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ON EASTON SUPPORT ITERATION OF PRIKRY-TYPE FORCING
NOTIONS

MOTI GITIK AND EYAL KAPLAN

Abstract. We consider of constructing normal ultrafilters in extensions are here Easton support
iterations of Prikry-type forcing notions. New ways presented. It turns out that, in contrast with other
supports, seemingly unrelated measures or extenders can be involved here.

§1. Introduction. We continue here the study of the structure of normal ultrafilters
in generic extensions by iterated Prikry-type forcings.

In [1, 7, 9], nonstationary support and full support iterations were considered.
When iterating Prikry forcings below a measurable limit of measurables κ, all the
normal measures it carries in the extension are characterized in terms of normal
measures in the ground model; furthermore, for every normal measure on κ in
the generic extension, the restrictions of its ultrapower to the ground model is an
iteration of it by normal measures only.

Here we concentrate on Easton support iteration of arbitrary Prikry-type forcings.
The situation turned out to be radically different. Namely, we show the following:

Theorem 1.1. Let κ be a measurable cardinal with 2κ = κ+. Let 〈Pα,Q∼�
: α ≤

κ, � < κ〉 be an Easton support iteration of Prikry-type forcing notions.
Assume that Δ ⊆ κ is unbounded, such that for every α < κ, Q

∼α
is forced to be

trivial if and only if α /∈ Δ. Let U ∈ V be a normal measure on κ with Δ /∈ U , and
let i : V → N is an elementary embedding, definable in V , such that the following
properties hold1:

1. crit(i) = κ.
2. κN ⊆ N .
3. κ /∈ i(Δ).
4. U = {X ⊆ κ : κ ∈ i(X )}.
5. |i(κ)| = κ+.
6. {i(f)(κ) : f ∈ V, f : κ → κ} is unbounded in i(κ).

Assume also that every element of N has the form i(f) (�1, ... , �l ) for some f ∈ V
and �1 < ··· < �l < i(κ).
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2 MOTI GITIK AND EYAL KAPLAN

Then there exists a measure W ∈ V [G ] extending U , such that, denoting
Ult (V [G ] ,W ) 	MW

[
jW (G)

]
, there exists k : N →MW with crit(k) > κ such

that jW � V = k ◦ i .

Furthermore, under mild assumptions on the forcings participating in the
iteration, there are (2κ)+ = κ++ normal measures W as above extending U (see
Theorem 2.19). This generalizes the Kunen–Paris theorem on the number of normal
measures [10].

In Sections 3 and 4 we analyze the properties of the ultrapower embedding
jW : V [G ] →MW

[
jW (G)

]
for an arbitrary measureW ∈ V [G ].

Assume that V = K is the core model. By a well-known series of results in inner
model theory, jW � V is an iterated ultrapower of V , provided that the variety of
large cardinals in the universe is limited. For instance, by Mitchell [11], assuming
that there is no inner model with a cardinal α with o(α) = α++ and V = K is the
core model, jW � K is an iteration of K by normal measures. By a result of Schindler
[12], assuming that there is no inner model with a Woodin cardinal, jW � K is an
iteration of K by its extenders.

Theorem 1.1 shows that jW � V decomposes to the form k ◦ i . In particular,
jW (κ) ≥ i(κ) ≥ jU (κ). In Section 3, we analyze the requirements needed to ensure
strict inequality, namely jW (κ) > jU (κ), by concentrating on the context where
V = K is the core model and jW � K is an iteration of K by measures or extenders.

In Section 4 we focus on the question of what can be said about the embedding
k : N →MW . In particular, whether it is an iteration ofN by measures or extenders
(without assuming that V = K is the core model). We will prove in Theorem 4.7
that this is the case where P = Pκ is an iteration of Prikry forcings (under some
restrictions on the normal measures used; see Section 4.1). Furthermore, in this
case, k is an iterated ultrapower with normal measures only.

§2. The general framework

Definition 2.1. An iteration 〈Pα,Q∼�
: α ≤ κ , � < κ〉 is called an Easton

support iteration of Prikry-type forcings if and only if,

1. For every α < κ, the weakest condition in Pα forces that 〈Q
∼α
,≤∼Qα ,≤∼

∗
Qα

〉 is a
Prikry-type forcing notion.

2. For every α ≤ κ and p ∈ Pα ,
(a) p is a function with domain α such that for every � < α, p � � ∈ P� , and
p � � � p(�) ∈ Q

∼�
.

(b) If α ≤ κ is inaccessible, then supp(p) ∩ α is bounded in α (supp(p) ⊆ α
is the set of indices � on which p(�) is forced to be non-trivial).

Suppose that p, q ∈ Pα . Then p ≥ q, which means that p extends q, holds if and
only if:

1. supp(q) ⊆ supp(p).
2. For every � ∈ supp(q), p � � � p(�) ≥� q(�) (where ≥� is the order of Q�).
3. There is a finite subset b ⊆ supp(q), such that for every � ∈ supp(q) \ b, p �
� � p(�) ≥∗

� q(�) (where ≥∗
� is the direct extension order of Q�).

