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Abstract

In this paper it is shown how nonpointed exactness provides a framework which allows a simple
categorical treatment of the basics of Kurosh–Amitsur radical theory in the nonpointed case. This is made
possible by a new approach to semi-exactness, in the sense of the first author, using adjoint functors. This
framework also reveals how categorical closure operators arise as radical theories.
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1. Introduction

Classically, every ring A admits short exact sequences of the form

0→ R(A)→ A→ S (A)→ 0, (1.1)

in which R(A) is the radical of A, and the ring S (A) is semisimple; note that, here
and below, rings are not required to be unital, and not even to be associative. There
are several nonequivalent notions of radical, and each of them has its corresponding
notion of semisimple ring. Moreover, there is a general notion, going back to old
work of Kurosh and Amitsur (see, for example, [W1983] or [GW2004], and references
therein), of a pair (R, S), consisting of a radical class and its corresponding semisimple
class, so that:
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[2] Nonpointed exactness, radicals, closure operators 349

• the classes R and S consist of rings, or, more generally, of objects in a
fixed pointed category with kernels and cokernels, satisfying certain exactness
conditions, for example, as in [MW1982];

• the classes R and S uniquely determine each other, and have several special
properties, including the existence of the short exact sequence (1.1), for each
ring or object A, in which R(A) is the largest normal subobject of A that is in R,
and S (A) is the largest normal quotient of A that is in S;

• in particular, when the ground category is abelian, such a pair (R, S) is nothing
but a torsion theory in the sense of Dickson [Dc1966].

Let us compare the following two well-known observations.

O 1.1. (a) A radical class of rings is a class R of rings such that a ring A
belongs to R if and only if every nonzero quotient B of A has a nonzero ideal C which
is in R.

(b) A semisimple class of rings is a class S of rings such that a ring A belongs to S
if and only if every nonzero ideal B of A has a nonzero quotient C which is in S.

O 1.2. Let C be an abelian category that admits arbitrary intersections of
subobjects and arbitrary co-intersections of quotients. Then:

(a) a torsion class is a class R of objects of C such that an object A in C belongs
to R if and only if it has no nonzero morphism into any object B that admits no
nonzero morphism from any object C in R;

(b) a torsion-free class is a class S of objects of C such that an object A in C belongs
to S if and only if it has no nonzero morphism from any object B that admits no
nonzero morphism into any object C in S.

Observation 1.2 immediately tells us that torsion theories are defined via the Galois
connection determined by the (nonsymmetric) orthogonality relation ⊥, on the class
of objects in C, defined as

A ⊥ B ⇔ Hom(A, B) = 0; (1.2)

indeed, we can rewrite conditions 1.2(a) and 1.2(b) as

R = {A ∈ C | if, for all C ∈ R,C ⊥ B then A ⊥ B} (1.3)

and
S = {A ∈ C | if, for all C ∈ S, B⊥C then B⊥ A}, (1.4)

respectively. In contrast to this, Observation 1.1 obviously uses two binary relations
on the class of rings, but, on the other hand, there is a similarity, suggesting to rewrite
1.1(a) and 1.1(b) as

R = {A ∈ C | if, for all C ∈ R,C ⊥i B then A ⊥h B} (1.5)

and
S = {A ∈ C | if, for all C ∈ S, B⊥h C then B⊥i A}, (1.6)
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where now C is the category of rings, and ⊥i, ⊥h are the binary relations on the class
of all rings defined by

B⊥i A ⇔ (B is not isomorphic to any nonzero ideal in A)

and
A ⊥h B ⇔ (B is not a nonzero homomorphic image of A).

In the present paper, we begin (Section 2) with a new approach to nonpointed
exactness studied by the first named author before. Surprisingly, to give a semiexact
category (=ex1-category) in the sense of [Gr1992a, Gr1992b] is the same as to give
a pair (C1, C0) in which C1 is a category with certain pullbacks and pushouts and
C0 is a full subcategory in C1 that is epi-reflective and mono-coreflective at the
same time. The short Sections 3 and 4 are devoted to two main special cases: the
‘standard’ pointed case, where C0 is the trivial category, and the ‘other extreme’ case
considered in [Gr1992a, Gr2013] (under the name of ‘categories of pairs’), where C1

is determined by a class M of morphisms in C0 satisfying suitable conditions; here we
shall briefly refer to the latter case as the C1 = M case.

