bounds for the solutions in terms of estimates for the corresponding shooting
parameters. Finally, § 4 is devoted to the existence statement in theorem 1.1.

2. Auxiliary tools

We start by recalling that the Pucci’s extremal operators M±
λ,Λ, for 0 < λ � Λ,

M+
λ,Λ(X) := sup

λI�A�ΛI
tr(AX) , M−

λ,Λ(X) := inf
λI�A�ΛI

tr(AX),

where A, X are N × N symmetric matrices, and I is the identity matrix. Equiva-
lently, if we denote by {ei}1�i�N the eigenvalues of X, we can define the Pucci’s
operators as

M+
λ,Λ(X) = Λ

∑
ei>0

ei + λ
∑
ei�0

ei, M−
λ,Λ(X) = λ

∑
ei>0

ei + Λ
∑
ei�0

ei. (2.1)

From now on we will drop writing the parameters λ, Λ in the notations for the
Pucci’s operators.

When u is a radial function, for ease of notation we set u(|x|) = u(r) for r = |x|.
If in addition u is C2, the eigenvalues of the Hessian matrix D2u are given by
{u′′, u′(r)

r , . . . , u′(r)
r } where u′(r)

r is repeated N − 1 times.
The system (1.1) for M+ and positive solutions is written in radial coordinates

as {
u′′ = M+(−r−1(N − 1)m+(u′) − vp),
v′′ = M+(−r−1(N − 1)m+(v′) − uq), u, v > 0,

(P+)

while for M− one has{
u′′ = M−(−r−1(N − 1)m−(u′) − vp),
v′′ = M−(−r−1(N − 1)m−(v′) − uq), u, v > 0,

(P−)

which are understood in the maximal interval where u, v are both positive.
Let us have in mind the following initial value problem with positive shooting

parameters δ, μ, which produces the radial solutions of (1.1),

{
u′′ = M±

(−r−1(N − 1)m±(u′) − |v|p−1v
)
, u(a) = 0, u′(a) = δ, δ > 0,

v′′ = M±
(−r−1(N − 1)m±(v′) − |u|q−1u

)
, v(a) = 0, v′(a) = μ, μ > 0,

(2.2)
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where M± and m± are the Lipschitz functions

m+(s) =

{
λs if s � 0
Λs if s > 0

and M+(s) =

{
s/λ if s � 0
s/Λ if s > 0,

(2.3)

m−(s) =

{
Λs if s � 0
λs if s > 0

and M−(s) =

{
s/Λ if s � 0
s/λ if s > 0.

(2.4)

Here we denote such a solution by (uδ,μ, vδ,μ). That is, a radial solution of (1.1)
in the annulus Aa,b satisfies (2.2) for some δ, μ > 0 with u(b) = v(b) = 0. We shall
omit the dependence on the parameters δ, μ whenever it is clear from the context.

Next we look at monotonicity properties for solutions (uδ,μ, vδ,μ) of (2.2) as
follows.

Lemma 2.1. For any δ, μ > 0 such that (uδ,μ, vδ,μ) is a positive solution of (1.1) in
the annulus Aa,b, there exist numbers τu = τu(δ, μ), and τv = τv(δ, μ), with τu, τv ∈
(a, b), such that the solution pair (u, v) of (2.2) satisfies

u′(r) > 0 for r < τu, u′(τu) = 0, u′(r) < 0 for τu < r < b,

v′(r) > 0 for r < τv, v′(τv) = 0, v′(r) < 0 for τv < r < b.

Proof. Since we have a positive solution pair (u, v) in the annulus, and both func-
tions start positive and increasing, a critical point must exist for both u and v by
Rolle’s theorem.

The uniqueness of τu follows from the fact that, since v is positive, any critical
point of u is a strict local maximum; likewise for τv and v. �

Notation. Here and onward in the text we write

τ∗ = min{τu, τv}, τ∗ = max{τu, τv}.