If b = ∅, we say that p is a direct extension of q, and denote it by p ≥∗ q.
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ON EASTON SUPPORT ITERATION OF PRIKRY-TYPE FORCING NOTIONS 3

Assume thatκ is measurable, and let U be a normal ultrafilter overκ. Let 〈Pα,Q∼�
|

α ≤ κ, � < κ〉 be an Easton support iteration of a Prikry-type forcing notions.
Suppose that the following hold:

1. There exists an unbounded subset Δ ⊆ κ, Δ /∈ U , such that, for every α < κ,
(a) α ∈ Δ −→ �Pα Q∼α

is nontrivial.
(b) α /∈ Δ −→ �Pα Q∼α

is trivial.
2. For every α < κ, �Pα 〈Q

∼α
,≤∼

∗
α〉 is α-closed.

3. For every α ∈ Δ, �Pα |Q
∼α

| < min(Δ \ α + 1).

The following properties are standard (see, e.g., [5]):

Lemma 2.2. For every � ≤ κ, P� satisfies the Prikry property.

Lemma 2.3. For every � ≤ κ which is Mahlo, P� has the � – c.c.

Let G be a generic subset ofP = Pκ. We would like to analyze the normal measures
on κ in V [G ] extending U . The standard way to do so appears in [5], we present it
here for the sake of completeness.

Lemma 2.4. There exists a normal measure U ∗ ∈ V [G ] on κ which extends U .

Proof. Let 〈A∼α : α < κ+〉 be an enumeration, in V , of P = Pκ-names, such that
every X ∈

(
P(κ))

V [G ]
has the form (A∼α)G for some α < κ+. Such a list of names

exists sinceP = Pκ is κ – c.c.Now, construct, inV [G ], a ≤∗-increasing sequence of
conditions 〈qα : α < κ+〉, such that, overN [G ], qα ‖ κ ∈ jU (A∼α). Such a sequence
exists since V [G ] � “〈jU (P) \ κ,≤∗〉 is κ+-closed .”

Let 〈q∼α : α < κ+〉 be a P-name for the above sequence. Now, define U ∗ ⊇ U as
follows: For every α < κ+, (A∼α)G ∈ U ∗ if and only if there exist p ∈ G and α < κ+

such that

p�q∼α � κ ∈ i(A∼α).

We argue that U ∗ defined above is a normal measure which extends U .
Assume that � < κ and 〈X∼α : α < �〉 is a Pκ-name for a partition of κ in V [G ].

For every α < �, define

Yα = {� < κ+ : ∃p ∈ Pκ, p � X∼α = A∼�}.
Since P is κ – c.c., |Yα | < κ. Denote

Y =
⋃
α<�

Yα.

ThenY ⊆ κ+ is a bounded subset. Pick α∗ < κ+ high enough which boundsY . Let
us argue that there exists p ∈ G and a unique � < � such that

p�q∼α
∗ � κ ∈ jU

(
A∼�
)
,

and thus
(
A∼�
)
G
∈ U ∗.

Work in N [G ]. Note that 〈A� : � ∈ Y 〉 covers the sequence 〈Xα : α < �〉. Since
qα∗ is ≤∗ above any q� for � ∈ Y ,

∀	 < α, qα∗ ‖ κ ∈ i(X∼	).
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4 MOTI GITIK AND EYAL KAPLAN

Since 〈i (X	) : 	 < �〉 is a partition of i(κ), there exists a unique 	∗ < � such
that qα∗ � κ ∈ i (A∼	∗). Let p ∈ G be a condition forcing this. Then p�q∼α

∗ � κ ∈
i (X∼	∗), as desired.

A similar argument shows that U ∗ is normal. Indeed, given a Pκ-name for a
regressive function f∼ : κ → κ, define, for every α < κ,

Xα = {	 < κ : f(	) = α}

and proceed as before to find a unique α < κ such that Xα ∈ U ∗. �

In particular, U can be extended to a normal measure U ∗ ∈ V [G ], such that
the ultrapower embedding jU∗ : V [G ] →M

[
jU∗(G)

]
satisfies that jU∗ � V =

k ◦ jU , for an embedding k : MU →M which satisfies crit(k) > κ. Indeed, define
k ([f]U ) = [f]U∗ for every f : κ → V in V .

A natural question here is whether this is the only way to generate a normal
ultrafilter on κ in V [G ]. In [6, 7] it was established that this is the case when
considering the nonstationary support iteration. However, this is not true anymore
once full support iterations are considered: in [1] and later in [9], iterations of
the standard Prikry forcing were considered. It was proved that every normal
measureU ∈ V on κ with Δ /∈ U can be extended to a normal measureU ∗ ∈ V [G ]
similarly as above, but not every normal measure extending U is generated this
way; nevertheless, all the normal measures on κ in V [G ] were characterized, either
as extensions U ∗ of measures U ∈ V with Δ /∈ U , or as the projections to normal
measure of extensions U ∗ of a normal ultrafilter U ∈ V with Δ ∈ U .

