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Abstract

A parallel system with heterogeneous exponential component lifetimes is shown to be
more skewed (according to the convex transform order) than the system with independent
and identically distributed exponential components. As a consequence, equivalent
conditions for comparing the variabilities of the largest order statistics from heterogeneous
and homogeneous exponential samples in the sense of the dispersive order and the right-
spread order are established. A sufficient condition is also given for the proportional
hazard rate model.
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1. Introduction

In statistics, skewness describes the departure of a density from symmetry, where one tail of
the density is ‘stretched out’more than the other. Several well-known measures of skewness are
available in the statistics literature, such as Pearson’s coefficient of skewness and Edgeworth’s
coefficient. Interested readers may refer to Arnold and Groeneveld (1995) and Marshall and
Olkin (2007, p. 70) for more discussion and other measures of skewness. In the case of unimodal
distributions, if a density is to the left of ‘center’ and the right tail is relatively long, then the
density is said to be skewed to the right. This kind of skewness is used when the distributions
have nonnegative support. It is of interest to compare the skewness of two distributions. Van
Zwet (1970) proposed a skewness order, called the convex transform order, which captures the
property of one distribution being more skewed than the other. This order is also an important
concept in reliability theory, since it reflects one distribution being more IFR (increasing failure
rate) than the other (more discussion will be given in Section 2).

Series and parallel systems are the building blocks of more complex coherent systems. The
life of a parallel system is the same as that of the largest order statistic and the life of a series
system is the same as that of the smallest order statistic. Note that when the components are
independent, the hazard rate of a series system is the sum of the hazard rates of the components.
In particular, if the components are independent and identically distributed, the ageing properties
of a series system will be the same as those of the components. But this is not the case with
parallel systems. In fact, it is well known that the lifetime of a parallel system with independent
IFR components may not be IFR if they are not identically distributed.
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Consider two parallel systems with independent exponential components, one with identical
components and the other with nonidentical components. Many authors have studied the
magnitude (stochastic) and variability orderings of such systems when the parameters of the
exponential distributions satisfy certain restrictions. For example, Dykstra et al. (1997) showed
that if X1, . . . , Xn are independent exponential random variables with Xi having hazard rate
λi, i = 1, . . . , n, and if Y1, . . . , Yn is a random sample of size n from an exponential distribution
with common hazard rate λ = ∑n

i=1 λi/n, the arithmetic mean of the λis, then

Yn:n ≤hr Xn:n and Yn:n ≤disp Xn:n, (1.1)

where Xn:n and Yn:n are the largest order statistics of the Xis and Yis, respectively. Here ‘≤hr’
and ‘≤disp’ denote the hazard rate and dispersive orders, respectively. Khaledi and Kochar
(2000) pointed out that the above results also hold under the weaker condition when the common
parameter of the Yis is λ = (

∏n
i=1 λi)

1/n, the geometric mean of the λis. Recently, Kochar
and Xu (2007b) proved that the relationship in (1.1) could be strengthened from the hazard rate
order to the likelihood ratio order. We refer the reader to Kochar and Xu (2007a) for a review
of this topic.

In this paper we will compare such systems from a different perspective of statistics through
the skewness order. More precisely, two such systems will be compared according to the convex
transform order, which compares the shapes of their probability distributions. As we discuss
below, it can also be interpreted as comparing the relative ageing of two distributions. To the best
of the authors’ knowledge, this problem has not been studied in the literature and the purpose
of this paper is to fill this gap. Intuitively, the density function of the largest order statistic from
a heterogeneous sample will be more skewed than one from a homogeneous sample. This will
be confirmed in this paper according to the convex transform order for exponential samples.
While the previous work mentioned above gives us bounds on measures of variability, such as
the variance of the largest order statistic in terms of the independent and identically distributed
case, the new result will give us bounds on measures of skewness, such as the coefficient of
variation. It will be shown that the coefficient of variation of the largest order statistic of n

independent and nonidentically distributed exponential random variables satisfies the inequality

cv(Xn:n) ≥
(√√√√ n∑

i=1

1

i2

)/( n∑
i=1

1

i

)
.

Using our main result, in Proposition 4.1 we give a characterization of the dispersion
relation in (1.1). We prove that the dispersive order there is equivalent to the usual stochastic
order, which gives us a deeper understanding of the result in Khaledi and Kochar (2000). An
equivalent characterization for comparing systems in terms of the right-spread order, which can
be considered as the second variability order, is also derived as a consequence.