As a consequence of this monotonicity, the problems (P+) and (P–) can be better
specified. In the interval where u′ � 0 and v′ � 0 we write

for M+ in [a, τ∗] :
{

λu′′ = −Λr−1(N − 1)u′ − vp,
λv′′ = −Λr−1(N − 1)v′ − uq, u, v > 0; (2.5)

for M− in [a, τ∗] :
{

Λu′′ = −λr−1(N − 1)u′ − vp,
Λv′′ = −λr−1(N − 1)v′ − uq, u, v > 0; (2.6)

while in the interval where u′ � 0 and v′ � 0 it yields

for M+ in [τ∗, b] :
{

u′′ = M+(−λr−1(N − 1)u′ − ravp),
v′′ = M+(−λr−1(N − 1) v′ − rbuq), u, v > 0; (2.7)

for M− in [τ∗, b] :
{

u′′ = M−(−Λr−1(N − 1)u′ − ravp),
v′′ = M−(−Λr−1(N − 1) v′ − rbuq), u, v > 0.

(2.8)
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Moreover, in between, one of the following situations takes a place for the
operators M±:

for M+ in [τu, τv] :
{

u′′ = M+(−λr−1(N − 1)u′ − vp),
λv′′ = −Λr−1(N − 1)v′ − uq, u, v > 0; (2.9)

for M− in [τu, τv] :
{

u′′ = M−(−Λr−1(N − 1)u′ − vp),
Λv′′ = −λr−1(N − 1)v′ − uq, u, v > 0; (2.10)

if τ∗ = τu and τ∗ = τv; while

for M+ in [τv, τu] :
{

λu′′ = −Λr−1(N − 1)u′ − vp,
v′′ = M+(−λr−1(N − 1) v′ − uq), u, v > 0; (2.11)

for M− in [τv, τu] :
{

Λu′′ = −λr−1(N − 1)u′ − vp,
v′′ = M−(−Λr−1(N − 1) v′ − uq), u, v > 0.

(2.12)

if τ∗ = τv and τ∗ = τu.
The next theorem gives us a better precision on the location of the critical points.

It says no critical points exist in the closure of the half annulus A 1
2 (a+b), b .

Theorem 2.2. Let (u, v) be a positive C2 solution pair of (1.1) in the annulus
Aa,b, with u = v = 0 on ∂Aa,b. Then ∂ru < 0 and ∂rv < 0 for all r ∈ [

1
2 (a + b), b

]
,

where r = |x|.
The proof is accomplished through the moving planes method as in

[10, theorem 2], properly adapted to the Lane-Emden system in light of [6, 17].
It is worth observing that a classical Gidas-Ni-Nirenberg type symmetry result
does not hold for annular domains in order to conclude that solutions of (1.1) are
radial. However, the moving planes method can still be applied to obtain strict
monotonicity in a half portion of the annulus.

Proof. We revisit the moving planes method as performed in [6] in order to treat
the general range pq > 1. The lack of C1 or even Lipschitz continuity on the non-
linearities is allowed there, namely when either p < 1 or q < 1. Accordingly to the
notation in [6], for the annulus we have

Λ1 = Λ2 =
1
2
(a + b),

see § 2 in [6] for the corresponding definitions.
For any direction γ > 0 (as positive axis {x1 = 0}) it follows as in [6, Step 1 of

the proof of proposition 3.1, p.4183] that γ · Du < 0 in the maximal cap ΣΛ1 . The
union of these maximal caps, originated by all directions γ = x

|x| , x �= 0, produces
the half annulus AΛ1,b. In particular, no critical points exist in the open annulus
AΛ1,b.

If we had ∂ru(x0) = 0 or ∂rv(x0) = 0 for some x0 with |x0| = Λ1, then the Hopf
lemma in [6, lemma 3.3] would give us UΛ1 ≡ 0 or V Λ1 ≡ 0 in ΣΛ1 . Since the system
is strongly coupled, this means UΛ1 = V Λ1 ≡ 0 in ΣΛ1 . So u(xΛ1) = v(xΛ1) = 0 for
all x ∈ ΣΛ1 ∩ ∂Aa,b due to the boundary condition on |x| = b, but this is impossible
since the solution is positive. �
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Onward in the text and proofs, to fix the ideas we are going to consider problem
(P+) driven by the operator M+. However, everything can be repeated for the
respective (P−), or even for a problem involving both M+ and M−, with slight
modifications.