It turns out that the picture in the Easton support iteration of Prikry-type forcing
notions (and even of the standard Prikry forcings) is radically different. Given
an elementary embedding i : V → N with critical point κ, definable in V , the
normal measure derived from it, U = {X ⊆ κ : κ ∈ i(X )}, can be extended to a
normal measure W ∈ V [G ] such that jW � V = k ◦ i , for some k : N →M with
crit(k) > κ. In the case of iterations of the standard Prikry forcing, k is an iterated
ultrapower of N by normal measures only (see Section 4), while i : V → N can be
an embedding derived from an extender (as in the formulation of Theorem 1.1).

Let us demonstrate that, in the Easton support iteration, there are many more
possibilities to get normal measures W ∈ V [G ]. We show that an arbitrary
embedding i : V → N can be used to extend the normal measureU derived from it.

Lemma 2.5. Assume that i : V → N is an elementary embedding definable in V ,
with crit(i) = κ, such that |i(κ)| = κ+, κ /∈ i(Δ), N ⊆ V , and κN ⊆ N . Denote

U = {X ⊆ κ : κ ∈ i(X )}.

Then G is i(P) � κ = P-generic over N , and:

1. For every q ∈ i(P) \ κ, there isH ∈ V [G ] with q ∈ H , which is 〈i(P) \ κ,≤∗ 〉-
generic over N [G ].

2. Given suchH ∈ V [G ], define

UH = {(A∼)G : A∼ is a P-name for a subset of κ, and there exists

p ∈ G ∗H such that p � κ ∈ i (A∼)}.

Then UH is a normal, κ-complete ultrafilter on κ which extends U .
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ON EASTON SUPPORT ITERATION OF PRIKRY-TYPE FORCING NOTIONS 5

Proof.

1. We can enumerate, in V [G ], all the maximal antichains in 〈i(P) \ κ,≤∗〉 with
order type κ+, by i(κ)-c.c. of the forcing, and since V [G ] � |i(κ)| = κ+. Note
that κ �∈ i (Δ), so in the sense of N [G ], the forcing 〈i(P) \ κ,≤∗〉 is more
than κ-closed. Moreover, since V � κN ⊆ N , and P = Pκ is κ –c.c., V [G ] �
<κN [G ] ⊆ N [G ]. Therefore, every sequence of lengthκ of conditions in i(P) \
κ which belongs toV [G ] belongs toN [G ] as well. Thus, in the sense ofV [G ],
the forcing 〈i(P) \ κ,≤∗〉 is κ+-closed.

Starting from any condition in i(P) \ κ, we can construct (in V [G ]) a
sequence of direct extensions of it, meeting every maximal antichain. This
sequence generates a ≤∗-generic over N [G ] for i(P) \ κ, which belongs to
V [G ].

2. First, we prove that W = UH is a normal, κ-complete ultrafilter on κ which
extends U . It is not hard to verify that W is a filter. We prove that W is a
κ-complete ultrafilter. Assume that 〈Xα : α < �〉 is a partition of κ, for some
� < κ. Work inN [G ]. LetD ⊆ i(P) \ κ be the≤∗-dense open set of conditions
which decide the unique α < � for which κ ∈ i (X∼α). Then such a statement
is forced by some r ∈ H . Let p ∈ G be a condition which forces that r has
this property, and also decides the value of α. Then p�r � κ ∈ i (Xα) and
thus Xα ∈W . Normality ofW follows by a similar argument, using the dense
set of conditions deciding the value of i(f∼)(κ) for a given regressive function
f : κ → κ. The argument works since we don’t force over κ in N . �

Remark 2.6. M. Magidor pointed out the following: Assuming that N ⊆ V
and i : V → N is definable in V [G ], it follows that N is already a class of V .
Indeed, pick a formula ϕ and a parameter a ∈ V [G ] such that for every x, y in
V , ϕ(x, y, a) holds in V [G ] if and only if i(x) = y. For every ordinal α pick a
condition pα ∈ G which decides the value of the set

(
Vi(α)

)N
, which is the set y for

which ϕ (Vα, y, a) holds. Since P is a set forcing, there exists p∗ ∈ G such that, for
unboundedly many ordinals α, pα = p∗. Then N can be defined as a class of V
using p∗, N =

⋃
{y : ∃α ∈ ON, p∗ � ϕ (Vα, y, a∼)}.

In general, the settings of Lemma 2.5 are not enough to ensure that jUH � V =
k ◦ i for some k with crit(k) > κ. For instance, given a normal measureU on κ inV
with Δ /∈ U , the embedding i = jU 2 satisfies the settings of Lemma 2.5, but cannot
be used to extend U to a measure UH for which jUH = k ◦ i for some embedding k
with crit(k) > κ. This follows since i fails to satisfy clause 3 in the next claim:

Proposition 2.7. Assume that 2κ = κ+, U ∈ V is a normal measure on κ,W ∈
V [G ] is a normal measure which extends U , i : V → N is an elementary embedding
and jW � V = k ◦ i for some k : N →M with crit(k) > κ. Then:

1. {X ⊆ κ : κ ∈ i(X )} = U .
2. |i(κ)| = κ+.
3. {i(f)(κ) : f ∈ V, f : κ → κ} is unbounded in i(κ).

Proof.

