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ABSTRACT

In this paper, we consider the SL(2) analogue of two well-known theorems about
period integrals of automorphic forms on GL(2): one due to Harder—Langlands—
Rapoport about non-vanishing of period integrals on GLy(A ) of cuspidal automorphic
representations on GLa(Ag) where E is a quadratic extension of a number field F,
and the other due to Waldspurger involving toric periods of automorphic forms on
GL2(Ap). In both these cases, now involving SL(2), we analyze period integrals on global
L-packets; we prove that under certain conditions, a global automorphic L-packet which
at each place of a number field has a distinguished representation, contains globally
distinguished representations, and further, an automorphic representation which is
locally distinguished is globally distinguished.
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1. Introduction

Let F' be a number field and A its adele ring. Let G be a reductive algebraic group over F' with
center Z, and H a reductive subgroup of G over F' containing Z. For an automorphic form ¢ on
G(Ar) on which Z(Ap) acts trivially, the period integral of ¢ with respect to H is defined to
be the integral (when convergent, which is the case if ¢ is cuspidal and H(F)Z(Ar)\H(AF) has
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finite volume)

P(¢) = ¢(h) dh,
H(F)Z(Ar)\H(Ar)

where dh is the natural measure on H(F)Z(Ap)\H(AF).

An automorphic representation II of G(Ap) is said to be globally distinguished with respect
to H if this period integral is nonzero for some ¢ € II. More generally, if x is a one-dimensional
representation of H(Ap) trivial on H(F) such that Z(Ap) acts trivially on ¢(h)x~'(h), and

/ S(h)x " (h) dh
H(F)Z(Ar)\H(Ar)

is nonzero for some ¢ € II, then II is said to be y-distinguished with respect to H.

The corresponding local notion is defined as follows. If II, is an irreducible admissible
representation of G(Fy), II, is said to be locally distinguished with respect to H(F,) if it admits
a non-trivial H (F,)-invariant linear form. Distinction with respect to x,, a character of H(F,),
is defined in a similar manner.

It is obvious that if II = ®,II, is globally distinguished with respect to H(Ap), then each
I1, is locally distinguished with respect to H(F),). Indeed, the period integral ‘restricted’ to II,
is a non-trivial H(F},)-invariant linear form. The local-global question asks the converse: if II is
such that each II, is locally distinguished, is II globally distinguished? It seems best to break
this question into several parts.

Question 1. Let G be a reductive group over a local field k, and H a closed subgroup. Then, is
there a criterion in terms of Langlands parameters as to when a representation in an L-packet
of G(k) has an H (k)-invariant linear form? Similarly, if G is a reductive group over a number
field F', with a closed subgroup H, is there a criterion as to when a global L-packet of G(Ap) is
globally distinguished by H(Ar)?

It has been suggested by Jacquet, and corroborated in the work of Sakellaridis and
Venkatesh [SV00], that in many cases, such as when H is a spherical subgroup of G,
representations of G(k) which are distinguished by H (k) arise as functorial lifts from a group
Gy to G through a mapping of L-groups “Gy — LG; the complete picture of distinguished
representations of G(k) is then a refinement of this condition on L-parameters. For example,
for the embedding SO,, < SO,, x SO,+1 as studied in [GGP12, GP92], there are no conditions
on the parameters involved, i.e., “Gy = G, but there are conditions on certain epsilon factors
in the local case, and on L-values at s =1/2 in the global case.

The work of Sakellaridis and Venkatesh in [SVO00] is about the Plancherel decomposition of
L%(H(k)\G(k)), so although it does not answer exactly this question about classifying irreducible
admissible representations of G(k) which are distinguished by H(k), it is still closely related.
There are global analogues too in these works.

Our work presumes an answer to Question 1, and indeed in the cases that we study, the
answer to Question 1 has been known for a long time. We refer to § 2.2 for the case dealt with by
Harder-Langlands—Rapoport in the local and global cases. In the case dealt with by Waldspurger
for toric integrals for GLa, “Gx = G, but there are finer arithmetic invariants, certain L and e
factors, that we will come to later.

Given that one is supposed to know the answer to Question 1, we are trying in this paper to
ask a local-global question.
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Question 2. Let II=®,II, be a cuspidal automorphic representation of G(Ap) such that
each of the representations I, of G(F,) is distinguished by H(F,). Is there an automorphic
representation, say II', in the global L-packet of G(Ar) determined by II which is globally
distinguished by H(Ap)?

If we take it that the answers to the local and global parts in Question 1 are in terms of the
Langlands parameters associated with IT = ®II, to factor through “Gy — LG, we are led to
questions about local versus global factoring of parameters through this mapping of L-groups.

The authors admit that they have not seen any general context, say for representations
of an abstract group W, with subgroups W, which generate W, where one wants to force a
representation of W with values in “G to be conjugated to lie inside “Gp, under the map
LGy — @, given that the representation of W restricted to W, can be conjugated to lie
inside “G'fr; this is exactly what we will achieve in the SL(2) analogue of the case dealt with
by Harder—Langlands—Rapoport, although, as there is no template for this work (of forcing
representations to lie inside a subgroup through local conditions), we have to content ourselves
with a sample theorem in which we restrict either the global representation to be non-CM, or the
local representation to be a discrete series of a certain kind. In fact, this paper emphasizes the role
that a discrete series local component of an automorphic representation might make to a global
result: a local condition with a global effect, and we also know that the global result fails without
having some local conditions [AP06, Theorem 8.2].

Since Question 2 is about an L-packet, one might expect, besides the parameter to factor
through Gy — LG, some L-value too to intervene in the answer to this question. (Some
L-values, such as having a pole at s =1, have an interpretation in terms of the Langlands
parameters, whereas some other L-values, such as vanishing or non-vanishing at s =1/2, do
not!)

In the case studied by Harder—Langlands—Rapoport, there are conditions on the Langlands
parameter, whereas in the work of Waldspurger [Wal85], as generalized in [GP92, GGP12], there
are no conditions on the parameters involved, but there are conditions on L-values at s =1/2.

If no automorphic member of the global L-packet determined by II is globally distinguished,
say for reasons of an L-value, we do not need to proceed any further in this quest in the global
L-packet determined by II. So we assume that there is a member in the L-packet determined by
IT which is globally distinguished, which we can then assume to be II itself in our further study.

Question 3. Suppose II =®,II, is an automorphic representation of G(Ap) such that II is
globally distinguished by H(Ap). Let II' = ®,II/, be an automorphic representation of G(Ar) in
the same L-packet as II such that II is locally distinguished by H(F),) at all the places of F.
Then is IT' globally distinguished by H(Ar)?

This is the local-global question referred to in the title of this paper, and which being a
question about an individual automorphic representation, and not a question about an L-packet,
is not governed by an L-value, but keeping the parametrization of automorphic representations
in mind (due to Labesse-Langlands for SLy, and then Langlands, Kottwitz, and Arthur), should
be related to a certain finite group of connected components of an appropriate representation
(of the Langlands group). However, in the examples we deal with in this paper, the local-global
principle turns out to be true.

The aim of this work is to initiate such a finer study in the global context of some low rank
cases in detail, by varying the themes already studied in the literature. In this work we will
consider Questions 2 and 3 above for two basic cases. These two cases will be variations on
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two rather well-studied examples where we change the groups involved slightly, allowing us to
consider non-trivial local and global L-packets.

The first example is one of (GLa(FE), GL2(F')) where E/F is a quadratic extension of either
local or global fields. This came up in the seminal work of Harder et al. [HLR86] which was later
pursued by Flicker and Hakim [F1i88, F1i91, Hak91]. Global distinction here is characterized by
an L-function, the Asai L-function, having a pole at s = 1. We will analyze Questions 2 and 3
for the related pair (SLa(E), SLa(F')). The starting point of this investigation is an elementary
observation that an automorphic representation of GL2(Ag) has a non-trivial period integral on
SLo(Ap) if and only if it is x o det-distinguished with respect to GLa(Ap) for a Grossencharacter
x of Ay /F*, which is then a condition on the Asai L-function twisted by x ! to have a pole at
s =1. This allows conclusions about L-packets of automorphic representations of SLa(Ag), but
making conclusions about individual automorphic representations of SLa(Af) is subtler.

The second example that we will consider in this paper is related to the celebrated work of
Waldspurger [Wal85]. Here G = GLo(F'), or more generally the invertible elements of a quaternion
algebra over F', and H is the torus defined by a quadratic algebra E/F. In this case, 7 is
globally x-distinguished for a Grossencharacter x : Aj,/E* — C* if and only if each m, is locally
Xo-distinguished and L(%, BC(m) ® x~!) # 0, where BC(r) denotes the base change lift of 7 to
GL2(Ag). The local picture is well understood by the work of Saito and Tunnell [Sai93, Tun83],
and involves certain local epsilon factors. We will analyze Questions 2 and 3 above for the related
pair (SLy(F), E') where E! is the subgroup of E* of norm one elements. It may be noted that
there are many non-conjugate embeddings of E! inside SLy(F); we will fix one such embedding;
our answers do not depend on this initial fixing of an embedding of E' inside SLa(F).

In the first example, (GL2(E), GL2(F')), the local-global principle almost holds. If each m,
is locally distinguished, then 7 is either globally distinguished or is globally distinguished with
respect to the quadratic character w associated to E/F [HLR86]. Thus, if each 7, is distinguished
and if at least one m, is not w,-distinguished, then = is globally distinguished. In particular, if
Ty, IS & square integrable representation at least at one place v of E which is inert over F, then
7 is globally distinguished if and only if it is locally distinguished. This follows since a discrete
series representation of GLa(E,), once distinguished by GLa(F},), cannot be w,-distinguished.

In [AP06] we had constructed an example of an automorphic representation II on SLa(Afg)
where each I, is a locally distinguished representation of SLy(F,) but no member of the L-
packet of II is globally distinguished. In this paper, we give a positive answer to Question 2 in
some situations, but have not succeeded in getting a complete understanding of it.

THEOREM 1.1. Let II be a cuspidal representation of SLo(Ag). If II appears in the restriction of
a CM representation of GLo(Af), assume that there is at least one square integrable component
at a place of EZ which is inert over the corresponding place vg of F. In the CM case, assume
that either II is CM by three distinct quadratic extensions of E, or alternatively if it is CM
by a unique quadratic extension of E, then at the place vy, the local component is also CM by
a unique quadratic extension of E,, (or more generally, it is CM only by quadratic extensions
which are Galois over F,, ). Suppose each I1,, is distinguished by SLo(F,). Then there is a cuspidal
representation in the L-packet of II which is distinguished by SLa(AF).

Question 3 has a complete answer in the following theorem.

THEOREM 1.2. Let II be a cuspidal representation of SLy(Ag) which is globally distinguished
by SLa(AF). Let II' = ®,II, be an automorphic representation of SLa(Ag) in the same L-packet

962

https://doi.org/10.1112/50010437X12000772 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000772

A LOCAL-GLOBAL QUESTION IN AUTOMORPHIC FORMS

as Il such that 11}, is locally distinguished by SLa(F),) at all the places of F. Then II' is globally
distinguished by SLa(AFp).

A key ingredient in the proof of Theorem 1.1 is the multiplicity one theorem for automorphic
representations of SLy(Ap) due to [RamO00], whereas Theorem 1.2 is proved via an exact
determination of the fibers of the Asai lift from automorphic representations on GL2(Ag)
to automorphic representations on GL4(Ap), completing an earlier work of Krishnamurthy
in [Kri03].

In the example considered by Waldspurger, (GLo(F), E*), unlike in the first example, there
is a genuine global obstruction to global distinction, and this is the vanishing of the central value
of the base change L-function. In our study of the pair (SLg(F), E'), we are naturally led to
some questions about L-functions.

According to a well-known result of Friedberg and Hoffstein [FH95|, for an automorphic
representation m on GLa(Af), there are infinitely many quadratic characters n, with prescribed
local behaviour at finitely many places, such that the twisted L-values, L(%, T ® 1), are Nonzero,
provided the global root number 6(%, ) is 1, possibly after twisting = by a quadratic character
(see also [Jac87]). This latter condition on the global root number of 7 is automatic if = has at
least one square integrable component [Wal91]. For the analysis of the special linear analogue
of the second example, one needs to understand (a special case) of the following simultaneous
non-vanishing problem, stated as a conjecture.

CONJECTURE 1.3. Let m; and my be two cuspidal representations of GLo(Ap). Let n be a
quadratic character such that

5(%»7%@77):1

for those m; which are self-dual among {7, m2}. Then there are infinitely many quadratic
characters 7, which agree with n at any finitely many prescribed places of F, such that

L(%v t ®"7/) 7£ O#L(%a 2 ®77,)

Assuming the conjecture, we give a positive answer to Question 2 in this case, once again
assuming that a local component is discrete series.