As pointed out in Khaledi and Kochar (2002) and Kochar and Xu (2007b), (1.1) can
be extended to the proportional hazard rate (PHR) model, where X1, . . . , Xn are mutually
independent lifetimes with Xi having survival function F̄ λi , i = 1, . . . , n, and Y1, . . . , Yn

is a random sample from a distribution with common survival distribution F̄ λ. A sufficient
condition for the right-spread order is derived under this scheme, which complements the
dispersive ordering result in the literature.

The rest of paper is organized as follows. In Section 2 we introduce some notation and
stochastic orders. The convex transform order between the homogeneous and heterogeneous
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distributions of the largest order statistics is studied in Section 3. In Section 4 we give equiv-
alent conditions for the dispersive order and right-spread order of the largest order statistics.
A sufficient condition for the right-spread order in the PHR models is also established there.

2. Preliminaries

Assume that the random variables X and Y have distribution functions F and G, survival
functions F̄ = 1 − F and Ḡ = 1 − G, density functions f and g, and failure rate functions
rX = f/F̄ and rY = g/Ḡ, respectively.

Definition 2.1. The random variable X is said to be smaller than Y in the convex transform
order, denoted by X ≤c Y , if and only if G−1F(x) is convex in x on the support of X, where
G−1 denotes the right-continuous inverse.

If X ≤c Y then Y is more skewed than X, as explained in van Zwet (1970) and Marshall and
Olkin (2007, p. 70). The convex transform order is also called the more IFR order in reliability
theory, since when f and g exist, the convexity of G−1F(x) means that

f (F−1(u))

g(G−1(u))
= rX(F−1(u))

rY (G−1(u))

is increasing in u ∈ [0, 1]. Thus, X ≤c Y can be interpreted to mean that X ages faster than Y

in some sense. This partial order is scale invariant. Note that neither F nor G need to be IFR
for this definition to hold. It can be seen that X is an IFR distribution if and only if it is convex
ordered with respect to the exponential distribution, which has a constant failure rate. It is
known that if Xαi

has gamma distribution with shape parameter αi, i = 1, 2, then Xα1 ≤c Xα2

for α2 ≤ α1.
In the literature, several weaker orders have also been proposed to compare the relative

ageing properties. These are the star transform order, denoted by ‘≤�’, the superadditive order,
denoted by ‘≤su’, the DMRL (decreasing mean residual lifetime) order, denoted by ‘≤DMRL’,
the NBUE (new better than used in expectation) order, denoted by ‘≤NBUE’, and the HNBUE
(harmonic NBUE) order. It has also been pointed out in Kochar (1989) that the HNBUE order
is equivalent to the Lorenz order (denoted by ‘≤Lorenz’), a well-known order in economics. We
have the following chain of implications:

X ≤c Y �⇒ X ≤� Y �⇒ X ≤su Y

⇓ ⇓
X ≤DMRL Y �⇒ X ≤NBUE Y �⇒ X ≤Lorenz Y.

It is also known that (see Marshall and Olkin (2007, p. 69))

X ≤Lorenz Y �⇒ cv(X) ≤ cv(Y ), (2.1)

where cv(X) and cv(Y ) denote the coefficients of variation of X and Y , respectively.
A good discussion of the convex, star, and superadditive transform orders can be found in

Barlow and Proschan (1981, p. 107) and Marshall and Olkin (2007, p. 70). The DMRL, NBUE,
and HNBUE partial orders were introduced in Kochar and Wiens (1987) and studied further in
Kochar (1989) and Kochar et al. (2002).

A basic partial order to compare the variabilities in the two distributions is the dispersive
ordering, defined below.
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Definition 2.2. The random variable X is said to be less dispersed than Y (denoted by X ≤disp
Y ) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) for all 0 < α ≤ β < 1,

where F−1 and G−1 denote their corresponding right-continuous inverses.

A weaker order called the right-spread order in Fernández-Ponce et al. (1998), or the excess
wealth order in Shaked and Shanthikumar (1998), has also been proposed to compare the
variabilities of the two distributions.

Definition 2.3. The random variable X is said to be less right spread than Y (denoted by
X ≤RS Y ) if ∫ ∞

F−1(p)

F̄ (x) dx ≤
∫ ∞

G−1(p)

Ḡ(x) dx for all 0 ≤ p ≤ 1.

For more discussion on the dispersive order and the right-spread order, we refer the reader
to Shaked and Shanthikumar (2007, Sections 3.B and 3.C) and the references therein.