1. {X ⊆ κ : κ ∈ i(X )} = U : Indeed, let X ⊆ κ in V with κ ∈ i(X ). By applying
k : N →M it follows that κ ∈ jW (X ) and hence X ∈W . Since X ∈ V and
U =W ∩ V , it follows that X ∈ U .
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6 MOTI GITIK AND EYAL KAPLAN

2. |i(κ)| = κ+: This holds since, in V [G ], |jW (κ)| = 2κ = κ+ (since, in V , 2κ =
κ+), and i(κ) ≤ jW (κ).

3. {i(f)(κ)|f : κ → κ} is unbounded in i(κ): Given � < i(κ), let f ∈ V [G ] be
a function such that [f]W = k (�). Since k (�) < k

(
i(κ)) = jW (κ), we can

assume thatf : κ → κ. The Easton support ensures that there exists g : κ → κ
in V which dominates f. Thus i (g) (κ) ≥ � (indeed, by applying k : N →M
on both sides, this is equivalent to jW (g)(κ) ≥ k (�) = [f]W , which holds,
since g dominates f. Note that, when applying k, we used the fact that
crit(k) > κ). �

Theorem 1.1 will be proved by a sequence of lemmata, concluded in Lemma 2.15.
The main idea in the proof of Theorem 1.1 is to add representing functions for all
the generators of i above κ. This is needed since jW � V has a single generator κ.

Definition 2.8. An ordinal � is called a generator of i : V → N if there
are no n < �, ordinals �1, ... , �n below � and a function f ∈ V such that
� = i (f) (�1, ... , �n).

In the next lemma we construct a functionα �→ �α inV [G ], which will be utilized,
alongside functions in V , to represent the generators of i in Ult (V [G ] ,W ).

Lemma 2.9. There exists a Pκ-name for a sequence of ordinals, 〈�α : α < κ〉, such
that the following properties hold:

1. For every � < κ and p ∈ Pκ, there is α0 < κ such that for every α ≥ α0 there
exists p∗ ≥∗ p such that p∗ � �α = � .

2. For every α < κ and condition p ∈ Pκ, there exists a condition p∗ ≥∗ p which
decides the value of �∼α .

Remark 2.10. When iterating Prikry forcings, the natural candidate for the
function α �→ �α is the function which maps every α ∈ Δ to d (α), which is the
first element in its Prikry sequence (this function does not have domain κ, but this
can be fixed by defining the function on elements outside of Δ as follows: for every
α < κ outside of Δ, let �α = d (α′), where α′ is the least element above α in Δ). The
main problem with such a function is that it fails to satisfy clause 2 of the lemma
(from density, every ≤∗-generic set has some α ∈ Δ for which it does not decide
d (α)).

In the proof below we work under more general settings, and do not assume that
we iterate Prikry forcings.

Proof. For every α < κ, let 
α < κ be the least ordinal such that P � (α, 
α) is
not α – c.c.We will argue below that such 
α < κ exists, but first, let us show that
this suffices: Pick an unbounded subset X ⊆ κ, such that, for every α, α′ ∈ X ,

α < α′ =⇒ 
α < 
α′

(for instance, letX be the club of closure points of the function α �→ 
α). Enumerate
X = 〈xα : α ∈ Δ〉. For every α ∈ Δ, let 〈qxα,	 : 	 < xα〉 be an antichain in P(xα,
xα )
of cardinality xα . Define �α to be the unique ordinal 	 < xα for which qxα,	 ∈ G �
(xα, 
xα ) (if there is no such 	, which is possible since the antichain is not necessarily
maximal, set �α = 0).
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ON EASTON SUPPORT ITERATION OF PRIKRY-TYPE FORCING NOTIONS 7

Now, given � < κ and a condition p ∈ Pκ, pick first α ∈ Δ for which xα bounds
the support of p. Direct extend p to p∗ such that p∗ � (xα, 
xα ) = qxα,� . Then2 by
our definition, p∗ forces that �α = � .

Let us prove now that for every α < κ and condition p ∈ Pκ, there exists p∗ ≥∗ p
which decides the value of �α .

We will direct extend p in the interval (xα, 
xα ), xα-many times, to decide
whether qxα,	 ∈ G � (xα, 
xα ), for every 	 < xα . Note that this is possible since
〈P � (xα, 
xα ),≤∗ 〉 is more than xα-closed. Let p∗ ≥∗ p be the obtained condition.
Then either there exists 	 < xα such that p∗ forces that qxα,	 is in the generic, and
then p∗ � �∼α = 	; or, there is no such 	, and then p∗ � �∼α = 0.

Let us argue now that indeed, for every α < κ there exists 
α < κ such that
P � (α, 
α) is not α – c.c.: Pick 
α such that there are α-many elements of Δ in the
interval (α, 
α). Let 〈
α,	 : 	 < α〉 be an enumeration of the first α-many elements
in (α, 
α) ∩ Δ. For every 	 < α, let x∼	, y∼	 be P
α,	 -names, forced by 0P
α,	 to be a
pair of incompatible elements of Q

∼
α,	
. Such a pair exists since Q

∼
α,	
is nontrivial.

Now, for every � ∈ 2α , let p� ∈ P � (α, 
α) be the condition which satisfies, for
every 	 < α, that

p� � 	 � p� (	) =

{
x∼	, if � (	) = 0,
y∼	, if � (	) = 1.