THEOREM 1.4. Let D be a quaternion algebra over a number field F, with E a quadratic
subfield of D. Let II =®,II, be a cuspidal representation of SLi(D)(Ar) with at least one
square integrable component at a place vg of F'; if E/ is inert and D is split at vy, we further
assume that vy is of odd residue characteristic and 11, is a supercuspidal representation if vg is
a finite place of F. If each 11, is distinguished with respect to E., then assuming Conjecture 1.3
holds, there is a cuspidal representation in the L-packet of Il which is distinguished with respect
to AlE.

We have also achieved a positive answer to Question 3, assuming Conjecture 1.3, but only in
the case when the global L-packet associated to the automorphic representation II is finite. In the
more general case, we need a finer version of Conjecture 1.3, for which we refer the reader to
§11.

We end the introduction by noting the role played by analytic number theory (simultaneous
non-vanishing of central L-values in this case) in questions on automorphic representations;
whether one implies the other, or the other way around, only time will tell.
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2. Preliminaries

This section summarizes some of the key results that we make heavy use of throughout this
paper.

2.1 Langlands correspondence, and CM forms

For a local field F', the local Langlands correspondence gives a bijection of the set of isomorphism
classes of irreducible admissible complex representations of GL,,(F'), and the set of isomorphism
classes of n-dimensional semi-simple complex representations of the Weil-Deligne group W}, =
Wr x SLa(C); the bijection preserves L and e-factors of pairs of representations, the details of
which we will not go into. The local Langlands correspondence was established for GLo(F') by
Phil Kutzko, and in general by Harris and Taylor, and also by Henniart. If a representation ¥
of W} of dimension n is associated to an irreducible admissible representation 7 of GL,(F'),
then Y is often referred to as the Langlands parameter of m. For n =1, the local Langlands
correspondence is nothing but the local classfield theory which identifies characters of F'* to
characters of Wfib, where Wf}b is the maximal abelian quotient of Wg.

An irreducible admissible representation of GLa(F') is said to be CM if its Langlands
parameter is induced from a character of a quadratic extension of F'; such representations
are often referred to as automorphically induced from a character of a quadratic extension.
A representation 7 of GLy(F') is CM if and only if it has a non-trivial self-twist by a character
of F'*; i.e., there is a character w # 1 of F'* such that 7 ® w = .

For a number field F', an automorphic representation m of GLy(Af) is said to be CM if
it has a non-trivial self-twist by a Grossencharacter, say w, of Ax/F*. The character w is
of order 2, and defines a quadratic extension E of F. Associated to such a CM automorphic
representation 7 of GLa(Ap), there is a Grossencharacter x of Aj/E* (which is unique up
to Galois conjugation) with L(s, x) = L(s, 7). The automorphic representation 7 is said to be
automorphically induced from this Gréssencharacter x of Aj/E*. It can be proved that the
restriction of the two-dimensional representation of the global Weil group W defined by Ind%g X
to various decomposition groups is nothing but the Langlands parameters of various components
of .

In this paper, we will have many occasions to use the Asai lift of representations of GLy(E),
where E is a quadratic extension of a local field F', to representations of GL4(F). This is most
easily defined using the local Langlands correspondence on the Weil group side where there is
a group theoretic generality, called ‘tensor induction’, which constructs from an n-dimensional
representation of a subgroup H of index m in a group G, a representation of G of dimension n".
This definition is recalled in § 6. The representation of GL4(F') constructed using a representation
7 of GLy(FE) is called the Asai lift of 7, and denoted by As(7).

If F'is a number field, and £ a quadratic extension of F', and 7 an automorphic representation
of GLa(Ag), local Asai lifts from GLa(E,) to GL4(F,) patch together to give an automorphic
representation of GL4(Ar), denoted again as As(w) [Kri03].

In the theory of automorphic representations, the notion of base change, which for
representations of the Weil group corresponds to restriction to subgroups, plays a very central
role; it does so in our work too. We will say nothing more about it, except that the notation will
be BC(m) for the base change of a representation of GL,(F') to GL,(E); the notation BC will
not specify n, or the fields E and F, which can be either local or global; all these will be clear
from the context.
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2.2 Distinction for (GL2(E), GL2(F))

Let E/F be a quadratic extension of local or global fields. Let ¢ be the non-trivial element of
the Galois group Gal(E/F). The quadratic character of F'* (or of Ax/F* in the global case)
associated to E//F by class field theory is denoted by w, .. Consider the symmetric space (G, H)
where G is either the local group GLa(E) (or the adelic group GLa(Ag)) and H is the fixed points
of 0.

Let m be an irreducible admissible representation of GL2(E) (or on a cuspidal automorphic
representation of GLa(Ag)). Let " and 77 respectively denote the contragredient and the Galois
conjugate of w. The central character of 7 is denoted by w;.

Suppose 7 is distinguished with respect to H. Then w; is trivial on F'* (or on A%). The
following two propositions have their roots in the work of Harder-Langlands—Rapoport [HLR86].

PROPOSITION 2.1. Assume wy|px =1 in the local case. Then w¥ =7 if and only if 7 is
distinguished or w, . -distinguished with respect to H.

The following is a closely related result.

PROPOSITION 2.2. Assume w;|px =1 in the local case. Then, 7 is distinguished with respect to
H if and only if the Asai L-function L(s, As(m)) has a pole at s =0 (s =1 in the global case).

Remark. Both Propositions 2.1 and 2.2 are true for GL(n) with the added assumption in the
local case that 7 is a discrete series representation (in which case incidentally the condition
wr|px =1 is also redundant) [AKT04, F1i88, F1i91, Hak91, Kab04].

Next we state a theorem of Flicker and Hakim [FH94, Theorem 0.3], which generalizes an
earlier result of Jacquet-Lai [JL85], according to which the Jacquet-Langlands correspondence
preserves distinction.

ProprosITION 2.3 (Flicker-Hakim). Let D be a quaternion algebra over a number field F. Let
7 be a cuspidal representation of D*(Ag) and let 7/1 be its Jacquet-Langlands correspondent
on GLo(Ag). Then 7 is D*(Ap)-distinguished if and only if m/% is GLo(Af)-distinguished and
for each place v of F' where D is ramified, and FE is inert, if m, is a principal series, it is of the
form Ps(u~t, u%).

There is a local analogue of the above result proved independently by Hakim [Hak91] and
the second author [Pra92], which we recall below.

PROPOSITION 2.4. Let E be a quadratic extension of a local field F', and D the quaternion
division algebra over F. A discrete series representation m of GL(E) is distinguished by GLa(F)
if and only if it is distinguished by D*.

2.3 Multiplicity one for SL(2)

A crucial ingredient in several of our arguments in this paper is the following theorem of
Ramakrishnan [Ram00, Theorem 4.1.2]. It is usually referred to in the literature as ‘multiplicity
one for SL(2)’ since the multiplicity freeness of L2(SL2(F)\SL2(Ar)) is a consequence of this
result by the work of Labesse-Langlands on the stable trace formula for SL(2) [LL79].

THEOREM 2.5 (Multiplicity one for SL(2)). Let w, 7’ be cuspidal automorphic representations
of GLa(AF). Suppose for almost all v,

Ad(m,) = Ad(r)).
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Then there exists a Grossencharacter x of Ay, /F*, which is unique if w is not CM, such that
=% D

Remark. In this paper, we will mostly use the equivalent formulation: if 7, and 7, are twists of
each other by a character for almost all places v of F, then they are twists of each other by a
Groéssencharacter.

2.4 Toric periods for GL(2)

In analyzing the toric periods for SL;(D) where D is a quaternion division algebra over F', our
central tool is the well-known theorem of Waldspurger [Wal85, Theorem 2, p. 221], which we
now state.

THEOREM 2.6 (Waldspurger). Let D be a quaternion algebra over F', and let m be a cuspidal
automorphic representation of D* (Ar). Let E be a quadratic extension of F' contained in D. Let
T = E* be the maximal torus of D* defined over F' by E. Let Q be a character of T(F)\T (Ar)
such that )|, , | =wzsr. Then there exists ¢ € m such that

/ o(h) () dh # 0
T(F)Z(Ar)\T(Ar)
if and only if:
(i) for every place v of F', Homyp(p, (7, $2y) # 0;
(i) L(3, BC(m) @ Q1) #0 (here BC(w) denotes the base change of w to GL2(Ag)).

Using a local theorem due to Saito—Tunnell to which we will turn soon, Theorem 2.6 can be
reformulated as follows.

THEOREM 2.7 (Waldspurger). Let E/F be a quadratic extension of number fields. Let m be a
cuspidal automorphic representation of GLy(Ar). Let Q be a Grossencharacter of Ay, /E* such
that Q|AX = wy,. Then there exists a quaternion algebra D over F' containing E such that

[ emetmdnzo
EXAZ\A

for a ¢ €nP if and only if L(3, BC(r)®@ Q') #0. Here, 7P is the Jacquet-Langlands
correspondent of .

The local analogue of Waldspurger’s result is the following theorem of Saito and
Tunnell [Sai93, Tun83].

PROPOSITION 2.8 (Saito-Tunnell). Let E/F be a quadratic extension of local fields. Let w be
an irreducible admissible representation of GLy(F). If 7 is in the discrete series, let ' denote the

corresponding irreducible representation of D*. Let 2 be a character of E* such that Q| = wx.
Then:

(i) dime Hompx (, Q) 4+ dime Hompx (7, Q) = 1;
(ii) Hompx (7, Q) #0 <= €(3, BCO(m) @ @7, ¢) =1,
Hompx (7', Q) #0 <= €(3, BC(m) @ @1, ¢/) = —1.

Here, we take 7' = {0} if 7 is a principal series representation, and v’ is any non-trivial character
of E which is trivial on F'.
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Remark. Suppose 2 factors through the norm, say Q = a o Nm. Assume also that wy; =1 (and
thus a? = 1). Then,

e(BC(m) ® Q- ') = Wy p(—1)e(T ® a)e(n ® aw, ). (1)

Here and elsewhere, e(7) = e(%, 7, 1), where 1 is any non-trivial additive character of F.

3. Period integral for GLgs versus SLo

Suppose that 7 is a cuspidal automorphic representation of GLa(Ag) where F is a quadratic
extension of a number field F'. In this section, we write down an integral formula relating the
period integral of automorphic functions in 7 along SLa(Af) versus a similar period integral
on GLg(Ap); this was considered in [AP06, §3]. It allows one to prove that distinction by
SL2(Ar) of an automorphic representation of GLy(Ag) with trivial central character restricted
to A} is the same as being w-distinguished for a quadratic character w:AL/F* — C* (see
[AP06, Proposition 3.3]). We note, as has been observed in [AP06, §3|, that an automorphic
representation of GL2(Ag) with non-trivial period integral on SLa(Ar) has a twist whose central
character restricted to A is trivial.

Before we proceed, note that if y is a character of £* we often abuse notation and continue
to denote by ¥, the character x o det of GLy, (k).

The following is [AP06, Proposition 3.2], and is a simple consequence of elementary Fourier
analysis.

ProprosITION 3.1. Let E be a quadratic extension of a number field F'. Let ¢ be a cusp form
on GLa(Ag) with central character which is trivial when restricted to A;. Then

) dg —Z/ $(g)w(det g) dg

/SL2(F)\SL2(AF) GLa(F)AS\GLa(Ar)

where the sum on the right-hand side of the equality sign is over all characters w: Ay /F* —

{£1}.
Consequently, we have the following proposition (see [AP06, Proposition 3.4]).

PROPOSITION 3.2. Let T be a cusp form on GLy(Afg) which is distinguished by SLa(Af). Then
there is a Grossencharacter n of Aj./F* such that T is n-distinguished for GLa(Ar). Conversely
if T is n-distinguished for some Grossencharacter n of Ay /F*, then T is SLo(Ap)-distinguished.
Hence there is a member of the L-packet of automorphic representamons of SLa(Ag) determined
by 7 which is globally SLa(AF)-distinguished.

The following proposition relates period integrals over AlE of automorphic forms of GLy(Af)
with period integrals over AE. We omit the simple proof based on elementary Fourier analysis.

ProprosITION 3.3. Let E be a quadratic extension of a number field F'. Let ¢ be a cusp form
on GLo(Ap) with trivial central character. Then

/El\% ¢(g) dg = zﬁ: /EXA;\AE o(g)n(g) d

where the sum on the right-hand side of the equality sign is over all characters n of the compact
abelian group EXASAL\AY = EXAFASH\AY.
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As a consequence, we have the following proposition.

PROPOSITION 3.4. If T is a cusp form on GLo(Ap) which is distinguished by A}, then there
is a Grossencharacter n of Ay /E* such that 7 is n-distinguished for Aj,. Conversely if 7 is
n-distinguished for some Griossencharacter n) of Ay./E*, then T is A}E-distinguished. Hence there
is a member of the L-packet of automorphic representations of SLo(A ) determined by T which is
globally A}E—distinguished.