The usual stochastic order is also discussed in the sequel.

Definition 2.4. The random variable X is said to be smaller than Y in the usual stochastic order
(denoted by X ≤st Y ) if F̄ (x) ≤ Ḡ(x) for all x.

3. Which parallel system ages faster?

Suppose that we have two parallel systems, one with independent and identically distributed
exponential components and the other with heterogeneous exponential components. The
following result shows that a parallel system with homogeneous exponential components ages
faster than the one with heterogeneous exponential components in the sense of the convex
transform order.

Theorem 3.1. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ. Then,

Yn:n ≤c Xn:n.

Proof. Let G and F denote the distribution functions of Yn:n and Xn:n with corresponding
density functions g and f , respectively.

Then, for x ≥ 0,
G(x) = P(Yn:n ≤ x) = (1 − e−λx)n

and

F(x) = P(Xn:n ≤ x) =
n∏

i=1

(1 − e−λix).

From Proposition 21.A.7 of Marshall and Olkin (2007), it is sufficient to show that G−1F(x)

is concave on (0, ∞). Note that, for x ≥ 0,

G−1F(x) = −1

λ
ln(1 − F 1/n(x)) = −1

λ
ln

(
1 −

n∏
i=1

(1 − e−λix)1/n

)
.
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Hence,

g(G−1F(x)) = nλ

(
1 −

n∏
i=1

(1 − e−λix)1/n

) n∏
i=1

(1 − e−λix)(n−1)/n.

Differentiating with respect to x, we obtain

(G−1F(x))′

= f (x)

g(G−1F(x))

=
n∑

i=1

λie−λix

1 − e−λix

n∏
i=1

(1 − e−λix)

/
nλ

[
1 −

n∏
i=1

(1 − e−λix)1/n

] n∏
i=1

(1 − e−λix)(n−1)/n

=
n∑

i=1

λie−λix

1 − e−λix

n∏
i=1

(1 − e−λix)1/n

/
nλ

(
1 −

n∏
i=1

(1 − e−λix)1/n

)
.

So, it is enough to prove that

h(x) =
∑n

i=1 λie−λix/(1 − e−λix)∏n
i=1(1 − e−λix)−1/n − 1

=
∑n

i=1 λi/(eλix − 1)∏n
i=1(1 − e−λix)−1/n − 1

(3.1)

is decreasing in x ≥ 0. By taking the derivative, it is equivalent to showing that

n∑
i=1

λ2
i eλix

(eλix − 1)2

( n∏
i=1

(1 − e−λix)−1/n − 1

)

≥ 1

n

n∑
i=1

λi

eλix − 1

n∑
i=1

λie−λix

1 − e−λix

n∏
i=1

(1 − e−λix)−1/n,

i.e.
n∑

i=1

λ2
i e−λix

(1 − e−λix)2

(
1 −

n∏
i=1

(1 − e−λix)1/n

)
≥ 1

n

( n∑
i=1

λie−λix

1 − e−λix

)2

.

From the classical Cauchy–Schwarz inequality (see Mitrinović (1970, Theorem 1, p.41)), it
follows that, for x ≥ 0,

n∑
i=1

λ2
i e−λix

(1 − e−λix)2

n∑
i=1

e−λix ≥
( n∑

i=1

λie−λix

1 − e−λix

)2

.

Hence, it is sufficient to show that, for x ≥ 0,

n∑
i=1

λ2
i e−λix

(1 − e−λix)2

(
1 −

n∏
i=1

(1 − e−λix)1/n

)
≥ 1

n

n∑
i=1

λ2
i e−λix

(1 − e−λix)2

n∑
i=1

e−λix,

i.e.
1

n

n∑
i=1

(1 − e−λix) ≥
n∏

i=1

(1 − e−λix)1/n,

which is guaranteed by the arithmetic-geometric mean inequality.
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Figure 1: The densities of Xn:n with (λ1, λ2, λ3) = (2, 6, 9) (dashed line), Xn:n with (λ1, λ2, λ3) =
(4, 5, 8) (dotted line), and Yn:n with λ = 17

3 (solid line).

Remark 3.1. Theorem 3.1 reveals that a parallel system with homogeneous exponential com-
ponents ages faster than a system with heterogeneous exponential components in the sense of the
‘more IFR’ property. Note that a parallel system with homogeneous exponential components is
IFR (see Barlow and Proschan (1981, p. 108)). However, a parallel system with heterogeneous
exponential components may not be IFR.