Note that 
α is the limit of the first α many elements above α in Δ, and thus 
α is
singular, so the support of a condition in P = Pκ may be unbounded in 
α .

Then 〈p� : � ∈ 2<α〉 is an antichain in P � (α, 
α) of cardinality at least α. �
Remark 2.11. Given a function α �→ �∼α as in Lemma 2.9, we slightly abuse the

notation and denote i (α �→ �∼α) by 〈�∼α : α < i(κ)〉.
Lemma 2.12. Under the assumptions of Theorem 1.1, there existsH ∈ V [G ] which

is 〈i(P) \ κ,≤∗〉-generic over N [G ], with the following property:

(∗) For every generator � ∈ i(κ) \ (κ + 1) of i, there exists a function f = f� ∈ V,
f : κ → κ and a condition q ∈ H such that q � � = i

(
α �→ �∼f(α)

)
(κ) ,

where 〈�∼α : α < i(κ)〉 is as in Remark 2.11.

Proof. In V [G ], let 〈A	 | 	 < κ+〉 be an enumeration of maximal antichains in
i(P). Let 〈�	 | 	 < κ+〉 be an enumeration of all the generators of i below i(κ).
Define in V [G ] a ≤∗-increasing sequence 〈r	 | 	 < κ+〉. Assume that 〈r	 : 	 < 	∗〉
has been constructed for some 	∗ < κ+. Pick a condition r which ≤∗ extends all
the conditions 〈r	 : 	 < 	∗〉 constructed so far, and, by extending it, assume that
r extends a condition in A	∗ . Finally, let α0 < i(κ) be such that for every α ≥ α0

there exists r∗ ≥∗ r which forces that i (	 �→ �	) (α) = �	∗ . Pick any α ≥ α0 below
i(κ) which has the form i (f) (κ) for some f = f�	∗ ∈ V , and let r	∗ ≥∗ r be a
condition which forces that i (	 �→ �	) (α) = �	∗ .

Finally, letH be the ≤∗-generic generated from 〈r	 : 	 < 	∗〉. �

2It is crucial here that the Easton support is used.
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8 MOTI GITIK AND EYAL KAPLAN

Remark 2.13. Repeating the above argument, we can construct 2κ
+

-many
distinct generic sets H satisfying property (∗), by constructing a binary tree
〈r� : � ∈ 2<κ

+〉 of conditions, which are ≤∗-increasing in each branch, and for
each � ∈ 2<κ

+
, r��〈0〉 and r��〈1〉 are ≤∗-incompatible. Assuming 2κ

+
= κ++, this

provides the maximal number of generic sets H in V [G ] for 〈i(P) \ κ,≤∗ 〉 over
N [G ].

Below we will define for every suchH a measureUH ∈ V [G ] on κ which extends
U ; under mild assumptions on the forcing notions Q

∼α
, we will prove that for H �=

H ′ satisfying property (∗), UH �= UH ′ (see Theorem 2.19). Assuming GCH, this
produces the maximal number κ++ of normal measures on κ, generalizing the
well-known result of Kunen and Paris [10].

Remark 2.14. Not every generic set H ∈ V [G ] for 〈i(P) \ κ,≤∗ 〉 satisfies
property (∗).

Indeed, assume that Δ consists only of inaccessibles and i : V → N has a
nonempty set of generators in

(
κ, i(κ)) which is bounded by some ordinal � =

i(f)(κ) below min
(
i(Δ) \ κ), for some f ∈ V . This holds in the typical case where

Δ consists of measurables below κ and i is a (κ, κ+)-extender (the length of i is κ+

since i has to satisfy the requirement |i(κ)| = κ+ of Theorem 1.1). Let � : MU → N
be the embedding which maps each element [g]U ofMU to i(g)(κ) (here g ∈ V is any
function with domain κ). � has critical point strictly above κ+, since (κ+)N = κ+.

In V [G ], let HU ⊆ jU (P) \ κ be ≤∗-generic overMU [G ]. Let H ⊆ i(P) \ κ be
the generic set generated from �′′HU . We argue thatH is indeed ≤∗-generic overN .
LetD ∈ N [G ] be a ≤∗-dense open subset of i(P) \ κ. WriteD∼ = i(F ) (κ, �1, ... , �l )
for some function F ∈ V , l < � and generators �1, ... , �l < i(f)(κ) of i . We can
assume that for every 	, �1, ... , �l < f(	), F (	, �1, ... , �l ) ⊆ P \ 	 is forced to be
≤∗-dense open subset of P \ 	. Define, inMU ,

DU =
⋂

�1,...,�l <jU (f)(κ)

jU (F ) (κ, �1, ... , �l )

and note that, since the amount of sequences �1, ... , �l < jU (f)(κ) inMU is below
min (Δ \ κ), and 〈jU (P) \ κ,≤∗ 〉 is more than min

(
jU (Δ) \ κ)-closed, DU is ≤∗-

dense open subset of jU (P) \ κ. Pick any q ∈ HU ∩DU . Then �(q) ∈ D ∩H , since
�(DU ) ⊆ D.