Remark. In Propositions 3.2 and 3.4, we have not assumed any condition on the central
character of 7. This is because the necessary condition on the central character in order to
apply Propositions 3.1 and 3.3 respectively is automatic, after twisting by a Grossencharacter if
necessary, by the assumption on distinction [AP06, Lemma 3.3].

4. Distinction as a functorial lift

In this section, we recast the well-known criterion (Proposition 2.1) about distinction of GLa(E)
representations to SLo(E) in terms of the Langlands parameters. Because of Propositions 2.3
and 2.4, exactly the same criterion holds for a quaternion division algebra, but for the sake of
simplicity of notation, we state the following theorem only for GL(2).

THEOREM 4.1. Let E/F be a quadratic extension of non-Archimedean local fields. Then, an
irreducible admissible representation m of GLo(E) is distinguished by SLo(F') if and only if it
belongs to the twisted base change map; i.e., a character twist of 7 is a base change from GLo(F).
Exactly the same conclusion holds about global distinction of automorphic representations of
GL2(Ag) with respect to SLo(Ar) when E/F is a quadratic extension of number fields.

Proof. We will write the argument below assuming E/F is a quadratic extension of local fields,
but the same argument works verbatim for number fields.

Let TBC denote the base change map from irreducible admissible representations of GLg(F)
to irreducible admissible representations of GLy(F), both considered up to twists by characters.
Thus, any representation in the image of TBC is of the form BC(n’) ® x for a representation 7’
of GLy(F') and a character x of E*.

We claim that the representation 7 of GLy(F) is distinguished by GLa(F') with respect to a
character n of F* if and only if 7 is in the image of the twisted base change map. Since we are
looking at representations modulo character twists, we can assume that n =1, thus we assume
that 7 itself is distinguished, and therefore it follows that:

V., 0

wrl|, =1 and m" =77

If we write wy = u~'u? for a character u of EX, then 7V 2 7% implies that = ® pu is Galois stable
and hence 7 is in the image of TBC.

Conversely, if 7 is of the form BC(7n') ® x, then we prove that 7 is SLo(F)-distinguished.
Without loss of generality, assume that m = BC(7’).

Let ' be the central character of «/, and let @ be an extension of w’ to E*. Then w; =& - @7,
from which it can be checked that the representation 7/ =7 ® @' has the property 7"V = /'@
and that the central character of 7" restricted to F* is trivial. This shows that 7" is either
distinguished or w,,.-distinguished by GL2(F), hence 7 is n-distinguished for some character n
of F*. a
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This theorem allows one to interpret distinction in terms of existence of lifts,

PGLQ(C) X WF

—
—
—
—
—
—
—

Wi = (PGLy(C) x PGLy(C)) x Gal(E/F)

where in the case that F' is a local field, W}, = Wr x SLy(C) is the Weil-Deligne group, and if F
is a global field, W}, needs to be replaced by the conjectural Langlands group whose irreducible n-
dimensional complex representations classify cuspidal automorphic representations of GL,,(Af).

In the above picture, one could also ask the finer question about the number of distinct
lifts of a given Langlands parameter, and it turns out that this question too has a nice answer:
it is the dimension of the space of SLo(F')-invariant linear forms on an irreducible admissible
representation of SLo(FE) with the given Langlands parameter [Pra00].

Observe that, in this language, the analogous question about lifts in the untwisted diagram

PGL,(C) x W

—
—
—
—
—

—

W), == (PGLy(C) x PGLy(C)) x Gal(E/F)

locally asks if two representations of GLo(F') are character twists of each other, and globally if
they are twists of each other by a Grossencharacter of Ay /F*; thus in this case, a theorem of
Dinakar Ramakrishnan (cf. Theorem 2.5) guarantees that local lifts in the above diagram imply
a global lift, whereas a theorem, or rather a construction, of Blasius [Bla94] proves that existence
of local lifts does not guarantee a global lift when PGL2(C) is replaced by PGL,(C).

5. Distinction in an L-packet for the pair (SL2(FE), SLa(F))

In this section, we prove Theorem 1.1, which we restate here.

THEOREM 1.1. Let IT be a cuspidal representation of SLo(Ag). If TI appears in the restriction of
a CM representation of GLo(Ag), assume that there is at least one square integrable component
at a place of ¥ which is inert over the corresponding place vg of F. In the CM case, assume
that either II is CM by three distinct quadratic extensions of E, or alternatively if it is CM
by a unique quadratic extension of E/, then at the place vy, the local component is also CM by
a unique quadratic extension of E,, (or more generally, it is CM only by quadratic extensions
which are Galois over F,, ). Suppose each 11, is distinguished with respect to SLa(F},). Then there
is a cuspidal representation in the L-packet of I which is distinguished with respect to SLa(AFp).

Proof of Theorem 1.1. Let 11 = ®,II, be a cuspidal representation of SLs(Apg) with each II,
distinguished by SLa(F;); here v runs over the set of all places of F', and II, are irreducible
representations of F, = F ®p F,. Let II=®,II, be a cuspidal representation of GLy(Ap)
containing II. We claim that there is a Grossencharacter x of Ay /E* such that

° =10V ® X-

To this end, observe that since for each v, the representation ﬁg of GLy(E,) is given to be
SLo(F,)-distinguished, there is a character n, of F* such that II, is 7, 1—distingui§hed with
respect to GLy(F,). Furthermore, if 7, denotes an extension of 7, to E), then I, ®17, is
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distinguished with respect to GLa(F,), and this implies that (cf. Proposition 2.1)
(I, @ 7) " = (I, ® 77)7,
or
ﬁg%ﬁX®nvon.

By the theorem of Ramakrishnan (cf. Theorem 2.5), if two automorphic representations of
GL2(Afg) are locally twists of each other at all places of a number field E, then they are globally
twists of each other by a Grossencharacter x on Ay /E*, proving our claim that I° ~ 11V ® X-

For the proof of Theorem 1.1, it suffices to prove that there is a Grossencharacter y on Aj,/E*
with x? = x, and with I° ~11Y @ X, because then one can write Y ' = pu, which means that
Il ® w)? = (ﬁ ® p)Y, and hence II ® p is either GL2(Ap)-distinguished, or w,, .-distinguished by
GL2(Ar). This means that some member in the global L-packet determined by the automorphic
representation IT of SLa(Ag) has a non-trivial period integral on SLa(AF).

We first treat the case when IT is non-CM. In this case, II° 2 IV @ y implies I1° 2 IV @ Y7,
and therefore since II does not have CM, x? =x.

We now assume that II has CM and that there is a place of F' inert in F, say vg in FE,
such that ﬁvo is square integrable. Suppose the assertion of the theorem is not true. Then
" ~ 11V @ X with x # x7. Let ¥ be the two-dimensional representation of Wg associated to the
CM representation II. The isomorphism I° ~ 11V ® x translates into Yoy X, and it is this
isomorphism of two-dimensional representations of Wg that we will analyze. This isomorphism
gives us,

¥ =xax’ ®p,

for a certain two-dimensional representation p of Wg which is invariant under o. We will now
look at the above decomposition at the place vy of E:

Yoo ® Lo, = Xuy @ Xgy D Puo-

Note that xy, # x7,, since ﬁvo is square integrable and thus corresponds to an irreducible
representation ¥, of Wg, , and therefore each character in the decomposition of ¥,, ® X7,
appears with multiplicity 1 by Schur’s lemma, forcing xu, # X7, -

If II has CM by three quadratic extensions, then X has self-twists by three quadratic
characters, forcing ¥ ® 37, which contains a character, to be a sum of four characters permuted
amongst themselves by o. Therefore, p is a sum of two characters which we assume is of the
form g @ p” with p # p, as the other possibilities create a o-invariant character of Ay /E*. But
again by Schur’s lemma, we must have p,, # ug , which is contradictory to our assumption of
having a o-invariant character inside 3, ® X7 at all places v of E, completing the proof of the
theorem when II has CM by three quadratic extensions.

Since

vy ® X7,
contains a o-invariant character, and x., # xg,, in the decomposition
v ® L7 = X D Xop, P Puo
Pv, Must be a sum of two o-invariant characters, say p,, = p1 + p2, thus,
Yoo @ X5 = X, B X, B 1 D pia-

This clearly implies that ¥, has self-twist by u1/pe which is o-invariant, as well as by x4, /1
which is not o-invariant.
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This restricts possibilities regarding IL,,, proving the theorem if II,, has CM either by a
unique quadratic extension of E,, , or by three quadratic extensions of E,, which are all Galois
over F,, . O

6. Tensor induction, or Asai lift

In the study of automorphic representations of GLa(Afg) which are distinguished by GLa(AFp),
the Asai lift plays an important role, and it does so in our work on the corresponding questions
for SLa. The specific aim of this section will be to determine the fibers of the Asai lift 7 — As(7)
from automorphic representations of GL2(Ag) to automorphic representations of GL4(A ). This
question was discussed by Krishnamurthy in [Kri03]; however, in the case where it really concerns
us, the case of CM representations of GLa(Ag), his result was incomplete exactly in the place
where it matters to us. We have completed his work in this section.!

We begin this section by carefully recalling the notion of tensor induction, also called Asai lift
in a particular case (when the subgroup involved is of index 2), which is a purely group theoretic
notion.

Let H be a subgroup of a group G of finite index n, and G an arbitrary group. Define G&/H
to be the set of all set theoretic maps ¢: G — G such that ¢(gh) = ¢(g) for all g€ G, h € H.
Clearly G&/H is a group with a natural action of G on the left, so we can form the semi-direct
product QG/H x G.

It is easy to prove the following lemma, which is nothing but a form of Frobenius reciprocity
for induced representations in this context.

LEMMA 6.1. There exists a natural bijection
Hom (H, G)/~ —— Hom (G, G % G)/~,

where we consider only those homomorphisms in Hom (G, GG/H ), whose composition with
the natural map from GE/H x G to G is the identity map from G to G; the equivalence relation
on the left-hand side is conjugation by G, and on the right is conjugation by G&/H.

Now given a representation (m,V) of G, it gives rise to a representation QG/HY of GG/H
which clearly extends to one of the semi-direct product G&/H x G. Taking G to be GL(V) with
its natural representation on V, the previous lemma allows one to associate to a representation
(m, V) of H of dimension d, a representation of G, to be denoted by As(V'), of dimension d",
called the tensor induction, or the Asai lift of the representation (w, V') of H.

For a vector space W over C equipped with a quadratic form ¢ on it, there is the notion of
the orthogonal similitude group GO(W), defined by

GO(W) ={g € GL(W) | g(gw) = M(g)q(w)Vw € W };

the map g — A(g) € C* is a character on GO(W), called the similitude character. If W is of even
dimension, the special orthogonal similitude group, denoted by GSO(W), which is the connected
component of identity of GO(W), is defined by

GSO(W) = {g € GO(W) | A(g)™W/2 = det g}.

The following well-known result lies at the basis of our proof. It can itself be considered
as a local-global principle for orthogonal groups, eventually responsible for multiplicity one

! There is a recent paper of Krishnamurthy where he too completes his earlier work [Kril2].
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(conjecture) for automorphic representations of orthogonal groups, or more generally any classical
group [Lar94].

LEMMA 6.2. Let W be a finite-dimensional vector space over C together with a quadratic form
q on it. Suppose m and o are two representations of a group G into GO(W') such that the
similitude characters Ay and Ao of w1 and my are the same. Then the representations m, and s
of G with values in GO(W) are equivalent, i.e., conjugate in GO(W), if and only if they are
equivalent in GL(W).

With these generalities in place, we now come to the special situation afforded by two-dimensional
representations of a subgroup N of index 2 in a group G. In this case, we find it more convenient
to use a concrete realization of GO(4, C), which we realize on the space M (2, C) of 2 x 2 matrices
with X — det X as the quadratic form. Clearly, (A, B) € GLy(C) x GL2(C) acting on M (2, C)
as X — A - X - !B defines a mapping from GL2(C) x GLy(C) onto GSO(4, C), and the involution
X — X belongs to O(4, C) but not to SO(4, C). Thus, we have an exact sequence,

1 — CX — [GLa(C) x GLy(C)] % Z/2 — GO(4,C) — 1,

where C* sits inside GLy(C) x GLg(C) as scalar matrices (2, 27 1).