In Section 5, after recalling how a binary relation between two sets X and Y
determines a Galois connection between their power sets, we explain in detail how we
are modifying this construction (in a very simple way) to involve two binary relations
between these two sets. Then Example 5.1 shows (many readers would say ‘recalls’)
how these two constructions can be used as two equivalent approaches to torsion
theories in abelian categories. After that we consider two nonabelian orthogonality
relations ⊥C and ⊥−B defined by

B⊥C A ⇔ (there is no nonzero normal monomorphism B→ A) (1.7)

and
A ⊥−B B ⇔ (there is no nonzero normal epimorphism A→ B), (1.8)

respectively. Using these symbols we follow a tradition in classical algebra and radical
theory (see, for example, [GW2004]), according to which X C Y means ‘X is an ideal
of Y’ or ‘X is a normal subobject of Y’, while X−B Y means ‘Y is a homomorphic
image of X’ or ‘Y is a normal quotient of X’. Next we introduce our main definition
(Definition 5.2), which we propose as a general framework for the theory of radicals,
and prove (see Theorem 5.5) that this notion of radical and semisimple classes agrees
with the usual one in Kurosh–Amitsur radical theory for pointed categories close to
that of rings.

R 1.3. While (1.5) and (1.6) are straightforward reformulations of well-known
descriptions (see, for example, [GW2004]), and the very idea of using two binary
relations (in fact, two arbitrary preorders) goes back to [FW1975], our formulation
of Definition 5.2 of a radical-semisimple pair is new. Moreover, it is new even in
the following cases, where, however, it is easily seen to be equivalent to known
formulations:
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• the pointed case;
• for topological spaces, graphs, and the so-called abstract relational structures,

where radical-semisimple pairs are called connectedness–disconnectedness
theories (see [AW1975, FW1975, FW1982]).

Another surprising fact (Section 6) is: in the C1 = M case radical theory becomes
the theory of closure operators, with dense morphisms playing the role of radical
objects and closed morphisms playing the role of semisimple objects. In particular,
for the (dense, closed)-factorization m = cd of m ∈M with respect to a given closure
operator, the corresponding short exact sequence (1.1) is

•
d // • c // • • •

• •

d

OO

•
d

//

m

OO

• c
//

c

OO

•

In fact it was this example that convinced us that our main definition should be
given in the nonpointed context.

R 1.4. (a) From the point of view of the simplicial approaches introduced
in [JM2003, JM2009], it is convenient to think of the frameworks considered

• in this paper (that is, a set with two binary relations on it),
• in [JM2003],
• in [JM2009],

as one-, two-, and three-dimensional exactness structures, respectively. In subsequent
papers, we plan to extend the two- and three-dimensional exactness structures to
include the nonpointed context, showing how the higher-dimensional framework
allows us to generalize more complex results of radical theory. Not to mention
anything else, the one-dimensional exactness structure does not even allow one to
formulate the existence of the short exact sequences (1.1).

(b) The ‘homomorphic orthogonality’ approach of (1.3) and (1.4) works also for
associative rings, as shown by Gardner [G1974], if we replace all homomorphisms by
homomorphisms with an accessible image, where a subring A of a ring R is said to be
accessible if there is a finite chain A = A0 C A1 C · · · C An C R. The same approach
works also for ‘close-to-associative’ rings (like alternative rings) but not for rings in
general, as noted in [JM2003] (this may have been known before).

(c) The reader might ask: what if we go back to (1.3) and (1.4), and use them in the
nonpointed context to define radical-semisimple pairs? Such an approach exists and
leads to interesting examples (see [AW1975, FW1975]). Also, the way Gardner looks
at (pre)factorization systems in [G1994] is similar, to some extent, to the way we look
at the closure operators in the above-mentioned C1 = M case.
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2. Simultaneously reflective and coreflective full subcategories versus null ideals

Consider a diagram

C1

D
''

C

77 C0
Eoo C a E a D (2.1)

of categories and functors, in which E is fully faithful and D and C are a right adjoint
left inverse and a left adjoint left inverse of E, respectively. For simplicity we will
assume that C0 is a full replete subcategory in C1 and E is the inclusion functor, and
the unit of the adjunction E a D and the counit of the adjunction C a E are identity
natural transformations; the counit of E a D and the unit of C a E will be denoted by
ι and π, respectively.