Since �′′G ∗HU ⊆ G ∗H , the embedding � : MU → N can be lifted to an
embedding �∗ : MU [G ∗HU ] → N [G ∗H ].

Pick now any generator � of i in the interval
(
κ, i(κ)). We argue that there is no

f ∈ V such thatH � � = i
(
α �→ �∼f(α)

)
(κ). Indeed, otherwise, by elementarity of

�∗, there exists �∗ < jU (κ) such that

HU � �∗ = jU
(
α �→ �∼f(α)

)
(κ) .

Let g ∈ V be a function such that �∗ = jU (g)(κ). Then

� = �∗ (�∗) = i (g) (κ)

contradicting the fact that � is a generator of i .
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Given i, N,U as in Theorem 1.1 and a generic set H ∈ V [G ] for 〈i(P) \ κ,≤∗〉
over N [G ], define

UH = {(A∼)G : A∼ is a P-name for a subset of κ, and there exists

p ∈ G ∗H such that p � κ ∈ i (A∼)}.

Then UH is a normal, κ-complete ultrafilter which extends U . This follows by
repeating the argument of Lemma 2.5.

The modelMUH 	 Ult (V [G ] , UH ) is of the formM [G∗], where M is the image
of V andG∗ = jUH (G) is jUH (P)-generic over M in the sense ofMUH . We conclude
the proof of Theorem 1.1 by defining an elementary embedding k : N →M and
proving that crit(k) > κ.

In the next lemma we continue the abuse of notation as in Remark 2.11, and
denote

jUH (〈�	 : 	 ∈ Δ〉) = 〈�	 : 	 ∈ jUH (Δ)〉.

Lemma 2.15. Assume the settings of Theorem 1.1. Suppose that H is a generic
set for 〈i(P) \ κ,≤∗〉 over N [G ] with the property (∗). Define then k : N →M as
follows:

k
(
i(f)(κ, �1, ... , �l )) = jUH (f)

(
κ, �[

f�1

]
UH

, ... , �[
f�l

]
UH

)

for every l < �, �1, ... , �l < i(κ) generators of i and f ∈ V (the functions f�i , 1 ≤
i ≤ l , are as in Lemma 2.12).

Then k : N →M is elementary, crit(k) > κ and jUH � V = k ◦ i .

Proof. Denote W = UH . Let us prove that the embedding k defined above is
elementary. Let us prove, for example, that for every x, y ∈ N , x ∈ y if and only
if k(x) ∈ k(y). Fix such x, y and let f, g ∈ V , �1, ... , �l and α1 < ··· < αk < α be
such that

x = i(f) (κ, �1, ... , �l ) , y = i(g) (κ, �1, ... , �l ) .

Assume now that k(x) = k(y), namely

jW (f)
(
κ, �

jW

(
f�1

)
(κ)
, ... , �

jW

(
f�l

)
(κ)

)
∈ jW (g)

(
κ, �

jW

(
f�1

)
(κ)
, ... , �

jW

(
f�l

)
(κ)

)
.

Then

{	 < κ : f
(
	, �f�1 (	), ... , �f�l (	)

)
∈ g

(
	, �f�1 (	), ... , �f�l (	)

)
} ∈W

and by the definition ofW , there exists p ∈ G and r ∈ H such that

p�r � κ ∈ i
(
{	 < κ : f

(
	, �∼f�1 (	), ... , �∼f�l (	)

)
∈ g

(
	, �∼f�1 (	), ... , �∼f�l (	)

)
}
)
.

By extending r ∈ H finitely many times, p�r � �∼(i(f�m )(κ)) = �m holds for every

1 ≤ m ≤ k. Thus, the last equation can be replaced with

p�r � i(f) (κ, �1, ... , �l ) ∈ i(g) (κ, �1, ... , �l )
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10 MOTI GITIK AND EYAL KAPLAN

but the forced statement above is entirely in N , and since a condition forces it, it is
true in N . Thus

i(f) (κ, �1, ... , �l ) ∈ i(g) (κ, �1, ... , �l ) ,

as desired. The implication in the other direction can be proved similarly.
Clearly crit(k) > κ. We finish the proof by showing that jW � V = k ◦ i . Let

x ∈ V and let cx : κ → V be the constant function with value x. Then

k
(
i(x)) = k

(
i (cx) (κ)) = jW (cx) (κ) = jW (x),

as desired. �
Let us now study the properties of the embedding k : N →M . We assume the

settings of Theorem 1.1.
Lemma 2.16. If ≤=≤∗, or at least ≤α=≤∗

α , for a final segment of α < κ, then k is
the identity andM = N .