From Lemma 6.1, a representation 7; of N into GLy(C) gives rise to a homomorphism of
G into [GLa(C) x GL2(C)] x Z/2 whose projection to Z/2 is nothing but the natural projection
from G to G/N =7Z/2 (cf. Lemma 6.1 and the definition of the Asai lift). It will be convenient
at this point to use the language of cohomology of groups (with non-abelian coefficients). In this
language, we have an exact sequence of G-groups:

1—C* — GLy(C) x GL2(C) — GSO(4,C) — 1,
where C* is the G-module on which N operates trivially, and the non-trivial element of G/N
operates on C* by z — 2z~ 1; the group G operates on GLy(C) x GLy(C), and GSO(4, C) via G/N
which acts by permuting the factors in GLy(C) x GL2(C), and by the automorphism X — !X

of M3(C) acting on GSO(4, C) by conjugation. This exact sequence of G-groups gives rise to an
exact sequence of pointed sets:

HY(G,C*) — HYG, GLy(C) x GLy(C)) — HYG, GSO(4, C)).

Since C* is a central subgroup of GL2(C) x GL3(C) (sitting as scalar matrices (z, z71)), it follows
that two elements of H'(G, GL2(C) x GL2(C)) have the same image in H'(G, GSO(4, C)) if and
only if they differ by an element of H'(G,C*) (see [Ser02, Part I, § 5, Proposition 42]).
In terms of group cohomology, we have the identifications
Hom [G, [GLy(C) x GL2(C)] x Z/2]

~

HY(G, GLy(C) x GLy(C)),

and
Hom [G, GO(4, C)]
where ~ denotes the equivalence relation on the set of homomorphisms given by conjugation by
GL2(C) x GL2(C) (respectively GSO(4, C)).
It follows that two homomorphisms ¢; and ¢2 of G to (GL2(C) x GL2(C)) x Z/2 which give
rise to the same representation of G with values in GO(4, C) differ by an element of H(G, C*)
which we calculate in the following lemma.

HY(G,GS0(4,C)),

LEMMA 6.3. Let N be an index 2 subgroup of a group G. Let C* be the G module on which N
operates trivially, and the non-trivial element of G/N acts on C* by z — z~!. Then H'(G,C*)
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can be identified to the set of those characters of N with values in C* whose transfer to G is
trivial.

Proof. Note the exact sequence,
0 — HY(G/N,C*) — HY(G,C*) — H'(N, C*)¢/N — H?(G/N, C*),

in which G/N =7Z/2. From well-known calculations on cohomology of cyclic groups, it is easy
to see that H*(Z/2,C*) =0, and H?(Z/2,C*) =Z/2. (In this lemma, C* comes equipped with
the action of G/N =7/2 by z — z~1.) So, the above exact sequence can be written as:

0— HYG,C*) — H'(N,C*)¢/N — H?(G/N, C*).

Since N operates trivially on C*, H'(N, C*) is simply the character group of N. The group
G/N operates on HY(N,C*) by sending a character ¢ € H'(N, C*) to the character ¢9(n) =
g o(gng™') of N. It follows that H'(N, C*)%/N can be identified to the group of characters ¢
of N for which ¢~1(n) = ¢(gongy 1) where gg is any element of G not in N; these are simply the
characters of N which when composed with the transfer map from G/[G, G| to N/[N, N]| are
trivial on N. To get the conclusion of the lemma, we need to prove that among these characters
of N, those which go to 0 under the boundary map H'(N,C*)¢/N — H%(G/N,C>), are
exactly those whose transfer to G is trivial (and not just restriction to the subgroup N which
is of index 2). Observe that the transfer map from G to N on elements of G outside N is
simply the squaring map g — g2. So we need to prove that if a character ¢ in H'(N, C*)¢/N
goes to zero in H?(G/N, C*), then ¢(g3) =1 where go is any element of G not in N. For this
we need to interpret this boundary map, which is nothing but the push-out diagram under
the homomorphism ¢: N — C* of the exact sequence 0 - N — G — Z/2 — 0, thus fits in the
following commutative diagram:

0 N G Z/2 0
L]
0 Cx O Z/2 0

To say that the push-out diagram is trivial, i.e., the short exact sequence

0 Cx O Z]2 0

splits, is clearly equivalent to saying that ¢(go)? = 1, so the proof of the lemma is completed. O

In the following proposition, for a character x of N, let 7(x) be the character of G obtained
from x using the transfer map from G/[G, G| to N/[N, N]. (Note that r(x) is the special case
of the tensor induction corresponding to one-dimensional representations.) The previous lemma
proves the following proposition which is the main result of this section.

PROPOSITION 6.4. Let N be an index 2 subgroup of a group GG, and let w and w9 be two two-
dimensional representations of N, with As(m) and As(my) of dimension 4 their tensor induction
to G. Assume that r(det w1) = r(det m2). Then As(m) = As(ma) if and only if m =2 m ® X, or
7 =2 w9 ® X, for a character x of N with r(x) = 1.

Proof. By our assumption on r o det we can appeal to Lemma 6.2 and thus it is enough to check
As(my) = As(mg) inside GO(4, C). Thus, m differs from 71 (or 7§, with G/N = (o)) by an element
of HY(G, C*); the ambiguity in 71 and 7{ arises since ~ in the identification of H(G, GSO(4, C))
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with Hom [G, GO(4, C)]/ ~ does not capture conjugacy of homomorphisms from G to GO(4, C)
by GO(4, C) but only conjugacy by GSO(4,C). By Lemma 6.3, H'(G, C*) corresponds to a
character x of N with r(x) = 1. O

The abstract group theoretic proof given above for the fibers of the map 7w — As(n),
yields an exact description of the fibers of the Asai lift from automorphic forms on GLa(Afg)
to automorphic forms on GL4(Ap) for CM representations of GLa2(Ag). Luckily, non-CM
representations were already handled by Krishnamurthy in [Kri03], so this description of the
fibers holds in all cases. Thus, we have the following theorem.

THEOREM 6.5. Let m and mwy be cuspidal automorphic representations of GLa(Ag) such that
their central characters agree on Aj. Then they have isomorphic Asai lifts to GLy(AF) if and
only if either m = o ® x or ] = my ® X, for a Grossencharacter x of A}, /E* with X|AX =1.

F

The proof of Proposition 6.4 also gives a proof of the following proposition which, however,
we will not have occasion to use.

PROPOSITION 6.6. Let Vi, Vo, Wi, Wy be two-dimensional representations of a group G such
that
Vi@V =2W; ® W,
and
det (V1) det(Va) = det(W7) det(Ws).

Then there exists a character x of G such that

ViZxeW), Vea=x oW,
or,

WwexeW, Wy 'eW.

Remark. A weaker version of this proposition was proved in [MP00] in which V} and V, were
assumed to be non-CM representations, which went into the proof of [Kri03].

Question. Since (U3 @ Us) @ U3 2U; ® (U ® Us), there is no simple way to generalize the
previous proposition for larger dimensional representations, except possibly when, in the notation
of the proposition, dim V; and dim V5 are prime. Similarly, since As(U; ® U§) = As(U; @ Us),
there is no simple generalization of the proposition about fibers of the Asai lift of two-dimensional
representations except possibly when dealing with representations of prime dimension. We do
not know if in these special cases in which representations involved are of prime dimension, fibers
of Asai lift or of tensor product are as described in Propositions 6.4 and 6.6.

7. Local-global principle for the pair (SL2(E), SL2(F))

In this section, we work inside an L-packet to prove the local-global principle for automorphic
representations of SLo(Ag) with respect to SLa(Ag). This is Theorem 1.2, recalled here for the
convenience of the reader.

THEOREM 1.2. Let II be a cuspidal representation of SLy(Ag) which is globally distinguished
by SLa(AF). Let II' = ®,II, be an automorphic representation of SLa(Ag) in the same L-packet
as 11 such that IT), is locally distinguished by SLa(F),) at all the places of F. Then 1l is globally
distinguished.

974

https://doi.org/10.1112/50010437X12000772 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000772

A LOCAL-GLOBAL QUESTION IN AUTOMORPHIC FORMS

Before we begin the proof of this theorem, we make a review of the theory of L-packets, both
locally as well as globally for SLg, which is due to Labesse-Langlands [LL79], and also review
some of our own work about distinguished representations relevant to this study [AP03, AP06].

We deal with the pair (SLo(Ag), SL2(Ap)) in this section, making an essential use of the
theory of Whittaker models, and then in a later section (cf. §9) observe that some of our work
carries over to the more general situation of the group of norm one elements of a quaternion
algebra.

Note that the group A sitting inside GL2(Ag) as

6 )

operates on SLo(Ap) via conjugation action, and therefore on the set of isomorphism
classes of representations of SLa(Ag). The orbit of IT = ®II,, an irreducible representation
of SLy(Ag), under the action of A is precisely the global L-packet of representations of
SLo(Ag) containing II. Let G C Ay, Gr =[] G, be the stabilizer of the isomorphism class
of the representation IT = ®II,, where G, is the stabilizer inside E of the isomorphism class of
the representation II, of SLa(F,). It can be seen that G, contains O, for almost all primes v
of E, where O, is the ring of integers of E,,, and so Gy is an open (and hence closed) subgroup of
A%

Clearly, the action of E* on SLa(Afg) takes automorphic representations of SLa(Ag) to
automorphic representations of SLa(Ag). Since every cuspidal automorphic representation of
SL2(Ag) must have a Whittaker model for a non-trivial character of Ag/FE, and any two non-
trivial characters of Ag/E are conjugate by E*, it follows from the uniqueness of Whittaker
models (for GLa2(Ag)!) that E* acts transitively on the set of automorphic representations of
SL2(Ag) which are in the same L-packet as II.

There is another way of interpreting Gy =[] G,. For this, let II be an automorphic
representation of GLa(Ag) containing II. Then, for a character w: Aj — C*, I ® w1 if and
only if w is trivial on Gyr. This implies that A%, /(E*Gr) is a finite group whose character group
is nothing but the finite group of Grossencharacters w of A%, /E* such that I ®wII.

From the previous observations, we note that a representation of SLy(Ag) which belongs to
the L-packet determined by II determines an element of the finite group A% /(E*Gr) (which
is known to be either {1},7Z/2, or Z/2 & Z/2), which is trivial if and only if the corresponding
representation is automorphic. This result due to Labesse and Langlands [LL79] remains true
for division algebras, but this simple proof does not work.

We next review the work in [AP03, APO06] relevant to the local-global study of the pair
(SLa(Ag), SLa(AR)).

It follows from [AP06, Theorem 4.2] that if II is globally distinguished by SLa(Af), then II
has a Whittaker model with respect to a character ¢ : Ag/(FAp) — C*. Conversely, by the same
theorem, if II has a Whittaker model with respect to ¢ : Ag/(FAp) — C*, and some member
in the L-packet determined by II is globally distinguished, then such a II is itself globally
distinguished. A similar local result also holds: in a local L-packet of SLy(F,) where at least
one representation is distinguished by SLo(F},), the SLo(F),)-distinguished representations are
precisely those which have a Whittaker model with respect to a non-trivial character of E,/F,
(see [AP03, Lemmas 3.1 and 3.2]), hence since F,* acts transitively on non-trivial characters
of E,/F,, F, acts transitively on distinguished members of an L-packet of representations of
SLa(Ey).
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Define groups,

Ho = A%,
Hy = AXG,
Hy, = E*Gq,
Hs; = F*Gp.

From these theorems due to Labesse-Langlands [LL79], and the theorems due to the authors
in [AP03, AP06] we deduce the following.

(i) The set Hy - 1I is the L-packet of representations of SLa(Af) determined by II.

(ii) The set Hj -II is the set of locally distinguished representations in the L-packet of
SLo(Apg) determined by II.

(iii) The set Hy-II is the set of automorphic representations in the L-packet of SLa(Afg)
determined by II.

(iv) The set Hs-1II is the set of globally distinguished representations in the L-packet of
SLo(Ag) determined by II.

Clearly Hy N H2 contains Hs, and (Hj N Hy)/Hs measures the obstruction to locally
distinguished automorphic representations to be globally distinguished; equivalently, a locally
distinguished automorphic representation IT of SLy(Ag) determines an element hyy of Hy N Hy
such that II is globally distinguished if and only if A € Hs. We will in fact prove that
(Hy N Hy)/Hs is trivial by proving that its character group is trivial.

Let X (A) denote the character group of a locally compact abelian group A.

Noting that (H; N Ha)/Hs is nothing but the kernel of the map,

H,/Hs — Hy/Ha,
the character group of (H; N Hy)/Hs is the cokernel of the natural map
X (Ho/H2) — X(H1/Hs3).

We note that the mapping of the character groups is simply the map taking a character o of Hy
which is trivial on Hs to its restriction to Hy; note that since « is trivial on Hs, it is in particular
trivial on H3 which is a subgroup of Hs.

THEOREM 7.1. The group (HjN Hsz)/Hs, which measures the difference between locally
distinguished automorphic representations of SLa(Afg) and globally distinguished automorphic
representations of SLa(Apg), is trivial.

Proof. We will prove that (H; N Hy)/Hs is trivial by proving that its character group is trivial.
From the analysis above, it suffices to prove the surjectivity of the natural map

X(Hy/Hy) — X (H,/Hs3).