The next result concerns the monotonicity of some associated energy functions.
We point out that related monotonicity properties of energy-like functions for fully
nonlinear operators have been already observed for scalar equations in [2, 9].

We recall the dimension-like numbers Ñ− = (N − 1)Λ
λ + 1 and Ñ+ =

(N − 1) λ
Λ + 1.

Proposition 2.3. Let δ, μ > 0 be such that (uδ,μ, vδ,μ) is a positive solution of
(1.1) in the annulus Aa,b. We set

Es(r) = u′v′ +
1

s(p + 1)
vp+1 +

1
s(q + 1)

uq+1, s > 0.

Then Eλ(r) is monotone decreasing in [a, τ∗] ∪ [τ∗, b), and it is increasing in
[τ∗, τ∗]. Further,

Eλ
1 (r) = r2(Ñ−−1) Eλ(r) in [a, τ∗]

EΛ
1 (r) = r2(Ñ−−1) EΛ(r) in [τ∗, b)

are monotone increasing functions.

Proof. We recall that in [a, τ∗] we have u′, v′ � 0, u′′ � 0, and

u′′v′ + vpv′
λ = − (Ñ−−1)u′v′

r , v′′u′ + uqu′
λ = − (Ñ−−1)u′v′

r .

In [τ∗, b) we have u′, v′ < 0 and

u′′v′ +
vpv′

Λ
� u′′v′ +

vpv′

σ
= − (N̂ − 1)u′v′

r
� − (Ñ−−1)u′v′

r
,

where (σ, N̂) is either (λ, N) or (Λ, Ñ+), and analogously v′′u′ + uqu′
Λ �

− (Ñ−−1)u′v′

r . Thus, for κ = 2(Ñ− − 1), we obtain in [τ∗, b),

(EΛ
1 )′(r) = κrκ−1

{
u′v′ +

vp+1

Λ(p + 1)
+

uq+1

Λ(q + 1)

}

+ rκ

{
u′′v′ + u′v′′ +

vpv′

Λ
+

uqu′

Λ

}
� 0,

while in (a, τ∗] it yields

(Eλ
1 )′(r) = κrκ−1

{
u′v′ +

vp+1

λ(p + 1)
+

uq+1

λ(q + 1)

}

+ rκ

{
u′′v′ + u′v′′ +

vpv′

λ
+

uqu′

λ

}
� 0.
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On the other hand, in [a, τ∗] one writes

u′′v′ +
vpv′

λ
� − (Ñ+−1)u′v′

r
, v′′u′ +

uqu′

λ
� − (Ñ+−1)u′v′

r
,

while in [τ∗, b),

u′′v′ +
vpv′

λ
� u′′v′ +

vpv′

σ
� − (Ñ+−1)u′v′

r
, v′′u′ +

uqu′

λ
� − (Ñ+−1)u′v′

r
,

so anyways E ′
λ(r) � − 2(Ñ+−1)

r u′v′ � 0.
Let us now analyse the interval [τ∗, τ∗]; to fix the ideas say τ∗ = τv and τ∗ = τu.

Then, in [τv, τu] we have u′ > 0 and v′ < 0 (recall that τ∗ � b). Hence

u′′v′ +
vpv′

λ
� − (Ñ+−1)u′v′

r
,

v′′u′ +
uqu′

λ
� v′′u′ +

uqu′

σ
= − (N̂ − 1)u′v′

r
� − (Ñ+−1)u′v′

r
.

Thus, for κ = 2(Ñ+ − 1) we get E ′
λ(r) � −κ

r u′v′ � 0. The reasoning is analogous
when instead τ∗ = τu and τ∗ = τv. �

As a consequence of the energy, we derive some useful shooting estimates.