Proof. Fix an ordinal �, and let f ∈ V [G ] be a function such that � = [f]W .
We will prove that � ∈ Im(k). Indeed, consider the set

{p ∈ i(P)/G | ∃
(p � i(f∼)(κ) = 
)}.
It is ≤-dense in N [G ]. So, if ≤=≤∗, then H meets it. Thus, there exists a condition
q ∈ H , a function g ∈ V and generators �1, ... , �l of i , such that q � i (f∼) (κ) =
i(g) (κ, �1, ... , �l ). Thus, by the definition ofW ,

{	 < κ : f(	) = g
(
	, �f�1 (	), ... , �f�l (	)

)
} ∈W,

and thus � = [f]W = k
(
i(g) (κ, �1, ... , �l )). �

In general, M should not be equal to N. Thus, for example, they will differ if the
Prikry forcing was used unboundedly often below κ. Indeed, ifM = N then k is the
identity, and jW � V = i , which implies that jW (G) is generic over N for i(P). Pick
a measurable of N, � ∈

(
κ, i(κ)) for which the Prikry forcing at stage � is used in the

iteration i(P). Such a measurable exists since the Prikry forcing was used cofinally
in P over V. Then, in N

[
jW (G)

]
, � changes cofinality to �. Thus, in V [G ], � has

cofinality �, and hence, in V, cf(�) ≤ κ. By closure of N under κ-sequences which
belong to V, cfN (�) ≤ κ, contradicting the fact that � > κ is measurable in N.

We do not know whether the assumption of 2.16 is necessary.
Question 2.17. Suppose that for unboundedly many α < κ, ≤α �=≤∗

α . Is thenM �=
N ?

We do not know what are the requirements on the forcings Q
∼α

for α ∈ Δ which
imply M = N . We conjecture that the requirement should be that there is � < κ,
such that every set of ordinals x ofV [G ] can be covered by a set y ∈ V of cardinality
≤ |x| + �.

Lemma 2.18. k′′H ⊆ G∗ \ κ.

Proof. Let q be in H, and let p ∈ G be a condition such that p � q∼ ∈ H∼ (recall
thatH ∈ V [G ]). Clearly,

p�q∼ � q∼ ∈ Γ \ κ,
where Γ is the canonical i(P)-name for the generic set for i(P) over V .
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Pickf : [κ]n → κ,f ∈V and�1 < ··· < �n < i(κ) such that q∼ = i(f)(�1, ... , �n).
For every m, 1 ≤ m ≤ n, there are fm : κ → κ,fm ∈ V such that qi(fm)(κ),�m ∈ H ,
namely, �m = �i(fm)(κ).

Let us argue that the set

Aq = {� < κ | f(�f1(�), ... , �fn(�)) ∈ G \ �}
is in W. Pick any q ≤∗ q∗ ∈ H which ≤∗ which forces that �m = �i(f�m )(κ), for every

1 ≤ m ≤ n. Recall that

q = i(f)(�1, ... , �n) = i(f)(�i(f1)(κ), ... , �i(fn)(κ)),

and thus p�q∼
∗ � κ ∈ i(A∼q). �

The next lemma generalizes a Kunen–Paris result (see Remark 2.13).

Theorem 2.19. Let H,H ′ ∈ V [G ] be generic sets for 〈i(P) \ κ,≤∗ 〉 over N [G ].
Suppose that H and H ′ satisfy (∗). Assume that for every � < κ, if q, q′ ∈ Q� are
incompatible according to the order ≤∗, then

D�(q) = {r ∈ Q� | r is ≤ -incompatible with q}
is ≤∗-dense above q′, or

D�(q′) = {r ∈ Q� | r is ≤ -incompatible with q′}
is ≤∗-dense above q.3

Suppose that H �= H ′, then UH �= UH ′ .

Remark 2.20. Note that if the Q� ’s are taken to be Prikry forcings, then the
above property holds. Indeed, assume that q = 〈t, A〉 and q′ = 〈t′, A′〉 are ≤∗-
incompatible. Then t �= t′. Assume without loss of generality that t is an end
extension of t′. Then D(q) = {r : r, q are ≤∗ -incompatible} is ≤∗-dense open
above q′. Indeed, pick a condition 〈t′, B〉 ≥∗ 〈t′, A〉. Shrink B to the set B∗ =
B \

(
max(t) + 1). Then 〈t′, B∗〉 ≥∗ 〈t′, B〉 and is incompatible with q = 〈t, A〉.

Proof. Suppose otherwise, i.e.,H �= H ′, but UH = UH ′ :=W .
Let k : N →M be the elementary embedding defined from H and k′ : N →M

from H ′. �
Claim 1. k �= k′.
Proof. Assume for contradiction that k = k′. Thus, by Lemma 2.18, every pair

of elements from H,H ′ are ≤-compatible. We will argue that this implies that
H = H ′. It suffices to prove that every pair of conditions q ∈ H, q′ ∈ H ′ are ≤∗-
compatible.

Assume otherwise. Let α < κ be the least ordinal such that there are pair of
conditions q ∈ H, q′ ∈ H ′ for which q � α, q′ � α are ≤∗-incompatible. α cannot
be limit, since ≤∗-compatibility of all the initial segments of q, q′ below α implies
that q � α and q′ � α are ≤∗-compatible themselves (if α is inaccessible, this is clear
since the support of q, q′ is bounded in α; if the supports of q, q′ are unbounded

3This type of condition usually holds. For example, if we iterate Prikry forcings, then just shrinking
sets of measure one will produce such type of incomparability.
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12 MOTI GITIK AND EYAL KAPLAN

in α, direct extend both q, q′ coordinate by coordinate to find a common direct
extension). Thus α = � + 1 is successor, and q (�), q′ (�) are ≤∗-incompatible. By
the property of the forcing Q� , without loss of generality, D� (q) is ≤∗-dense open
above q′(�). Since q′(�) ∈ H ′ (�), q′ can be extended to a condition r ∈ H ′, such
that r(�) ∈ D�(q). In particular, q ∈ H , r ∈ H ′ are ≤-incompatible, which is a
contradiction. � of Claim 1. �

Since k �= k′, there exists a generator � of i such that k(�) �= k′(�). Pick the least
such generator � .