Remark 3.2. It is interesting to note that, unlike the magnitude and variability orders, no
restriction on the parameters is needed for Theorem 3.1 to hold as the convex transform order
is scale invariant. Intuitively, owing to the heterogeneity, the largest order statistic from a
heterogeneous sample will be more skewed than that from a homogeneous sample. Theorem 3.1
confirms this fact for exponential samples.

In Figure 1 we plot the densities of three parallel systems with independent exponential
components and with parameters (2, 6, 9), (4, 5, 8), and ( 17

3 , 17
3 , 17

3 ). It is easy to verify that

( 17
3 , 17

3 , 17
3 ) ≺ (4, 5, 8) ≺ (2, 6, 9)

in the majorization ordering of Marshall and Olkin (1979). Let X1, . . . , Xn be independent
exponential random variables with Xi having hazard rate λi, i = 1, . . . , n, and let Y1, . . . , Yn

be a random sample of size n from an exponential distribution with Yi having hazard rate
θi, i = 1, . . . , n, such that

(θ1, . . . , θn) ≺ (λ1, . . . , λn).

Looking at Figure 1, one may wonder whether in this case

Yn:n ≤c Xn:n.

Though we believe this result to be true from empirical evidence, we are unable to establish it
mathematically so far.

The following result, which is of independent interest in economics, is a direct consequence
of Theorem 3.1.
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Corollary 3.1. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ. Then,

Yn:n ≤Lorenz Xn:n.

From Barlow and Proschan (1981, p. 60), it follows that

E Yn:n = 1

λ

n∑
i=1

1

i

and

var(Yn:n) = 1

λ2

n∑
i=1

1

i2 .

Using (2.1), we obtain the following lower bound on the coefficient of variation of Xn:n:

cv(Xn:n) ≥
(√√√√ n∑

i=1

1

i2

)/( n∑
i=1

1

i

)
.

4. Dispersion

The next result gives equivalent characterizations of the dispersive order and the right-spread
order between two parallel systems.

Proposition 4.1. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n, and let Y1, . . . , Yn be a random sample of size n from an
exponential distribution with common hazard rate λ. Then

(i) Yn:n ≤disp Xn:n if and only if Yn:n ≤st Xn:n;

(ii) Yn:n ≤RS Xn:n if and only if E Yn:n ≤ E Xn:n.

Proof. (i) Ahmed et al. (1986) proved in their Theorem 3 that the conditions Y ≤su X and
Y ≤st X imply that Y ≤disp X. Since Yn:n ≤c Xn:n implies that Yn:n ≤su Xn:n, it follows
that the condition Yn:n ≤st Xn:n will imply that Yn:n ≤disp Xn:n. Conversely, observing that
Yn:n ≤disp Xn:n implies that Yn:n ≤st Xn:n in the case of distributions with a common left-hand
point of the support, the required result follows immediately from Theorem 3.1.

(ii) Theorem 4.3 of Fernández-Ponce et al. (1998) shows that Y ≤NBUE X and E Y ≤ E X imply
that Y ≤RS X. Note that Yn:n ≤c Xn:n implies that Yn:n ≤NBUE Xn:n and, since Yn:n ≤RS Xn:n
implies that E Yn:n ≤ E Xn:n, the result follows from Theorem 3.1 again.

Khaledi and Kochar (2000) proved that

λ =
( n∏

i=1

λi

)1/n

�⇒ Yn:n ≤disp Xn:n. (4.1)

Actually, we may easily check that

λ̂ =
( n∏

i=1

λi

)1/n

≤ λ ⇐⇒ Yn:n ≤disp Xn:n. (4.2)
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Now, one question arises naturally: what is the equivalent condition for the right-spread
order between these two parallel systems? This question has not been addressed for a long time
since it is not straightforward to check using the definition of the right-spread order. However,
using Proposition 4.1, we could easily solve this problem.

Proposition 4.2. Let X1, . . . , Xn be independent exponential random variables with Xi having
hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn be a random sample of size n from an exponential
distribution with common hazard rate λ. Then,

λ∗ ≤ λ ⇐⇒ Yn:n ≤RS Xn:n, (4.3)

where

λ∗ =
n∑

i=1

1

i

( n∑
k=1

(−1)k+1
∑

1≤i1≤···≤ik≤n

1∑k
j=1 λij

)−1

.