Lemma 2.4. Let δ, μ > 0 be such that (uδ,μ, vδ,μ) is a positive solution of (1.1) in the
annulus Aa,b. Then, for some C0 = C0(a, b, N, λ, Λ, p, q), the following estimates
hold:

τ Ñ−
v � C0

μ
1

q+1

δ
q

q+1
, (2.13)

τ Ñ−
u � C0

δ
1

p+1

μ
p

p+1
. (2.14)

Proof. By proposition 2.3 we have Eλ(r) � Eλ(a) for all r � τ∗, that is,

1
p + 1

vp+1(r) +
1

q + 1
uq+1(r) � λ δμ for all [a, τ∗], (2.15)

since u′v′ � 0 in [a, τ∗]. Observe that (2.15) implies

uq(r) � C(δμ)
q

q+1 for all r ∈ [a, τv], vp(r) � C(δμ)
p

p+1 for all r ∈ [a, τu],

(2.16)

since τu (resp. τv) is the maximum point for u (resp. v) in [a, ρu] (resp. in [a, ρv]).
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Next we write the equation for v in [a, τv] as (v′rÑ−−1)′ = −uq

λ rÑ−−1, and so

0 = v′(τv) τ Ñ−−1
v = μ aÑ−−1 − 1

λ

∫ τv

a

rÑ−−1uq(r) dr. (2.17)

By combining the estimate for u in (2.16) and equality (2.17) we obtain

μ =
1

λaÑ−−1

∫ τv

a

rÑ−−1uq(r) dr � C

Ñ−
(δμ)

q
q+1 τ Ñ−

v ,

from which we derive (2.13).
Analogously, in [a, τu] one writes (u′rÑ−−1)′ = −vp

λ rÑ−−1 and so

0 = u′(τu) τ Ñ−−1
u = δ aÑ−−1 − 1

λ

∫ τu

a

rÑ−−1vp(r) dr. (2.18)

Thus, using the estimate for v in (2.16) into (2.18) one reaches (2.14) out. �

Note that if the product δμ → 0, then u(τ∗), v(τ∗) → 0. Indeed, by (2.15),

1
p + 1

vp+1(τ∗) +
1

q + 1
uq+1(τ∗) � λ δμ → 0 whenever δμ → 0. (2.19)

We show in the next corollary that such a property is never true for solutions of
(1.1), by verifying the lower estimate in (1.2).

Corollary 2.5. Let δ, μ > 0 be such that (uδ,μ, vδ,μ) is a positive solution of (1.1)
in the annulus Aa,b. Then

δ, μ � C(a, b, N, λ,Λ, p, q) > 0. (2.20)

Proof. Set C1 = (bÑ−/C0)q+1 and C2 = (bÑ−/C0)p+1. By (2.13) and (2.14) we
derive

μ � C1 δq and δ � C2 μp.

The combination of these two estimates then implies

δpq−1 � 1
Cp

1C2
, μpq−1 � 1

C1C
q
2

,

which gives us the lower bound (2.20). �

3. A priori bounds and blow-up

In the first part of this section we show that there exists C > 0 such that

‖u‖L∞(Aa,b), ‖v‖L∞(Aa,b) � C

for all positive solution pairs (u, v) of problem (1.1) in the annulus Aa,b.
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Our strategy is to combine concavity properties with a uniform bound on the
shooting parameters. On the one hand, from the concavity of u and v in [a, τu] and
[a, τv] respectively, for any solution pair of (1.1) in the annulus Aa,b we have

‖u‖∞ = u(τu) � δ(b − a), ‖v‖∞ = v(τu) � μ(b − a). (3.1)

Then it only remains to prove the following estimate by above for δ and μ. Combined
with (2.20), this establishes the estimates in (1.2).

Lemma 3.1. Given 0 < a < b < +∞, let δ, μ > 0 be such that (uδ,μ, vδ,μ) is a posi-
tive solution of (1.1) in the annulus Aa,b. Then δ � C and μ � C for some universal
C = C(a, b, λ, Λ, p, q, N).

Proof. We fix the annulus Aa,b with 0 < a < b < +∞. Assume by contradiction
that there exists a sequence of shooting parameters (δk, μk) with respective solu-
tions (uk, vk) of (2.2) in Aa,b such that at least one of them converges to infinity,
that is δk → +∞ or μk → +∞. The first step is to show that both of them approach
infinity in this case. Step (1) δk → +∞ and μk → +∞.