Since E is the inclusion functor, for an object A in C1, we shall simply write

D(A)
ιA // A

πA // C(A).

The data (2.1) can be seen as a category, namely C1, equipped with a closed ideal
N of null maps in the sense of [Gr1992a, Gr1992b]. This ideal N is generated by C0

in the sense that a morphism in C1 belongs to it if and only if it factors through an
object in C0. At the same time N determines C0 as the full subcategory of all those
objects whose identity morphisms belong to it; this follows from the fact that C0 is
closed under retracts.

The following table shows the precise correspondence between the terminology and
notation used here and those used in [Gr1992a, Gr1992b] and subsequent papers of the
same author, or in the book [Gr2013].

Present paper [Gr1992a, Gr1992b]
The data (2.1) (X, N)

(a category with a closed ideal)
C1 X
C0 The class of null objects in X

(objects whose identity is in N)
ιA : D(A)→ A 0A : A0→ A
πA : A→C(A) 0A : A→ A0

Null morphisms (those that Null morphisms
factor through an object of C0) (the elements of N)

Note that although the data (2.1) are stronger than a category equipped with a closed
ideal, there are natural additional conditions on both of them making the resulting
structures equivalent (see Theorem 2.4 below).
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As defined in [Gr1992a, Gr1992b], a semiexact category (or ex1-category) is a
category equipped with a closed ideal, where every morphism has a kernel and a
cokernel with respect to the given ideal; such kernels and cokernels with respect
to an ideal of maps had also been considered earlier by various authors (see, for
example, [E1964]). We recall the definition of kernel in terms of the data (2.1) as
given below.

D 2.1. A kernel of a morphism f : A→ B in C1 (with respect to the data
(2.1)) is a pair (K, κ), where κ : K→ A is a morphism in C1 satisfying the following
conditions:

(a) f κ is a null morphism, that is, it factors through an object of C0;
(b) if κ′ : K′→ A is any morphism for which f κ′ is a null morphism, then there exists

a unique morphism u : K′→ K with κu = κ′.

Cokernels with respect to the data (2.1) are defined dually.

It is then natural to ask: how are these ‘relative kernels’ related to the usual (finite)
limits in C1? Our answer consists of the following two easy propositions.

P 2.2. The following conditions on an object A in C1 are equivalent:

(a) the identity morphism 1A : A→ A has a kernel;
(b) (D(A), ιA) is a kernel of 1A : A→ A;
(c) ιA : D(A)→ A is a monomorphism.

P. (a) ⇒(b). Let K be the category of the pairs (X, ϕ) in which ϕ : X→ A is a
null morphism in C1, and let (K, κ) be a kernel of 1A. Then there are morphisms
u : (D(A), ιA)→ (K, κ) and v : (K, κ)→ (D(A), ιA) in K, and the composites uv and vu
are identities by the universal properties of (K, κ) and (D(A), ιA), respectively.

The implication (b)⇒(a) is trivial.

(b)⇒(c): Use the same straightforward argument as for ordinary kernels.

(c) ⇒(b): 1AιA = ιA is obviously a null morphism. If ϕ = 1Aϕ : X→ A is a null
morphism, then ϕ is a composite of some f : X→ Y and g : Y → A with Y in C0. And
since Y is in C0, g = ιAh for some h by the universal property of (D(A), ιA). Therefore,
ϕ factors through ιA. And since ιA is a monomorphism, such a factorization is unique,
as desired. �

P 2.3. Let f : A→ B be a morphism in C1 for which ιB is a monomorphism.
Then the following conditions on a morphism κ : K→ A are equivalent:

(a) (K, κ) is a kernel of f : A→ B;
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(b) there exists a morphism g : K→ D(B) making the diagram

K
g //

κ
��

D(B)

ιB
��

A
f

// B

(2.2)

a pullback;
(c) there exists a unique morphism g : K→ D(B) making the diagram (2.2) a

pullback.