Equivalently, we need to prove that a character of A% /[F*(A% N Gn)], can be extended to a
Grossencharacter of Ay, /E*, which is a self-twist of ﬁ, where II is a cuspidal representation of
GL2(Ag) such that IT appears in its restriction to SLa(Afg). Without loss of generality, we may
also assume that II is globally distinguished with respect to GLa(Ag) (cf. Proposition 3.2).

Let x be a character of A}, /[F* (A} N Gr)], thought of as a character of A} /[A} N Gr]. Since
A% /[A% N Gn) is a subgroup of the discrete group A}, /G, there is a character X of A}, trivial
on Gy extending y. (We will eventually try to get one which is a Grossencharacter.)
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Let As(Il) denote the Asai lift of a representation of GLy(Ap) to GLy(Ap). By local
considerations, it is clear that
AsI ® %) = As(ID) ® x.
Since x is trivial on Gy, I® X = ﬁ, and hence
As(II ® ¥) =2 As(IT) = As(II) ® .
Now let X be a character of Aj,/E* extending the character x of Aj/F*. We have,

As(II ® ¥) = As(Il) ®
~ Ag(II).

Since the Asai lifts of the two automorphic representations II and II® ¥ of GLa(Ag) to
GL4(AF) are isomorphic, we can use Theorem 6.5 to conclude a relationship between Il and
IT® X. Before we can apply this proposition, we need to check that the two representations II
and II ® X have the same central characters restricted to Aj.. But this follows as AX2 C G, and
hence x? = 1.

By Theorem 6.5, there are two cases.

Case 1. There is a character x; of Ay /E* trivial on A% /F* such that

IeX =X
Therefore, R (Xl X)- Since x1 is trivial on A% /F*, the character xi 13 is an extension of
x to a Gréssencharacter on Ay /E*, which is a self-twist of H, proving the desired statement in
this case.
Case 2. There is a character x; of Ay /E* trivial on A% /F* such that

Moy =17 x;
~ 1Y ®x1
gH@(Xlwﬁl),

which again proves the desired statement since wp restricted to Ax is trivial. Note that in

the above we have also used the fact that II is assumed to be distinguished with respect to
GL, (AF) Od

Remark. Although Asai lift naturally comes up in questions about distinguished representations
for the pair (GL2(Ag), GL2(AF)), its use in the previous theorem is for an entirely different
purpose: to prove that a certain character of Ay, can be assumed to be a Grossencharacter when
its restriction to Ay /F* is known to be a Grossencharacter. In this, the crucial property of the
Asai lift used is the fact that As(Il ® x) = As(II) ® x[,x, so even if x is not a Grossencharacter,
since its restriction to A is, the Asai lift is an automorphic representation. This is then combined
with the knowledge about fibers of the Asai lift to conclude that yx, or a variant of it, is
automorphic. Later, when we deal with toric period integrals, we will use very similar arguments
using the base change map for a similar effect. Although base change does appear in toric period
questions, it is put to an unrelated use in this paper!

8. Examples

It may be useful to enumerate all the possibilities for the groups which appear in the previous
section, which we do here.
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According to the notation introduced in [AP03, AP06], and the proof of the previous theorem,
we have,

X(H/Hs) C X = {x€A}/F*|II is x-distinguished}
X(Ho/HiHy) =Yg = {x € Aj/E* |TT@x =11, x|, =1}

X(HQ/HQ) = Zﬁ = {XGAE/EX ‘H@X:H}.
Further, there is an isomorphism of groups X = Y5
We now enumerate all the possibilities for the groups X, Y, 25, and refer the reader
to [AP06, proof of Theorem 6.9].

(i) The representation II is not CM. In this case, X5 = Y = Z5 = {1}.

(ii) The representation II is CM by exactly one quadratic extension of E. In this case,
X7 =Yy = Z5 = 72/2, and therefore,

11 ~
~7,/2.
Zﬁ/Yﬁ

(iii) The representation II is CM by three quadratic extensions of E, with exactly one Galois
over F. In this case, X =Y = Z/2, and Z = 7Z/2 ® Z/2 and therefore,

Xi
7o)y~ W

(iv) The representation II is CM by three quadratic extensions of F, all Galois over F. In
this case, X =Yy = Z5 = Z/2 ®© Z/2, and therefore,

X~
11 ~
~7/2® Z)2.
Zﬁ/Yﬁ

9. A more general situation

In the context of distinction for the pair (GLg(E), GL2(F)), the most general pair of this kind
that one could consider is (GL1(D)(E), GL1(D)(F)) where D is a quaternion algebra over a
number field F', and F is a quadratic extension of F'. In fact it was in the study of distinction for
this pair that the relative trace formula was introduced by Jacquet in collaboration with K. Lai
in [JL85], who dealt with only those quaternion algebras D over F for which D @ p E = My (E);
the more general situation was considered in the paper [FH94]. These papers prove that a cuspidal
representation 7 of GL1(D)(Ag) is globally distinguished by GL;(D)(Ar) if and only if 7/, the
Jacquet—Langlands lift of 7 to GLa(Ag), is globally distinguished by GL2(Ap), together with
the necessary local conditions at places of ' where D is ramified, F is inert, and 7 is a principal
series representation. Thus distinction for these pairs also is dictated by the existence of a pole
at s =1 of the Asai L-function.

Our work in the previous two sections for the pair (SLa(F), SL2(F')) was a consequence of
this characterization of distinction for GLa(E) representations in terms of the Asai L-function,
and an input on distinction for the pair (SLa(E), SLa(F)) in terms of the Whittaker model with
respect to a character of E trivial on F' which was proved in [AP03] in the local case, and [AP06]
in the global case.

In this section we consider distinction for the pair (SLi(D)(Ag), SL1(D)(Ar)) where D is a
quaternion algebra over a number field F', and F is a quadratic extension of F. At places of F’

978

https://doi.org/10.1112/50010437X12000772 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000772

A LOCAL-GLOBAL QUESTION IN AUTOMORPHIC FORMS

where F is inert and D is ramified, we will be dealing with distinction properties for the pair
(SLo(Ey), SL1(Dy)); an added subtlety here is that the embedding of SL;(D,) in SLe(E,) is
unique only up to conjugation by GLa(E,), and there seems no preferred embedding of SL;(D,)
in SLy(E,). Thus one must keep in mind that the question about classifying representations of
SLo(E,) distinguished by SLj(D,) is meaningless unless there is a way of fixing an embedding
of SL1(D,) inside SLa(E,).

Recall that for the pair (SLa(Ag), SLa(Afr)), our proof of the local-global property depended
on defining the groups,

Hy = A%,
Hy = AXGr,
Hy = E*Gyy,
H; = F* Gy,

and noting the following.

(i) The set Hy - II is the L-packet of representations of SLa(Ag) determined by II.

(ii) The set Hp-II is the set of locally distinguished representations in the L-packet of
SL2(Ag) determined by II.

(iii) The set Hy - 1II is the set of automorphic representations in the L-packet of SLa(Ap)
determined by II.

(iv) The set Hs-II is the set of globally distinguished representations in the L-packet of
SLo(Ag) determined by II.

Then we proved, via considerations with the Asai lift, specifically determination of the fibers
of the Asai lift, that (H; N Hy)/Hs =1, for which we did not need the interpretation of Hs - II
as the set of globally distinguished representations in the L-packet of SLa(Afg) determined by
II; we only needed to know that members of Hs - IT are globally distinguished.

The groups Ho, Hi, Hy, H3 were defined in the context of (SLa(Ag), SL2(Ar)) using the
embedding of E*, or of A, inside GL2(Ag) as the group of diagonal matrices:

%)

When dealing with SL;(D), this diagonal subgroup does not make sense, but we can instead
replace these by the image of D*(E), respectively D*(FE,), respectively D*(Ag) in E*,
respectively E, respectively A, via the reduced norm mapping. The group Gr itself may be
defined as the image of the reduced norm mapping of the stabilizer in D*(Af) of a representation
IT of SL;(D)(Ag). Thus Hy is the image of D*(Ag) in A} under the reduced norm mapping,
denoted here by det, or rather the image of D*(Ag) in A}, multiplied by Gy inside A7; similarly,
Hy =det(D*(Af)) - Gn C Ay, Hy=det(D*(E)) - Gn C Aj, and Hs =det(D*(F)) - Gn C Aj,.

In order to analyse the local-global question for (SLi(D)(Ag),SLi(D)(AFr)) inside an
L-packet containing a globally distinguished representation, we can adopt more or less the
same strategy. But we see from Lemma 9.2 below that H;-II does not capture all the
locally distinguished representations, and thus we cannot proceed along exactly the same
lines. However, we note that (H; N Hy)/H3z = 1 proves that locally distinguished representations
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of (SL1(D)(Ag),SLi(D)(Ar)) appearing in the restriction of a globally distinguished
representation of
D*(Ap) ={g € D(Ag) | det g € AFAS}
are globally distinguished.
Let ITIT be an automorphic representation of D' (Ag) which is globally distinguished with

respect to SLi(D)(Ar). Let IT be an automorphic representation of SL;(D)(Ag) which comes in
the restriction of IIT. Observe that:

(i) the set Hp-1II is the set of all the irreducible components of the restriction of IIT to
SLi(D)(Ap);

(ii) the set Hs -II is the set of all automorphic representations belonging to the L-packet of
SL1(D)(AE) determined by II;
(111) (H1 N HQ)/H3 =1.

The statement (ii) is part of the work of Labesse-Langlands mentioned earlier [LL79].

The proof of (iii) follows the same lines as given earlier for SLo(Ag) using the fibers of the Asai
lift, which this time can be considered to be lifting of automorphic representations of D*(Ag)
to GL4(Ap) via the intermediary of the Jacquet-Langlands correspondence to GLo(Ag). We
note that we also need to use the standard local-global theorem for norms of quaternion division
algebra: an element of F'* arises as a norm from D if and only if it does so locally at all places
of F.

We summarize the above discussion in the following theorem.

THEOREM 9.1. Suppose I is an irreducible cuspidal representation of D (Ag) which is
globally SLy (D) (Ap) distinguished. Then the part of the L-packet of SLy(D)(Ag) determined by
the restriction of II'™ has the local-global property for SLi(D)(Af); more precisely, automorphic
representations of SL1(D)(Ag) contained in II" which are locally distinguished by SLy(D)(Af),
belong to one orbit under the action of D*(F).

Now we would like to understand the local-global question for a cuspidal representation II of
SL1(D)(Ag). One important fact which went into our analysis of local-global distinction for the
pair (SLa(Ag), SL2(Ar)) was that if a representation of GLJ (E,) is distinguished by GLa(F})
then it must have a Whittaker model for a character of F, which is trivial on F,,. This has the
corollary that if two irreducible representations II; and Il of GL;(EU) belonging to the same L-
packet are respectively w;- and we-distinguished by GLa(F},) for two characters wy, wy : Fi — C*,
then II; 211, (although w; may not be the same as wy). This is what allowed us to prove that
representations of SLy(FE),) distinguished by SLo(F},) belonging to one L-packet are in a single
orbit for the action of GLa(F),). This property fails for the pair (SLa(E,), SLi(D,)) because of
the following lemma.

LEMMA 9.2. Let K be a quadratic ramified extension of a non-Archimedean local field k of odd
residue characteristic, and D a quaternion division algebra over k. Let u be an unramified
character of K* of order 4 with p?=:w. Let GL] (K)={g€ GLy(K) |w(detg)=1}={g €
GL2(K) | det g € kX K?*}. Then the principal series representation m = Ps(u, pw) of GLy(K)
decomposes as a sum of two irreducible representations 7 and 7~ when restricted to GLJ (K)
with ™ spherical, i.e., the one which contains a vector fixed under GLy(Ok). Fix an embedding
of D* in GLj (K) such that D* C K* - GLo(Ok), then the trivial representation of D* appears
in 7T, and the character w ik of order 2 of k* associated with K /k, considered as a character
of D* through the reduced norm mapping, appears in 7~ .
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Proof. Tt is easy to see that D> operates transitively on P!(K) such that the stabilizer of the
point oo in P}(K) is isomorphic to K, hence by Mackey theory we easily deduce that there are
exactly two one-dimensional representations of D* contained in 7, one the trivial character, and
the other which is the character wy of k™ considered as a character of D*. We need to decide
which of these characters of D> appear in 7", and which of these characters appear in 7.

Our first task will be to construct an embedding of D* in K* - GLo(Ok) (for K a quadratic
ramified extension of k). For this we fix some notation.