Assume on the contrary that either δk → ∞ or μk → ∞, and the other one is
bounded. To fix the ideas we suppose δk → +∞ and μk � C for all k. Then, by
(2.14) we obtain b � τu → +∞, which is impossible since the annulus Aa,b is fixed.
Analogously, if μk → +∞ and δk � C for all k, one finds the absurdity b � τv →
+∞ by (2.13).

We set

wk(r) :=
1

p + 1
vp+1

k (r) +
1

q + 1
uq+1

k (r).

Step (2) wk(τk
∗ ) → +∞ and wk(τ∗

k ) → +∞. We already know that the energy Eλ
1 is

increasing in [a, τk
∗ ] by proposition 2.3, and the annulus is fixed so that a � τk

∗ � b
for all k. Thus,

wk(τk
∗ ) � C0 δkμk for all k, where C0 = C0(a, b, N, λ,Λ, p, q). (3.2)

On the other hand, wk(τ∗
k ) � wk(τk

∗ ) by proposition 2.3, since the energy Eλ is
increasing in [τk

∗ , τ∗
k ]. Now, by Step 1 we have δkμk → +∞. This proves Step 2.

Step (3) ‖uk‖∞ → +∞ and ‖vk‖∞ → +∞. By Step 2 we know that at least one
of the norms sequences satisfies ‖uk‖∞ → +∞ or ‖vk‖∞ → +∞. Without loss we
assume ‖uk‖∞ → +∞.

Suppose by contradiction that ‖vk‖L∞(A) � C is bounded in the annulus A =
Aa,b. Recall that uk solves −M±(D2uk) = vp

k in A, with uk = 0 on ∂A. Now we
are going to use the Alexandrov-Bakelman-Pucci estimate (ABP), which can be
found for instance in [3]. By ABP we then get uk � C in Aa,b, which is impossible.
Thus, ‖vk‖∞ → +∞.

Step (4) limk→∞ τ∗
k = b. Otherwise we may write b > (1 + ε)τ∗

k for all k, up to a
subsequence, for some ε > 0. In particular, uk, vk are both positive and decreasing
in the interval [τ∗

k , (1 + ε)τ∗
k ].
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We consider the annulus Ak = Aτ∗
k ,r. Then Uk = tkuk and vk solve

−M±(D2Uk) � tkvp
k, −M±(D2vk) � uq

k � tk U
1/p
k in Ak, Uk, vk > 0 in Ak;

while uk and Vk = skvk satisfy

−M±(D2uk) � vp
k � sk V

1/q
k , −M±(D2Vk) � skuq

k in Ak, uk, Vk > 0inAk,

where

tk = min
Ak

u
pq−1
p+1

k = u
pq−1
p+1

k (r), sk = min
Ak

v
pq−1
q+1

k = v
pq−1
q+1

k (r).

Hence, by the definition of first eigenvalue λ+
1 (D) = λ+

1 (M±, M±, D) for the fully
nonlinear Lane-Emden systems in [13], we have

u
pq−1
p+1

k (r), v
pq−1
q+1

k (r) � λ+
1 (Ak) � λ+

1 (Aτ∗
k ,ik

) � 1
a2

λ+
1

(
A1,1+ ε

2

)
=: C1, (3.3)

for all r ∈ Ik = [ik, jk], where ik :=
(
1 + ε

2

)
τ∗
k and jk := (1 + ε)τ∗

k , since ε > 0
is fixed. Recall the energy EΛ

1 is increasing in [τ∗
k , b] by proposition 2.3. Thus,

EΛ
1 (τ∗

k ) � EΛ
1 (r) for all r ∈ Ik. Hence, this, (3.2), and (3.3) give us for r ∈ Ik

(u′
kv′

k)(r) � 1
Λ

(
a
b

)2(Ñ−−1)
wk(τ∗

k ) − 1
Λwk(r) � c0 δkμk (3.4)

for large k. Recall that u′
k < 0 and v′

k < 0 in Ik. In particular, u′
k(r) or v′

k(r) goes
to −∞ as k → ∞, for all r ∈ Ik.