P. (a)⇔ (b): The universal property of (D(B), ιB) tells us that a morphism into
B is a null morphism if and only if it factors through ιB. After that, comparing the
universal properties of a kernel and of a pullback, we see that all we need to prove is
the following assertion.

(∗) If g makes (2.2) commute and u : X→ K and v : X→ D(B) are

morphisms in C1 with f κu = ιBv, then gu = v.

However, (∗) immediately follows from the commutativity of (2.2) and the fact that
ιB is a monomorphism.

The equivalence of (b) and (c) follows trivially from the fact that ιB is a
monomorphism. �

Cokernels are of course defined and constructed dually, and an easy comparison of
the definitions gives the following theorem.

T 2.4. In the notation above, the following conditions are equivalent:

(a) the data (2.1) determines a semiexact category (=ex1-category) in the sense of
[Gr1992a], that is, every morphism in C1 has a kernel and a cokernel;

(b) for every object A in C1, the morphism ιA : D(A)→ A is a monomorphism that
admits pullbacks along arbitrary morphisms into A, and the morphism πA : A→
C(A) is an epimorphism that admits pushouts along arbitrary morphisms from
A.

R 2.5. As easily follows from the results of [Gr1992a], it is also true that every
semiexact category in the sense of [Gr1992a] can be obtained as above from data (2.1)
satisfying 2.4(b).

3. Example 1: the pointed case

This section consists of the obvious observation that when C is a pointed category
having an initial (= terminal = zero) object, we can construct the data (2.1) by taking:
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• C1 = C;
• C0 = 1, the terminal object in the category of all categories, that is, the category

with exactly one morphism – although we will identify C0 with the full
subcategory of all zero objects in C.

For a given C this determines the data (2.1) uniquely (up to isomorphism),
kernels and cokernels become the ordinary ones, and therefore semiexactness becomes
equivalent to the existence of ordinary kernels and cokernels.

4. Example 2: semiexact categories of morphisms

In this section we choose the data (2.1) as follows. Starting with an arbitrary
category C and a class M of morphisms in C that contains all identity morphisms,
we take:
• C0 = C;
• C1 to be the full subcategory of the arrows of C with objects all the morphisms

in M; the objects of C1 will be written as triples (A, A′, a), where a : A′→ A is a
morphism in C that belongs to M; a morphism (A, A′, a)→ (B, B′, b) in C1 is a
pair ( f , f ′), where f : A→ B and f ′ : A′→ B′ are morphisms in C with f a = b f ′;

• E : C0→ C1 to be the diagonal functor defined by E(A) = (A, A, 1A), although
we will identify C0 = C with its replete image in C1, that is, with the category of
all isomorphisms that are in M;

• the functors C and D defined accordingly, yielding

D(A, A′, a) = A′ = (A′, A′, 1A′), ι(A,A′,a) = (a, 1′A),

C(A, A′, a) = A = (A, A, 1A), π(A,A′,a) = (1A, a).

P 4.1. Suppose the class M satisfies the following condition: for every
diagram in C of the form

S
s // Y

f //
g

// Z
t // T

with s and t in M,
( f s = gs & t f = tg) ⇒ f = g. (4.1)

Then all ι(A,A′,a) are monomorphisms and all π(A,A′,a) are epimorphisms. In
particular, this is the case if either every morphism from M is a monomorphism or
every morphism from M is an epimorphism.

P. This is straightforward. Given morphisms

( f , f ′), (g, g′) : (X, X′, x)→ (A′, A′, 1A′),

the equality ι(A,A′,a)( f , f ′) = ι(A,A′,a)(g, g′) means that

a f = ag, f ′ = g′, f x = f ′, gx = g′.
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Therefore, we have a f = ag, f ′ = g′, f x = gx, and then ( f , f ′) = (g, g′) by (4.1). This
proves that ι(A,A′,a) is a monomorphism. Since the required conditions are self-dual, we
also conclude that π(A,A′,a) is an epimorphism. �

From this and Theorem 2.4, we obtain the following corollary.