Let wgi be a uniformizing element in K, and O, Ok, Op be respectively the maximal
compact subrings of k, K, D. Fix an embedding ¢ : K — D. We will consider Op as a free rank 2
module over Ok from the right, and as an Op-module from the left. This gives an embedding
Op — Endp, (Op). Since Op is invariant under conjugation by D*, and hence by K*, left
multiplication by K* on Op can be considered to be an inner-conjugation by K* up to an
action of K on the right:

z-Op=204 " 2,
therefore K* C D* is contained in K* - Endp, (Op), and since D* = K*OJ, D* is contained
in K* - Endop, (Op).

Observe that Op comes equipped with a natural filtration consisting of two-sided ideals:
Op DwrgOp D w%(OD D .-+ such that the successive quotients are modules for Op/wrOp =
Fy, if Fy is the residue field of k. We thus have natural maps,

OB — AutoK (OD) — AutoK (OD/WKOD) = Aut]Fq (qu).

Under the composite map from OF to Autp, (Fgp) = GL2(F,), the image of OF is clearly
IFZQ acting on Fg2, giving rise to an embedding qug — GL2(FF,). Further, since multiplication by
x € K* on Op on the left is up to a central element conjugation by x on Op, the action of K*
on Op/mgOp is an automorphism of algebras, i.e., an element of the Galois group of F,2 over
F,. Thus the image of D* is contained in the normalizer of IFqu inside GLa(Fy).

Since D* C K* - GLy(Ok), given that 7 has trivial central character and 7" has a fixed

vector under GLo(O},), the trivial representation of D™ appears in 7. The representation 7~ is
obtained from 7+ by conjugating by the matrix,

wr 0
0 1)’
hence it is clear that 7~ has a subrepresentation on which

Lo(w) = { <Z Z) € GL2(Ok) ‘ WK’C}

acts trivially. This means that 7~ must contain the Steinberg representation of GLa(F,), where
[F, is the residue field of K, as the Steinberg is the only non-trivial irreducible representation of
PGLy(F,) with a vector fixed under the group of upper triangular matrices. Since the Steinberg
representation contains all non-trivial characters of IFqXQ /F;, the unique non-trivial character of

]F;2 /Fy of order 2 appears in 7~ (This is where we use that ¢ is odd to ensure that FqXQ /Fy has a
character of order 2.) Since the unique non-trivial character of IE';Q JF; of order 2 is left invariant
by the normalizer of FqXQ inside GLy(F,), we conclude that there is a character of order 2 of
D* /k* appearing in 7~, which cannot be anything else but wg . O

Because of this lemma, the local-global property fails, which we record in the following
proposition.
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PropoSITION 9.3. Let E be a quadratic extension of a number field F';, and D a quaternion
division algebra over F. Then there exists an automorphic representation w of DV (Ag) which is
locally distinguished by SL1(D)(Ar), but not globally distinguished in terms of having nonzero
period integral on this subgroup; more precisely, on the m-isotypic piece of the automorphic
representations of D" (Ag), the SLy(D)(Ar)-period integral is identically zero.

Proof. Let TI be a non-CM cuspidal representation of D*(Apg) with unramified principal series
local components at many places where E/F is ramified so that we are in the context of
Lemma 9.2, and the restriction of IT to D (Ag) has more than four direct summands which
are locally distinguished by SLi(D)(Afr). Since a non-CM L-packet is stable, all these direct
summands are automorphic as well. If all these representations were globally distinguished with
respect to SLy(D)(Ap), then, in particular, they will be globally w-distinguished with respect to
D*(Ap) for certain quadratic characters w: Ay /F* — {£1}; these quadratic characters w are
necessarily distinct by multiplicity one theorem regarding the space of D* (A p)-invariant linear
forms on an irreducible representation of D*(Ag). It would then follow that II is distinguished
by D*(Ap) for more than four Grossencharacters, which is not possible as global distinction
is characterized in terms of the Asai lift of II to GL4(Ap) to contain a Grossencharacter
as a direct summand, and so II can be w-distinguished for at most four Grossencharacters
w:Aj/F* — C*. O

On the positive side, we have the following result.

PROPOSITION 9.4. Let E be a quadratic extension of a number field F', and D a quaternion
division algebra over F. Let Il be an automorphic representation of DV (Ag) which is locally
distinguished by D*(Ap) by a Grossencharacter w: Ay, /F* — C*. Then if Il has a discrete
series local component, it is globally distinguished in terms of having nonzero period integral on
this subgroup with respect to the character w.

Proof. Let II be an automorphic representation of D* (Ag) containing II. Since IT and hence II are
locally w-distinguished, by the local result due to Hakim [Hak91], and the second author [Pra92]
(cf. Proposition 2.4), II'L is locally w-distinguished with respect to GLa(Ap) as well. This means
that IT7Z is (globally) w-distinguished with respect to GLa(Ap) (this is where we use II having
a discrete series local component, otherwise the conclusion is either w-distinguished or w - w, .-
distinguished), and hence, by the global result (cf. Proposition 2.3) Il is w-distinguished with
respect to D*(Ap). (Since I is locally w-distinguished, the necessary local condition to apply
Proposition 2.3 on principal series component of I/ to be Ps(u~!, u%) at places of F' at which
D is ramified and E is inert is satisfied.)

Now by the multiplicity one theorem about the space of D*(F,)-invariant forms on an
irreducible representation of D*(E,), it follows that II itself is w-distinguished, completing the
proof of the proposition. O

Thus the proof of Proposition 9.4 says that the problem in the failure of the local-global
principle in Proposition 9.3 is one of patching local characters of F, into a Grossencharacter on
A% /F*. We can capture this more precisely as follows.

To an automorphic representation I = ®II, of D*(Afg), define local groups S, consisting of
characters w, of F,* such that II, is w,-distinguished with respect to the subgroup D*(F;). We
know that &, is a finite set consisting of at most four elements, and that for most places v of F',
there is an unramified character in S,, and there are at most two unramified characters in S,
which, if there are two, are twists of each other by wg, /p,. So the previous proposition can also
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be stated as saying that an automorphic representation II of D*(Afg) is globally distinguished
by SLi(D)(Ap) if and only if there is a Grossencharacter w = [[ wy : A% /F* — C* such that w,
belongs to S, for all places v of F.

10. Distinction in an L-packet for the toric period

In this section we prove Theorem 1.4 which we recall again here.

Since multiplicity one theorem is not true for automorphic representations of SL;(D)(Af),
a small care is needed in the following theorem in defining ‘an L-packet of automorphic
representations on SLj(D)(Ap)’ by which we will mean the automorphic representations on
SL1(D)(AF) obtained by restricting one from D*(Af).

THEOREM 1.4. Let D be a quaternion algebra over a number field F, with E a quadratic
subfield of D. Let II =®,lI, be a cuspidal representation of SLi(D)(Ar) with at least one
square integrable component at a place vg of F'; if E/ is inert and D is split at vy, we further
assume that vy is of odd residue characteristic and 11, is a supercuspidal representation if vg is
a finite place of F. If each 11, is distinguished with respect to E., then assuming Conjecture 1.3
holds, there is a cuspidal representation in the L-packet of Il which is distinguished with respect
to AlE.

Let II = ®II, be a cuspidal representation of D* (Ap) containing IT = ®II,. We assume that
each II, is distinguished with respect to E}, the group of norm one elements of EX. We assume,
without loss of generality, that the central character of II is trivial. Since II, and hence ﬁv
is distinguished with respect to E, ﬁv is au-distinguished with respect to E,‘, where «, is a
character of EX /FXEL, hence there is a quadratic character 3, of F;* such that II, is 8, o Nm-
distinguished with respect to E,‘. Since being distinguished is no condition at places v of F
where ﬁv is a principal series representation, so at all but finitely many places of F', we can
assume that IL, is B, o Nm-distinguished at all places v of F' for a Gréssencharacter 3 of Ay /F*
with 5% =1.

The proof of Theorem 1.4 will depend on two technical lemmas, one local and the other global.
The local lemma allows one to twist a representation Ho of GL2(Fp) by a quadratic character
Yo to change epsilon factor €(Ily) to e(Ho ® x0) so that the global epsilon factor (Il ® y) can
be assumed to be 1 if the original e( ) was —1; this then allows one to appeal to Conjecture 1.3
about simultaneous non-vanishing of two L-values. An added subtlety that we must deal with
is that in changing the sign of e(ﬁo) to e(ﬁo ® X0), such quadratic characters must appear in
the representation ﬁo at that place, so by the theorem of Saito—Tunnell, some other epsilons
must be controlled. This is where existence of a discrete series component of the automorphic
representation is used.

LEMMA 10.1. Let II1 = ®IL, be an automorphic representation of D*(Ap) with trivial central
character. Let E be a quadratic extension of F' contained in D with w,,, =[] w, the associated
Grossencharacter of Ay, /F*. Assume that II has at least one square 1ntegrable component at
a place vg of F'; if F is inert and D is split at vy, we further assume that vy is of odd residue
characteristic and ﬁvo is a supercuspidal representation if vy is a finite place of I'. Assume that
I is locally distinguished by the character 3 o Nm of A}, for a quadratic Grossencharacter 8 of
AX/F*. Then there is a Grossencharacter n of A% /F* with n* =1, such that

(Mon) =1=cllow,,n) (2)
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and furthermore,
G(ﬁv & nv)e(ﬁv ® anv) = f(ﬁv ® ﬁv)f(ﬁv & Wv/Bv) (3)

for all v. Moreover, n can be made to agree with 3 at finitely many prescribed places other
than vg.

Before we proceed to prove this lemma, we fix some more notation, and prove a few
intermediate results. Some of this notation, as well as the proofs that follow, is due to one
of the referees of this paper.

Let Fy be a local field, and Ejy a separable quadratic extension of Fp, with wg, /g the
corresponding quadratic character of F;*. Let m be a discrete series representation of GLa(Fp)
with w; = 1. For v = %1, let

XV =X/ ={a: F) = {£l} | e(r ® a) =va(—1)e(r)}.
Then, we have the following proposition (see [Wal91]).
PROPOSITION 10.2. If7 is a discrete series representation of PGLa(Fp), then X" # () for v = +1.
Now, for v, ' € {£1}, let

X =X ={ae X" | aw e X"}

Eo/Fo

We have the following proposition.

PROPOSITION 10.3. The sets X"V satisfy the following properties.

(i) The map o+ aw is a bijection between X~ and X~ .

Eo/Fo

(ii) If X*= =0, then both X*+ and X~ are non-empty.

(iii) Let o€ X*¥'. Then 7 is o o Nm-distinguished with respect to E* if and only if vv/ =1,
and 7', the representation of D associated to 7 by the Jacquet—Langlands correspondence where
Dy is the unique quaternion division algebra over Fy, is a o Nm-distinguished with respect to
E* if and only if v/ = —1

Proof. Part (i) is straightforward. Part (ii) follows from part (i), thanks to Proposition 10.2.
Part (iii) follows from Proposition 2.8 together with the identity (1) in the remark following this
proposition. O

PROPOSITION 10.4. Assume that Fy is either Archimedean, or has odd residue characteristic.
Let m be a discrete series representation of GLga(Fy) which is supercuspidal if Fy is non-
Archimedean. Then, if X+ is non-empty, so is X, and conversely. In the Archimedean case,
X and X~ are both empty sets, and X~ and X~ are sets with one element.

Proof. The proof of the proposition is rather trivial in the Archimedean case, so we assume
in the rest of the proof that Fy is non-Archimedean. Since Fy has odd residue characteristic,
the number of characters of F* of order dividing 2 is four, and further 7 has a self-twist by a
non-trivial character p of order 2. Note that o — ap takes X»*' to X H(=D»'u(=1),

If u(—1) =1, the sets X” " are stabilized by multiplication by u, and hence their cardinalities
are even integers. Given that X ™, X*= X~ X~ are disjoint sets of total cardinality 4 with
the cardinalities of XT~ and X~ equal, we easily deduce that it is not possible for X+ to be
non-empty but X~ to be empty, and conversely; here we have also utilized Proposition 10.2.

If u(—1) = —1, then o — au gives a bijection between X+ and X~ ~, and once again the
proposition follows. O
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Remark. We are unable to prove Proposition 10.4 in residue characteristic 2 one way or the
other which seems like an interesting exercice dyadiques.

We will need the following local result in order to prove Lemma 10.1.

LEMMA 10.5. Let Ey be a separable quadratic algebra over a local field Fy, with wo as the
corresponding character of Fj with wg = 1. Let Il be an irreducible discrete series representation
of PGLy(Fy). If Ey is a quadratic field extension of Fo, and if Fy is non-Archimedean, assume
further that it is of odd residue characteristic, and that Il is a supercuspidal representation. Let
Bo be a quadratic character of F*. Then there exists a quadratic character vy of F,* with,

€My ®0) _ €Tl @ fo)
Yo(—1) Bo(=1) ~

and,

e(ITp ® ~0)e(Ilo ® woo) = e(Ily & Bo)e(Ily @ wolo).-

Proof. Tt is convenient to use the sets X' to prove the lemma. By Proposition 10.3(i) and
Proposition 10.4, we know that X7~ =0 +—= Xt =0 and X*T =0 <= X~ =0, under our
assumptions.