Observe that (u′
k)2(r) + (v′

k)2(r) � 2(u′
kv′

k)(r) � 2c0 δkμk for all r ∈ Ik. Then for
each k we have either

|Ck| = | {r ∈ Ik : (u′
k)2(r) � c0 δkμk} | � 1

2
|Ik|

or

|Dk| = | {r ∈ Ik : (v′
k)2(r) � c0 δkμk} | � 1

2
|Ik|.

So we can extract a subsequence for which one of the two situations occurs, namely
the first one |Ck| � 1

2 |Ik|.
Next, the Fundamental Theorem of Calculus and the Lebesgue integration for

this subsequence imply

uk(ik) � uk(ik) − uk(b) =
∫ b

ik

(−u′
k) �

∫
Ck

(−u′
k)

= |Ck| (c0 δkμk)1/2 � 1
2
|Ik| (c0 δkμk)1/2 � ε

4
a (c0 δkμk)1/2 → +∞

as k → +∞ by using the fact that ε > 0 is fixed fulfilling |Ik| = ε
2τ∗

k � ε
2a. Hence

we reach a contradiction with the estimate (3.3). The case when |Dk| � 1
2 |Ik| is

analogous.
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Step (5) Conclusion
We reach a contradiction by putting together theorem 2.2 with Step 4, since

b > a. �

We point out that, in order to obtaining a priori bounds, it is essential to have
a fixed minimum distance between the radii of the annulus, that is b − a � c0, as
shows the next proposition.

Proposition 3.2. If b → a then u(τu), v(τv) → +∞.

Proof. Let (u, v) be a solution pair of (2.2) and denote A = Aa,b. We set U = tu,
with t > 0, and write{−M±(D2U) � t vp

−M±(D2v) � uq− 1
p u

1
p � t−

1
p ‖u‖

pq−1
p∞ U

1
p = t U

1
p

since pq > 1, as long as we choose t = ‖u‖
pq−1
p+1

L∞(A). Hence, by applying the ABP
estimate in the domain A for each of the scalar PDE inequalities above we obtain

sup
A

U � C t sup
A

vp |A|1/N , sup
A

v � C t sup
A

U
1
p |A|1/N .

Then by taking the 1/p power of the inequality above for U , and replacing it into
the inequality satisfied by v, one finds

sup
A

v � C
p+1

p t
p+1

p sup
A

v+ |A| p+1
Np ⇒ t � 1

C|A|1/p
→ ∞ as |A| → 0.

On the other hand, by writing vp = vp− 1
q v

1
q � ‖v‖

pq−1
q∞ v

1
q and arguing simi-

larly with the pair (u, sV ), where V = sv for s = ‖v+‖
pq−1
q+1

L∞(A) we get v(τv) =
‖v+‖L∞(A) → ∞ as |A| → 0 as well. �

4. Existence result

We are going to prove the existence of a classical solution in the annulus Aa,b

so that u = v = 0 on ∂Aa,b. The tactics is to use a suitable Krasnosel’skii degree
theoretical argument, similar to those employed in [4, 5].

Proposition 4.1. Let K be a cone in a Banach space X and Φ : K → K a
completely continuous operator such that Φ(0) = 0. For Bs = {w ∈ K : ‖w‖ < s},
assume that there exist 0 < r < R so that

(i) w �= θΦ(w) for all θ ∈ [0, 1] and w ∈ K such that ‖w‖ = r;

(ii) there exists a compact map F : BR × [0, ∞) → K with F (w, 0) = Φ(w),
F (w, t) �= w for ‖w‖ = R and 0 � t < ∞, while F (w, t) = w has no solution
w ∈ BR for t � t0.
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Then if U = {w ∈ K : r < ‖w‖ < R}, one has

iK(Φ,BR) = 0, iK(Φ,Br) = 1, iK(Φ,U) = −1,

where iK(Φ, W) is the index of Φ on W. In particular, Φ has a fixed point in U .

Proof of the existence in the annulus via degree theory. We consider X =
C(Āa,b) × C(Āa,b), with the norm ‖(u, v)‖ := max{‖u‖L∞(Aa,b), ‖v‖L∞(Aa,b)}.