C 4.2. If either every morphism from M is a monomorphism or every
morphism from M is an epimorphism, and C1 admits all pullbacks along morphisms
of the form ι(A,A′,a) and all pushouts along morphisms of the form π(A,A′,a), then the data
above determines a semiexact category in the sense of [Gr1992a].

R 4.3. Corollary 4.2 certainly applies when M is either a ‘mono-part’ or an ‘epi-
part’ of a proper factorization system in a category with pullbacks and pushouts. Both
the mono case and the epi case are considered in [Gr1992a] and subsequent papers in
detail.

5. Radicals in one-dimensional exactness structures

Let X and Y be arbitrary sets (or classes). Given a relation α : X→ Y (that is,
α ⊆ X × Y in set-theoretic notation), the corresponding Galois connection

P(X)
α∗ // P(Y)
α∗

oo (5.1)

between the power sets of X and of Y has α∗ and α∗ defined by

α∗(U) = {Y ∈ Y | if U ∈ U then UαY},

α∗(V) = {X ∈ X | if V ∈ V then XαV}.

Recall also that
α∗(P(X)) = {V ∈ P(Y) | α∗α∗(V) = V},

α∗(P(Y)) = {U ∈ P(X) | α∗α∗(U) = U},
(5.2)

and so the maps (5.1) induce bijections

α∗(P(Y)) // α∗(P(X))oo (5.3)

inverse to each other.
For our purposes we need to modify the familiar data (5.1) as

P(X)
α∗ // P(Y)
β∗

oo (5.4)

where β is another relation between the same sets. In this more general situation we
have no counterpart of (5.2) of course, but we still have induced bijections

{U ∈ P(X) | β∗α∗(U) = U} //
{V ∈ P(Y) | α∗β∗(V) = V}oo (5.5)

inverse to each other, which become the bijections (5.3) if α = β. Moreover, (5.5) is
the largest bijection induced by (5.4).
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In what follows we shall always have X = Y, and we will say that (5.5) is the
canonical bijection between the left-closed and the right-closed subsets (with respect
to α and β) in X.

E 5.1. Let C be an abelian category that admits arbitrary intersections of
subobjects and arbitrary co-intersections of quotients, and X be the class of objects
in C. Then:

(a) if we take α = β to be the orthogonality relation ⊥ defined by (1.2), then the
bijections (5.3), or equivalently (5.5), are exactly the usual bijections, inverse
to each other, between the torsion classes and the torsion-free classes in C. In
particular, a class of objects in C is left-closed if and only if it is a torsion class;
similarly, a class of objects in C is right-closed if and only if it is a torsion-free
class (see Observation 1.2 and the sentence containing (1.2)–(1.4));

(b) let us now make α and β smaller and different from each other as follows:

α = {(X, Y) ∈ X × X | there is no nonzero mono X→ Y}, (5.6)

β = {(X, Y) ∈ X × X | there is no nonzero epi X→ Y}. (5.7)

Remarkably, it is easy to see (and known, in a sense) that although this modification
yields different maps α∗ and β∗ and different images α∗(P(X)) and β∗(P(X)), it gives
nevertheless the same left-closed and right-closed subsets and the same bijection
between them.

There are several nonequivalent ways to generalize the data considered in this
example to the context where C is only required to be pointed and to have kernels and
cokernels. We start from 5.1(b), not 5.1(a), and generalize it as follows. As already
mentioned in the Introduction, we write:

X C Y when X is (can be presented as) a normal subobject of Y , (5.8)

X−B Y when Y is (can be presented as) a normal quotient of X, (5.9)

and define the corresponding orthogonality relations ⊥C and ⊥−B accordingly, that is,
by (1.7) and (1.8), respectively. Since in an abelian category all monomorphisms and
all epimorphisms are normal, we can say that the orthogonality relations ⊥C and ⊥−B
are nonabelian versions of the relations (5.6) and (5.7), respectively. Having in mind
the connection with the radical theory of rings briefly described in the Introduction, we
call the resulting left-closed and right-closed classes of objects radical and semisimple
classes, respectively.