Now if 3y belongs to X, then choose 7o from the non-empty set X, and conversely. If
Bo belongs to X, then choose vy from the non-empty set X+, and conversely, in order to
conclude the lemma. O

Proof of Lemma 10.1. Since the representation II, of D} is [, o Nm-distinguished for the
subgroup E)S, by the Saito—Tunnell theorem, we have,

( v ® By)e ( v ®wyBy) = wy(—1wp, (—1),
where wp (—1) = —1 if D, is ramified, and wp (—1) =1 if D, = Ms(F,). It follows that,

(H@ﬁ H®ﬂw HwD

the last equality following from the fact that the number of ramified primes of D is even.

Therefore, if e(ﬁ ® ) =1, then so is e(ﬁ ® fw), and n = [ has all the desired properties to
apply Conjecture 1.3.

If e(ﬁ ® ) = —1, we will use the fact that IT has a square integrable component at vy to
modify /3 to construct 7 such that e(II ® 1) = 1 = e(Il @ nw), with

E(HU @ TIv) (H @ wvnv) = 6( & ﬂv) ( & Wvﬂv)

for all v.
Let v be a quadratic Grossencharacter of Ay /F* with 7, =7 as in Lemma 10.5, and which

at the other places v of F' where either D or II is ramified is 3, (and no constraints outside the
ramified primes of II). By a well-known calculation about the epsilon factor of principal series
representations of PGLa(F}), it follows that

e(ﬁv ® X) — ¢ T
X(_l) - (Hv))
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for II, a principal series representation of PGLy(F,), and x any character of FX with y? = 1.
Therefore we have,

~ B G(Hv X 'Yv) B E(ﬁo & ,60) e(ﬁv ® ﬂv) _ I
Wen =117 ="5my Il 5y = —meo

proving Lemma 10.1. O

v

Proof of Theorem 1.4. Appealing to Conjecture 1.3, we obtain a Grossencharacter, say 1, of Aj
with (')? = 1, such that:

() L(z. @) #0# L(g, Lo wy);
(il) n' agrees with 7 at all the places S of F' containing the infinite places of F', and the places
of F where II or D is ramified.

Given this, equation (3) of Lemma 10.1 continues to be satisfied with 7’ instead of n at all
places v of F', since outside of S there is no condition, as can be easily checked. Thus, II ® n is
distinguished with respect to E at all the places v. Since L(3,II®7') # 0 # L(, I ® wn'), the
non-vanishing of the toric period on I 1’ follows by the work of Waldspurger. This is enough
to conclude that there is a member in the L-packet of II on which the A};—period integral is
non-vanishing by Proposition 3.4. This finishes the proof of Theorem 1.4. O

Remark. One could ask whether it is possible to remove the further technical restrictions at
the discrete series place in Theorem 1.4. This is possible if II has two discrete series places
and further if D is allowed to vary; i.e., given a cuspidal representation II of SLi(D)(Ar), with
at least two discrete series components, that is locally distinguished with respect to A}E, there
exists a quaternion algebra D’ over F' containing F such that the L-packet of II is globally A}E—
distinguished, where the L-packet of II' is the Jacquet—Langlands correspondent of the L-packet
of II.

The previous arguments work as well for the split toric period of a cuspidal representation of
SL2(Ar). In fact, in this case, since w,,, = 1, there are not two L-values to control, but a single
one, whose non-vanishing is the main theorem of the paper of Friedberg and Hoffstein [FH95]
which we recall presently, so we do not need to resort to Conjecture 1.3 in the split toric case,
and we obtain an unconditional theorem.

THEOREM 10.6 (Friedberg—Hoffstein). Let 7 be a cuspidal representation of GLo(Ap). If 7 is
self-dual, let n be a quadratic character such that

e(fren) =1

If 7 is not self-dual, let n be any quadratic character. Then there are infinitely many quadratic
characters nf of Ay /F*, which agree with n at any finitely many prescribed places of F, and
such that

L, m®n)#0.

Using Theorem 10.6, we obtain the following theorem regarding the period integral on the
split torus. Actually, in this case the local-global principle holds true for individual automorphic
representations, since automorphic representations (in an L-packet) are all F'* conjugates of
each other and therefore if the period integral is nonzero on one automorphic representation, it
is nonzero on any other automorphic member of the L-packet. Furthermore, for the split torus,
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there are no local conditions either (of course, the central character must be trivial). Thus we
have the following unconditional theorem.

THEOREM 10.7. Let II = ®,II, be a cuspidal representation of SLo(Ap) with trivial central
character contained in an automorphic representation = ®Uﬁv of GLo(AFR), also with trivial
central character. Suppose either that the global epsilon factor, e(ﬁ) =1, or that Il has at least
one square integrable component at a place vy of F'. Then, II is distinguished with respect to
A% sitting inside SLo(Ap) as the diagonal subgroup (¥ %),z € A%.

Remark. We have already mentioned a result of Waldspurger, that for an automorphic
representation IT = ®,I1, of GLy(Ap) with trivial central character and with at least one square
integrable component at a place vy of F, there is a character a of Ay /F* with a? =1 such that

the global epsilon factor, e(ﬁ ® «) = 1. It may be instructive to recall the proof.

Proof. The proof of this remark is a direct consequence of Proposition 10.2 according to which

e(m® p)
u(—=1)
takes both the values +1 if 7 is a discrete series representation of PGLa(Fy,).

If €(IT) =1, we can take a=1. Else, ¢(II) = —1. In this case, use Proposition 10.2 at the
place vy of F' where m = 7 is given to be a discrete series representation, to change the value of
e(m @ p)/p(—1), so that e(m ® p)/pu(—1) = —¢(m). Now let o be a quadratic character of Ay /F*
which is u at the place vg of F', which is equal to 1 at the finite set of places of F' where II is not
a principal series representation. Noting that for m a principal series,

(x @ 1)
-~ =¢(m),
e
we find that
~ e(M®a) -
II =—— " =—¢II)=1
completing the proof of the remark. O

Remark. Similarly, Proposition 10.2 implies that if we are given two automorphic representations

IT; and ITy of PGL2(AF), such that there are two distinct places v1 and vy of F' such that II; at

v1 is a discrete series but I is a principal series at v1, and similarly, Iy at vs is a discrete series

but II; is a principal series at vo, then there are quadratic characters o of Aj./F* such that,
e(Il; ® a) = (Il ® ) = 1.

However, if I and I have discrete series components at the same set of primes (or on an empty
set of primes), then this method does not work. In our work, we have to deal with Conjecture 1.3
on simultaneous non-vanishing of twists of L-values for II; and Il which are themselves twists
of each other, where it may not be possible to use discrete series components to achieve

eIl @a)=€¢lla®a)=1,

as can be seen through simple examples. In Lemma 10.1, we have managed to make two global
epsilon factors 1 after twisting, under the hypothesis of local distinction at all the places of F'.
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11. Local-global principle for toric periods

Let E be a quadratic extension of a number field F. Fix an embedding of E* in GLy(F),
and hence an embedding of E' into SLa(F). Let IT = ®II, be an automorphic representation of
SLa(Af). The group Aj sitting inside GLa(Ar) as

)

operates on SLy(Af) via conjugation action, and therefore on the set of isomorphism classes
of representations of SLa(Ap). The orbit of IT under the action of A% is precisely the global
L-packet of representations of SLa(Ar) containing IT. Let Gri C Aj., Gt = [] Gy, be the stabilizer
of the representation Il = ®II,, where G, is the stabilizer inside F,* of the representation IL,,.

The action of F* on SLy(Afp) is transitive on the set of automorphic representations of
SLo(Af) contained in the global L-packet determined by II. Clearly if II has a nonzero period
integral on the given embedding of E'(Ar) in SLy(Ar), then so will all its conjugates under
N(E*). If we can prove that these are the only automorphic representations of SLa(Afg) which
have local periods with respect to E'(F,) for all places v of F, we will have proved the local-
global principle for toric periods. However, the proof in the toric case will not be so simple, and
will depend on using another related group GLJ (Ar), defined as follows:

GL{ (Ar) = {g € GLo(Ap) | det g € N(AD)}.

We will prove that the part of the L-packet of SLo(Ap) determined by the restriction of an
irreducible automorphic representation II* of GLJ (Ar) has the local-global property if II* is
globally distinguished by a quadratic character of A7.

THEOREM 11.1. Suppose II* is an irreducible cuspidal representation of GL3 (Ap) which is
globally A}, distinguished by a quadratic character w of A}, /F*; i.e., by the character w o N of
A% /E*. Then any automorphic representation of SLa(Ap) contained in the restriction of It
has nonzero period integral on AL /E?.

Proof. Define groups analogous to the ones defined in §7:

Hoy = A},

H; = N(Ag)G,
Hy = F*Gr,
Hs = N(EX)Gr.

Let IT be an automorphic representation of SLa(Ap) contained in ITT = ®,II} which is
globally distinguished by AlL; its existence follows from Proposition 3.3. It is clear that
automorphic representations of SLy(Ar) of the form Hj - II are globally distinguished by AL,
whereas representations of the form H; - IT are all the irreducible components of II" restricted
to SLa2(Afr), and among these, representations of the form Hj - II are automorphic. Thus the
following result proves the theorem. O

THEOREM 11.2. The group (Hy N Hy)/Hjs is trivial.

Proof. We will prove that (H; N Hy)/Hs is trivial by proving that its character group is trivial.
Noting that (H; N Hy)/Hs is nothing but the kernel of the map,

H,/Hs — Hy/Ho,

988

https://doi.org/10.1112/50010437X12000772 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000772

A LOCAL-GLOBAL QUESTION IN AUTOMORPHIC FORMS

the character group of (H; N Hy)/Hs is the cokernel of the natural map
X(Hy/Hy) — X(Hy/Hs).

Therefore to prove the theorem, it suffices to prove the surjectivity of the natural map
X(Hy/Hy) — X(Hy/Hs).

Equivalently, we need to prove that a character of (N(A})Gr)/[N(E*)Grl, can be extended to
a Grossencharacter of A% /F* which is a self-twist of I1.

Since Gr and hence N(E*)Gp is an open subgroup of Ay, A% /[N(E*)Gr] is a discrete
group, hence a character x of [N(AL)Gn|/[N(E*)Gn| can be thought of as a character of
A% /IN(E*)Gml, so that I~ 11 ® y. Our aim is to eventually get one which is a Gréssencharacter.

Let BC(II) denote the base change lift of the representation II of GLa(Ar) to GLy(Ag). By
local considerations, it is clear that

BC(IT) 2 BC(IT ® ) = BC(IT) @ y o N. (4)

Note that although we do not know that x is a Grossencharacter on Ay /F*, but since it
is trivial on N(E*), the character y o N of A} is a Grossencharacter on A} /E*. Further, the
Grossencharacter y o Non A%, /E* is naturally Galois-invariant. Therefore, the Grossencharacter
xoNon A;/E* can be descended to a Grossencharacter, say p on Ax/F*, ie.,

xoN=poN.
So (4) can be rewritten as
BC(IT) 2 BC(II® ) 2 BC(II) @ x o N~ BC(II) ® po N~ BC(II @ p). (5)
This gives
BC(II) @ BC(II ® p).
Just like the previous case dealing with the Asai lift (cf. Theorem 6.5), appealing now to

the (this time, much better known) theorem about fibers of the base change map, we find that
either:

(i) M2 ® u; or

(i) I®w,,, =21 pu.

In case (i), the character p is trivial on Gy (by the very definition of Grr), and since
xoN=poN, we find that x and p are the same on the subgroup N(A}) of A}, therefore
the character p on A% /F* is the desired extension of the character x initially defined on
(N(AE)Gu)/[N(E*) Gl

In case (ii), the character pw, . is trivial on Gy, and since x o N = p o N, we find that x and

piw, . are the same on the subgroup N(Aj) of Ay, therefore the character juw,,, on Ag/F* is
the desired extension of the character x initially defined on (N(A%)Gn)/[N(E*)Gn]. O

It may be useful to isolate a fact of independent interest from the above proof which was
actually the crux of the argument for the proof of Theorem 11.1.

THEOREM 11.3. Suppose II* is an irreducible cuspidal representation of GL3 (Ap). Then
E* C GLJ (AF) acts transitively on the set of automorphic representations of SLa(Af) contained
in the restriction of TI'.