Let K = {(u, v) ∈ X : u, v � 0}, and denote Bs = {(u, v) ∈ K : ‖(u, v)‖ < s}.
For any (u, v) ∈ K and t � 0 we define the operator F (t, u, v) = (U, V ), with

U = Ut and V = Vt , as the unique solution of the problem

−M±(D2U) = (v + t)p, −M±(D2V ) = (u + t)q in Aa,b, U, V = 0 on ∂Aa,b.

In particular, (U, V ) ∈ K by the maximum principle for scalar equations. We denote
Φ(·) = F (0, ·). Our goal is to show that Φ has a positive fixed point (u, v).

Let us verify the hypotheses in proposition 4.1.

(i) We take (u, v) ∈ K such that ‖(u, v)‖ = r, for some r > 0 to be chosen, and
(u, v) = θΦ(u, v), θ ∈ (0, 1]. In particular, ‖u‖∞, ‖v‖∞ � r. As before, we
set ũ = κu and write{−M±(D2ũ) = θκvp � κvp

−M±(D2v) = θuq− 1
p u

1
p � κ− 1

p ‖u‖
pq−1

p∞ (ũ)
1
p = κ(ũ)

1
p

since pq > 1, as long as κ := ‖u‖
pq−1
p+1

L∞(Aa,b) � r
pq−1
p+1 . Then we choose r > 0 small

enough such that r
pq−1
p+1 < λ+

1 (M±, M±, Aa,b). Since u, v = 0 on ∂Aa,b, then
by the maximum principle for the Lane-Emden system for fully nonlinear
operators with weights in [13] we get u, v � 0 in Aa,b. Since (u, v) ∈ K then
u, v ≡ 0 in Aa,b, but this contradicts the fact that ‖(u, v)‖ = r > 0.

(ii) Case 1: t � t0

If Ft has a fixed point (ut, vt) then ũt = κut and vt solve{−M±(D2ũt) = κ(vt + t)p � κvp
t

−M±(D2vt) = (ut + t)q− 1
p (ut + t)

1
p � t

pq−1
p

0 κ− 1
p (ũt)

1
p = κ(ũt)

1
p

with ũt, vt > 0 in Aa,b , where

κ = t
pq−1
p+1

0 .

Now, the definition of first eigenvalue λ+
1 (Aa,b) = λ+

1 (M±, M±, Aa,b) for the fully
nonlinear weighted Lane-Emden system in [13] yields

κ � λ+
1 (Aa,b).

Thus we choose t0 large enough such that κ = 2λ+
1 (Aa,b) in order to derive a

contradiction.
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Case 2: t � t0
In this case we infer that lemma 3.1 immediately produces a priori bounds for

the fixed points of F (t, ·) in bounded intervals of t, that is, for each fixed t0 > 0
it will give ‖(ut, vt)‖ � C(t0) for all solutions u = ut, v = vt of F (t, u, v) = (u, v)
with t ∈ [0, t0]. Indeed, we define the function

wt(r) :=
1

p + 1
|vt + t|p+1(r) +

1
q + 1

|ut + t|q+1(r) for t � 0.

Then Step 1, Step 2 hold for t > 0 exactly as in the case t = 0. Moreover, the
symmetry result in theorem 2.2 applies as well (and so Step 5) since we maintain
the zero boundary condition ut = vt = 0 on ∂Aa,b. On the other hand, a positive
solution (ut, vt) of

−M±(D2ut) = (vt + t)p, −M±(D2vt) = (ut + t)q in Aa,b, ut, vt = 0 on ∂Aa,b

produces a positive solution (ũt, ṽt), with ũt = ut + t and ṽt = vt + t, of

−M±(D2ũt) = ṽp
t , −M±(D2ṽt) = ũq

t in Aa,b, ũt, ṽt = t on ∂Aa,b.

Thus, the proof of Step 4 in lemma 3.1 is unchangeable for (ũt, ṽt) in place of (u, v),
since we only used in such a proof that the solution is nonnegative at b.

Therefore, it is enough to choose R = 2C(t0) in order to conclude that Ft does
not have fixed points satisfying ‖(ut, vt)‖ = R whenever t � t0. The complementary
case ‖(ut, vt)‖ = R with t � t0 is automatically fulfilled by Case 1. �
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