Let us, however, make a further generalization immediately—to the context of a
semiexact category in the sense of the first author, that is, using data (2.1) satisfying
the equivalent conditions of Theorem 2.4.

D 5.2. (a) A one-dimensional exactness structure is a system X =

(X, Z, C , −B ), in which X is a set, Z is a subset in X, and C and −B are binary
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relations on X such that, for every X in X, there exist Z and Z′ in Z with Z C X and
X−B Z′.

(b) Let X = (X, Z, C , −B ) be a one-dimensional exactness structure. A pair (R, S)
of subsets of X is said to be a radical-semisimple pair if R and S correspond to each
other under the canonical bijection (5.5) for Y = X and

α = {(X, Y) | X C Y ⇒ X ∈ Z},

β = {(X, Y) | X−B Y ⇒ Y ∈ Z}.

That is, (R, S) is a radical-semisimple pair if and only if R = β∗(S) and S = α∗(R).
Accordingly, the radical (semisimple) classes with respect to X correspond to the left-
closed (right-closed) classes with respect to relations (5.8), (5.9) in the pointed case
(when Z is the set of zero objects).

(c) For data (2.1) satisfying the equivalent conditions of Theorem 2.4, a pair (R, S)
of classes of objects of C1 is said to be a radical-semisimple pair if it is in the sense of
(b), where:
• X is the class of objects in C1;
• Z is the class of objects in C0;
• X C Y when X is a normal subobject of Y , that is, there exist morphisms κ : X→

Y and f : Y → Y ′ such that κ is the kernel of f (in the sense of Definition 2.1);
• X−B Y when Y is a normal quotient of X, that is, there exist morphisms g : X′→

X and λ : X→ Y such that λ is the cokernel of g (in the sense of Definition 2.1).
A class Y ⊆ X is said to be a radical class (semisimple class) if Y = β∗α∗(Y) (Y =

α∗β
∗(Y)).

The following two propositions are in fact nothing but explicit reformulations of
Definition 5.2(b).

P 5.3. Let X = (X, Z, C , −B ) be a one-dimensional exactness structure. A
subset R in X is a radical class if and only if it satisfies the following conditions:

(a) if A is in R, then, for every B ∈ X \ Z with A−B B, there exists C ∈ R \ Z with
C C B;

(b) given A in X, if, for every B ∈ X \ Z with A−B B, there exists C ∈ R \ Z with
C C B, then A is in R.

P. Just observe that conditions (a) and (b) are equivalent to the inclusions R ⊆
β∗α∗(R) and β∗α∗(R) ⊆ R, respectively. �

P 5.4. Let X = (X, Z, C , −B ) be a one-dimensional exactness structure. A
subset S in X is a semisimple class if and only if it satisfies the following conditions:

(a) if A is in S, then, for every B ∈ X \ Z with B C A, there exists C ∈ S \ Z with
B−BC;

(b) given A in X, if, for every B ∈ X \ Z with B C A, there exists C ∈ S \ Z with
B−BC, then A is in S.
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P. Just observe that conditions (a) and (b) are equivalent to the inclusions S ⊆
α∗β

∗(S) and α∗β∗(S) ⊆ S, respectively. �

Conditions 5.3(a), 5.3(b), 5.4(a), 5.4(b) of these propositions are straightforward
generalizations of the standard radical-theoretic conditions (R1), (R2), (S1), (S2), see,
for example, [W1983] or [GW2004]. This proves the following theorem.

T 5.5. Let the data (2.1) be chosen as in Section 3, and let C be the category of
rings, or, more generally, any category satisfying one of the essentially equivalent sets
of axioms in [MW1982] (see Remark 5.6(e) below).

Then the radical and the semisimple classes (with respect to these data) in the sense
of Definition 5.2(c) are the same as the radical and the semisimple classes in the sense
of the usual Kurosh–Amitsur radical theory. Furthermore, the radical-semisimple
pairs are the same as the pairs consisting of a radical class and a semisimple class
corresponding to each other in the usual sense.