Proof. Note that

E Yn:n = 1

λ

n∑
i=1

1

i

and, for x ≥ 0,

E Xn:n =
∫ ∞

0

(
1 −

n∏
i=1

(1 − e−λix)

)
dx

=
∫ ∞

0

( n∑
k=1

(−1)k+1
∑

1≤i1≤···≤ik≤n

exp

[
−

k∑
j=1

λij x

])
dx

=
n∑

k=1

(−1)k+1
∑

1≤i1≤···≤ik≤n

1∑k
j=1 λij

.

Hence, the result follows immediately from Proposition 4.1(ii).

From (4.2) and (4.3), it is seen that λ∗ ≤ λ̂ as the dispersive order implies the right-spread
order. Although it is complicated to compute λ∗, Proposition 4.2 is very useful since E Xn:n
could either be easily numerically computed or derived directly from the data. The following
example gives a good illustration.

Example 4.1. Let λ1 = 2, λ2 = 4, and λ3 = 5. Now,

E X3:3 =
∫ ∞

0

(
1 −

n∏
i=1

(1 − e−λix)

)
dx = 8597

138 60
.

Hence,

λ∗ = 138 60

8597

(
1 + 1

2
+ 1

3

)
= 2.955 68.

However,
λ̂ = (40)1/3 = 3.419 95.

So λ∗ < λ̂.
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Relation (4.1) has been extended to the PHR model in Khaledi and Kochar (2002). Let
X1, . . . , Xn be independent random variables with Xi having survival function F̄ λi , i =
1, . . . , n, and let Y1, . . . , Yn be a random sample from a distribution with common survival
distribution F̄ λ. Khaledi and Kochar (2002) have shown that if F is DFR (decreasing failure
rate) then

λ =
( n∏

i=1

λi

)1/n

�⇒ Yn:n ≤disp Xn:n,

which could actually be written as

λ ≥
( n∏

i=1

λi

)1/n

�⇒ Yn:n ≤disp Xn:n.

Motivated by this observation, we will extend Proposition 4.2 to the PHR model.
The following lemma due to Kochar et al. (2002) will be used to prove the result.

Lemma 4.1. Let X and Y be continuous random variables with finite means. Then, for any
increasing and convex function φ, it holds that

Y ≤RS X �⇒ φ(Y ) ≤RS φ(X).

Theorem 4.1. Let X1, . . . , Xn be independent random variables with Xi having survival
function F̄ λi , i = 1, . . . , n, and letY1, . . . , Yn be another random sample with common survival
function F̄ λ. If F is DFR then

λ∗ ≤ λ �⇒ Yn:n ≤RS Xn:n,

where λ∗ is given in (4.3).

Proof. The proof is similar to Theorem 2.3 of Kochar and Xu (2007b). Note that the
cumulative hazard of F is

H(x) = −log F̄ (x).

Now, for x ≥ 0 and i = 1, . . . , n,

P(H(Xi) > x) = P(Xi > H−1(x)) = F̄ λi (F̄−1(e−x)) = e−λix,

where H−1 is the right inverse of H . Letting X′
i = H(Xi), we note that X′

i is exponential with
hazard rate λi for i = 1, . . . , n. Similarly, let Y ′

i = H(Yi) be exponential with hazard rate λ

for i = 1, . . . , n. It follows from (4.3) that, for λ∗ ≤ λ,

Y ′
n:n ≤RS X′

n:n.

That is,
H(Yn:n) ≤RS H(Xn:n).

Since F is DFR, H(·) is increasing and concave, which implies that H−1(·) is increasing and
convex. The required result follows from Lemma 4.1.

As a consequence, we have the following result.
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Corollary 4.1. Let X1, . . . , Xn be independent random variables with Xi having survival
function F̄ λi , i = 1, . . . , n, and letY1, . . . , Yn be another random sample with common survival
function F̄ λ. If F is DFR then

λ∗ ≤ λ �⇒ var(Yn:n) ≤ var(Xn:n),

where λ∗ is given in (4.3).

Remark. As a special case of F̄ (x) = e−x , Khaledi and Kochar (2000) gave a lower bound
for the variance of the Xn:n in terms of the geometric mean, i.e.

var(Xn:n) ≥ 1

λ̂

n∑
i=1

1

i2 .

Since the right-spread order implies that the variances are ordered (cf. Shaked and Shanthikumar
(2007, p. 166)), Corollary 4.1 provides a better lower bound for the variance:

var(Xn:n) ≥ 1

λ∗
n∑

i=1

1

i2 ,

as λ∗ ≤ λ.
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