Theorem 11.1 holds true in the analogous division algebra case, and the proof is the same
after we have noted that the group Hy = A, which is used as a subgroup of GLa(AF), can also
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be treated as a quotient group via the determinant map, and then it once again operates on
SLa(Af) via conjugation, well-defined up to inner-automorphisms, so also on its representations;
this then allows one to define Hy for D*(Ap) as the image of the reduced norm mapping, and
Hy, Ho, H3 as subgroups of this norm mapping. The appeal to base change from GLo(Ap) to
GL2(AEg) in the previous argument can now be done using Jacquet—Langlands correspondence
from automorphic representations of D*(Ap) to automorphic representations of GLa(Af) and
then to GL2(Af). We state this as the following theorem.

THEOREM 11.4. Let D be a quaternion algebra over a number field F;, and FE a quadratic
extension of F contained in E. Let DT (Ap) be the subgroup of D*(Ap) consisting of those
elements with reduced norm in N(A%). Suppose II'" is an irreducible cuspidal representation
of DY (Ap) which is globally Aj-distinguished by a quadratic character w of Ay /F*; ie., by
the character woN of A5 /E*. Then any isotypical piece of automorphic representations of
SL1(D)(AF) contained in the restriction of II'* has a nonzero period integral on AL /E".

The strategy in the present paper to come to grips with those automorphic representations of
SLo(Ap) in a given global L-packet which have nonzero period integral for a given embedding
of E'(AF) inside SLo(Af) is to prove that such global packets which have no local obstructions
for non-vanishing are conjugate to each other by an element of NE* C F'* instead of just being
conjugate by F'*, which is the case as they belong to the same L-packet. The following lemma
suggests that this strategy will not succeed in the presence of certain principal series components,
which one may call supersingular primes, being analogues of supersingular primes for elliptic
curves.

LEMMA 11.5. Let K be a quadratic unramified extension of a local field k of odd residue
characteristic. Let p be an unramified character of k* of order 4 with /ﬂ:wK/k. Then
the principal series representation m = Ps(u, pwg i) of GLa(k) decomposes as a sum of two
irreducible representations 7+ and 7~ when restricted to GL3 (k) in which «* is the one which
is spherical, i.e., contains a vector fixed under GLg(O}). Fix an embedding of K* in GLF (k)
such that K* C k* - GLo(Og). Then the trivial representation of K* appears in ©", and the
ramified character of order 2 of K* /k™ appears in m—.

Proof. Let w be a uniformizing element in k, and Oy, Ok be respectively the maximal compact
subrings of k and K. Since K* C k* - GL2(Oy), 71 has trivial central character, and =" has a
vector fixed under GLo(Oy), the trivial representation of K* appears in . The representation
7~ is obtained from 7" by conjugating by the matrix,

(5%

hence it is clear that 7~ has a subrepresentation on which

To(w) = { <i Z) € GLy(O) wyc}

acts trivially. This means that 7~ must contain the Steinberg representation of GLg(FF,) where
[F, is the residue field of k as the Steinberg is the only non-trivial irreducible representation of
PGLy(F,) with a fixed vector under the group of upper triangular matrices. Since the Steinberg
representation contains all non-trivial characters of Fqé /F, the conclusion about the ramified

character of order 2 of K*/k* appearing in 7~ follows. a
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It should be noted that for an automorphic representation II of GLy(Af) of trivial central
character, at a place vg of odd residue characteristic where ﬁo is unramified, the representation ﬁo
decomposes when restricted to GL;(FO) if and only if ﬁo is as in the previous lemma, i.e.,
the principal series representation 7 = Ps(u, pwg /) with w=wg /- These are what are called
supersingular primes in the classical language, and are interpreted by vanishing of the Fourier-
coefficient: a, = 0. It is expected that for non-CM modular forms of weight >4, there are only
finitely many supersingular primes (for arbitrary F'); for example, a famous conjecture of Lehmer
asserts that there are no supersingular primes for the Ramanujan Delta function. Thus the
following theorem is not without content, although its applicability at the moment is only
theoretical; besides, its proof also depends on Conjecture 1.3 about simultaneous non-vanishing
of L-values.

THEOREM 11.6. Assume Conjecture 1.3. Let II be an automorphic representation of GLa(Af)
with trivial central character, and with a discrete series local component at an odd place, say
vo, and only finitely many supersingular primes. Then any automorphic representation II" of
GLJ (Afp) contained in II which is locally distinguished by E'(Ap) is globally \-distinguished
for a character A of A},/E* A} of order 2, and hence by Theorem 11.1, the local-global principle
holds for automorphic representations of SLa(Af) contained in II for the subgroup AL.

Proof. Let S be a finite set of places containing all ramified places of ﬁ, places of residue
characteristic 2, as well as infinite places, and all the supersingular primes which we are assuming
is a finite set. By the remarks above, the representation II, remains irreducible when restricted to
GLJ (F,) for places v outside S. Since IT™ is locally distinguished by E'(AF), it is A,-distinguished
for some characters A, of F;)* of order <2. Globalize these characters A, for v in S to a quadratic
character A of A% /F* for which we then know that IT* is locally A-distinguished at all places of F'
because of an easy observation that an irreducible principal series representation of PGLy(F,) is
Ay-distinguished for any quadratic character A, of EX/F,. By Lemma 10.1, there are quadratic
characters n of A}, /F* matching with X at places in S\{vo} such that the following global epsilon
factors are 1:

cM@n) =el®nw,,)=1.

We are then in the context of Conjecture 1.3 which gives a character p of Aj/F* of order 2
matching with 7 at all places of S such that

Since Lemma 10.1 also guarantees
e(T, @ 7,)e(TT, @ wyipy) = €(TTy @ Ap)e(Il, @ wyy)

at each place v of F', by the Saito—Tunnell theorem, we see that l:I,,0 is both 7,,-distinguished and
Ay,-distinguished even if n,, # Ay,. By the theorem of Waldspurger, the above non-vanishing of
L-values then implies that Il is globally p-distinguished. By local multiplicity one, this is enough
to conclude that IT* is globally p-distinguished, provided we know that IT} is f,,-distinguished.
We prove that I} is ju,,-distinguished by proving that both the characters of E /F ¢ E? appear
on the same component of the restriction of II, to GLJ (F,) (so the possible difference between
pu and A at v has no consequence for the question of distinction), and this follows from the
following lemma. O
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LEMMA 11.7. Let E/F be a quadratic extension of p-adic fields with p odd. Let ©" be
a supercuspidal representation of GLJ (F) of trivial central character which is distinguished
with respect to E'. Additionally, let & be a supercuspidal representation of GLo(F) which is
distinguished with respect to E* such that m" occurs in the restriction of # to GLJ (F). Then
the multiplicity of the trivial representation of E' in 7% is 2.

Proof. Note that since p is odd, we have EX/F*E*?2=17/2 and we claim that both the
characters of EX/F*E*? do appear in 7. By Proposition 10.3(iii), 7 is o o Nm-distinguished
with respect to E*X for a quadratic character o of F* if and only if « € X**" with v/ = 1. Now
by our assumption 7 is distinguished with respect to E* and therefore we conclude that 1 € X T,
By Proposition 10.4, X~ = # (), and we can choose a character v € X~ . It follows that v o Nm
is the non-trivial character of E*/F*E*? and that 7 is 7 o Nm-distinguished with respect to
E*. This proves the claim. Thus if & does not split into a direct sum of two representations on
GLJ (F), the assertion of the lemma is obvious.

So we assume that 7 restricts to 7+ @ 7~ on GLJ (F). We need to show that 7% is u-
distinguished as well, where p is the non-trivial character of E*/FXE*2. In this case, 7
corresponds to a monomial representation of W of the form Ind%i x for a character y : E* — C*
with x|,, =w,,,.. By the extension of the Saito-Tunnell theorem to GL3 (F) due to the second
author [Pra94, Theorem 1.2], what we need to show is that

e(x, ¥) = e(x, ¥),

where we take 1 to be a non-trivial character of E//F. Note that we can take v to be unramified,
i.e., trivial on O but not on w;OE.

We will prove the above equality by making use of a theorem of Frohlich—Queyrut [FQ73,
Theorem 3], according to which €(7,v) =11if 7| _, =1, as well as the behaviour of degree one
epsilon factors under unramified character twists. In the following, f() denotes the conductor
of the multiplicative character .

Since x|, =w,, ., we have

e(xw,¥) =1
by the theorem of Fréhlich-Queyrut, where w denotes an extension of w, . to E*. Suppose E/F
is unramified. Then, it follows that

c(x, ¥) = (=1,

as we can choose w to be unramified. Similarly, we obtain

e(xp, ) = (=1)7 0w,

Thus if f(x) > 1, then f(xu)= f(x) and the equality of the epsilon factors follows. The case
f(x) =0 does not arise since this would mean that xy = x? which is not possible since 7 is
supercuspidal. If f(y) =1, we claim that once again f(xu)= f(x), as the only other option
is f(xu) =0, and this also implies that xy = x7 since p = u” by the uniqueness of the quadratic
character of E*/F*E*2,

Now suppose E/F' is ramified. This forces p to be unramified. Therefore,

el ) = (—1)TWe(x, 1),

and thus we only need to note that f(x) is even by our assumptions. Indeed, f(x) is either even
or 1 since E/F is ramified and x|, =w,,., and f(x) =1 is ruled out when ¢ =1 mod 4 since
in this case, x is forced to be Galois-invariant, hence 7 cannot be supercuspidal. Also, ¢ cannot
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be 3 mod 4, since in that case 7 is neither distinguished nor p-distinguished as can be seen by
an application of the Saito—Tunnell theorem. O

Note that the above proof goes through and proves an analogous lemma in the division algebra
case except that at the very last step, when F/F is ramified and ¢ = 3 mod 4, e(xp, ) = —e(x, ¥)
if f(x) = 1. However, for purposes of the local-global principle this is no problem: if a character
x of F'* thought of as a character of E* through the norm mapping appears in a representation
7t of DT, then clearly so does xw,,, (being the same character of E*). For ¢ =3 mod 4,

(Tox) _  (TOxwy,)
x(=1) X(—Dwg/p(=1)°

This gives the required change of sign argument used earlier to prove the local-global principle for
E'(AF) contained in SL1(D)(Af), assuming finitely many supersingular primes, Conjecture 1.3
and one odd prime where the representation is discrete series; we omit the details.

Remark. To prove Theorem 11.6 without the finiteness condition on supersingular primes, we
will need a finer version of Conjecture 1.3 which has allowed us the existence of the quadratic
character n at the end of this theorem. The refinement would seek to construct n with prescribed
behaviour inside S, which is unramified at those places outside S where II is supersingular. This
is because, as we noted earlier, the behaviour of 1 outside of S and the supersingular primes
does not matter for distinction questions as the representation II,, of GLa(F,) remains irreducible
when restricted to GLj (F,). At least in the non-CM case, since the supersingular set is rather
‘thin’, one hopes that this strengthening may be possible.

12. A final remark

The two cases of the local-global principle studied in the paper relied on the Asai lift and
the base change map. One part of the argument had to do with the fibers of these functorial
maps. The other part consisted in proving that for E/F a quadratic extension of number
fields, certain characters of A}, whose restriction to Ay are Grossencharacters are themselves
Grossencharacters, if we know certain properties of these characters under base change or Asai
lift as the case may be. It seems worthwhile to isolate these as questions. Before we do this, it
must be added that at the moment, automorphy of the tensor product II X II’, or of the Asai
lift, is known only in certain cases, so either the questions below could be asked for only those
cases, or we should be willing to grant these in general.

Question. Suppose E is a number field, and IT = ®II,, is an irreducible admissible representation
of GL,(Ag), and II' = ®II, is an automorphic representation of GL,,(Ag).

(i) Suppose that IIXII" is automorphic. Then is there an automorphic representation IT”
of GL,(Ag) with II” K II' @2 I X II'? What are the various automorphic representations IT” of
GL,,(Ag) with this property? (This part of the question generalizes the notion of self-twists of
automorphic representations.)

(ii) Suppose that BC(II X IT') is automorphic. Then is there an automorphic representation
1" of GL,(Ag) with BC(II” K IT') = BC(II K IT')?

(iii) Suppose that As(II) is automorphic. Then is there an automorphic representation I1”
of GL,(Ag) with As(IT”) = As(II)? What are the various automorphic representations I1” of
GL,(Ag) with this property?
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Remark. We remark that Blasius [Bla94] has constructed examples of automorphic
representations II; and IIy on GL,(Ap) which are locally twists of each other at all places
of F, but are not globally twists of each other by a Grossencharacter. This means that the
answer to question (i) above is not always positive. This negative solution to question (i) is
itself rather interesting; however, we are asking if there are ways of making it into a positive
answer, by dictating either local or global conditions on II'. A very specific suggestion would
be to ask if question (i) has an affirmative answer if we assume that II' has a local component
which is a Steinberg representation. We do not know if there are automorphic representations
IT; and Iz on GL,(Ar) which are locally twists of each other at all (or, almost all) places of
F', have a Steinberg local component say in I, but are not globally twists of each other by a
Grossencharacter.
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