R 5.6. (a) Let us reconsider the passage from torsion theories to radicals. It
consists of the following steps.
• We recall (see Example 5.1(a)) that torsion theories in an abelian category C are

defined via the Galois connection determined by the orthogonality relation ⊥
defined by (1.2).

• Next, we observe (see Example 5.1(b)) that the same can be done in a slightly
different way by using two (smaller) orthogonality relations that use mono- and
epimorphisms instead of all morphisms.

• When C is not abelian, we choose those two orthogonality relations to be
⊥C and ⊥−B defined by (1.7) and (1.8), respectively. And the accordingly
modified notions of torsion and torsion-free classes give us the notions of radical
and semisimple classes, respectively. Since these ⊥C and ⊥−B are defined
using normal mono- and epimorphisms in the same way as we used mono- and
epimorphisms before, this does not change anything in the abelian case.

(b) Why not use a single orthogonality relation in nonabelian cases? The answer is:
that approach would not be suitable for the Kurosh–Amitsur radical theory in general
(see Remark 1.4(b)).

(c) Since the structure involving two orthogonality relations is relatively
complicated, many explicit formulations of ‘obvious’ radical-theoretic results are
useful. For instance, let us mention that (R, S) is a radical-semisimple pair in X if
and only if

R = {X ∈ X | every S ∈ S with X−B S is in Z},

S = {X ∈ X | every R ∈ R with R C X is in Z}.

Note also that the above-mentioned conditions (R1), (R2), (S1), (S2), and so also
Propositions 5.3 and 5.4, are essentially the same as Observation 1.1 (for rings, but
similarly in general).
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(d) As we see, for example, from Proposition 5.4, we could, alternatively, simply
use the set X \ Z (instead of both X and Z), but that small simplification would
become inconvenient for considering examples, and also for considering two- and
three-dimensional exactness structures as we plan in subsequent papers.

(e) In the pointed case considered in Section 3, requiring further conditions on
the ground category C, one obtains various standard results of the theory of Kurosh–
Amitsur radicals. This can be done when the category C satisfies any of the (essentially
equivalent) systems of axioms considered in [MW1982]. As follows from the results
of [MW1982], this holds, for instance, if C is Kelly well-complete (that is, small
complete and has arbitrary intersections of subobjects) and semi-abelian in the sense
of [JMT2002].

(f) An important special case of the previous item, considered by many authors,
is the case of C being a variety of groups with multiple operators in the sense of
Higgins [H1956]. Although this case is considered in [W1983], most of the material
of [W1983] is devoted to the more special case of rings; for this and especially for the
associative case, see [GW2004].

6. Towards generalized closure operators

In this section we make a simple analysis of Definition 5.2(c) in the situation
considered in Section 4 under the assumptions of Corollary 4.2 and assuming for
simplicity that the class M is the ‘mono-part’ of a proper factorization system in a
category with pullbacks and pushouts (see Remark 4.3). As is shown in [Gr1992a]
and can be easily checked directly, we have the following proposition.

P 6.1. (a) A morphism ( f , f ′) : (A, A′, a)→ (B, B′, b) in C1 is a normal
monomorphism (that is, the kernel of some morphism in the sense of Definition 2.1) if
and only if f is in M and f ′ is an isomorphism.

(b) A morphism ( f , f ′) : (A, A′, a)→ (B, B′, b) in C1 is a normal epimorphism (the
cokernel of some morphism in the sense of Definition 2.1) if and only if f is an
isomorphism and f ′ is in M. �

T 6.2. Under the assumptions above, two subclasses R and S of M form a
radical-semisimple pair (R, S) if and only if the following conditions hold for every
m ∈M:

(a) m is in R if and only if for every s ∈ S and n ∈M with m = sn, the morphism s
must be an isomorphism;

(b) m is in S if and only if for every r ∈ R and n ∈M with m = nr, the morphism s
must be an isomorphism. �

As Theorem 6.2 shows, the classes R and S have the same properties as the classes
of dense and closed morphisms with respect to a closure operator, considered in
various contexts, for instance, by Dikranjan and Tholen [DkT1995]. This suggests
using this theorem as a definition of a generalized closure operator.
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