Claim 2. For every generator � ′ < � of i , there exists a functionf�′ ∈ V such that
each generic H,H ′ has a condition which forces that � ′ = �∼i

(
f�′

)
(κ)

.

Proof. Let f,f′ be functions such that some condition in H forces that
� ′ = �∼i(f)(κ), and some condition in H ′ forces that � ′ = �∼i(f′)(κ). Let q ∈ H
be a condition which decides the statement �∼i(f)(κ) = �∼i(f′)(κ) and assume for
contradiction that it is decided negatively. By applying k, k(q) ∈ jW (G) forces
that

�∼[f]W �= �∼[f′]W
,

namely k(� ′) �= k′ (� ′), contradicting the minimality of � . � of Claim 2. �
Recall now that k(�) �= k′(�). Thus, there are two distinct functions f,f′ in V

such that:
1. Some condition in H forces that � = �∼i(f)(κ).
2. Some condition in H ′ forces that � = �∼i(f′)(κ).
3. Without loss of generality, {	 < κ : �f′(	) < �f(	)} ∈W .
By property (2) of the names 〈�∼α : α < κ〉, presented in Lemma 2.9, there exists

an ordinal � ′ such that some condition inH forces that �∼i(f′)(κ) = � ′. By the above
assumptions, � ′ < � .

We argue that � ′ is a generator of i as well. This will finish the proof: once we
prove that � ′ is a generator of i , it follows from Claim 2 that �i(f′)(κ) represents � ′

in the sense of both generics, H,H ′. However, in the sense of H ′, it represents � ,
which is a contradiction.

Assume for contradiction that � ′ is not a generator of i . Then there is a function
g ∈ V and �1, ... , �l below � ′, such that � ′ = i(h) (κ, �1, ... , �l ). SinceH forces that
� ′ = �∼i(f′)(κ), it follows that

{	 < κ : g
(
	, �f�1 (	), ... , �f�l (	)

)
= �f′(	)} ∈ UH =W.

Thus the same set belongs to UH ′ . Therefore,H ′ forces that

� = �i(f′)(κ) = i(g) (κ, �1, ... , �l )

contradicting the fact that � is a generator of i (note that we used Claim 2 when
arguing that the generators �i , 1 ≤ i ≤ l , are represented the same way in the sense
ofH,H ′).

Definition 2.21. A measureW ∈ V [G ] is called simply generated ifW = UH
for some U ∈ V , whereH is generic for 〈jU (P) \ κ,≤∗〉 overMU [G ].
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Remark 2.22. Given a simply generated normal measureW ∈ V [G ] as above,
with Δ /∈W , the parameters U and H are uniquely defined from it4. Indeed, we
will prove in the next lemma that U =W ∩ V belongs to V , and is a normal
measure there with Δ /∈ U , Now, assume that there are H,H ′, generic overMU [G ]
for 〈jU (P) \ κ,≤∗〉, with W = UH = UH ′ . Then H,H ′ satisfy the conditions of
Lemma 2.19 (since jU has no generators other than κ). Thus, by the theorem,
H = H ′.

Given W ∈ V [G ] normal on κ (which is not necessarily simply generated), we
can say the following:

Lemma 2.23. Assume that 2κ = κ+. Then every normal measureW ∈ V [G ] on κ
extends a measure U =W ∩ V ∈ V .

Proof. By Proposition 2.1 in [6], it suffices to prove that there are no new fresh

unbounded subsets of cardinals in the interval
[
κ, (2κ)V

]
=
[
κ, κ+

]
. Thus, it suffices

to prove the following pair of claims: �
Claim 3. P = Pκ does not add fresh unbounded subsets to κ.

Proof. The fact that there are no fresh unbounded subsets ofκ follows essentially
from the facts that 2κ = κ+, and that there exists a normal measure on κ in V [G ]:
Given a normal measure U ∈ V with Δ /∈ U , take any U ∗ ∈ V [G ] which extends
it. Given a fresh unbounded A ⊆ κ, A = jU∗ (A) ∩ κ and thus, by elementarity,
A belongs to the ground modelM of Ult (V [G ] , U ∗). Now set kU : MU →M to
be the function which maps [f]U to [f]U∗ . Then kU is a well-defined elementary
embedding since U ⊆ U ∗, and crit (kU ) > κ by normality of U ∗. Since 2κ = κ+

holds in M , kU maps the sequence of subsets of κ to itself, and thus every subset
of κ which belongs toM , already belongs to V . So the above set A belongs to V ,
which is a contradiction. �

Claim 4. For every measurable (in V ) � ≤ κ, P� doesn’t add fresh unbounded
subsets of �+. In particular, Pκ does not add fresh subsets to �+.

Proof. Letf ∈ V [G ] be the characteristic function of a fresh unbounded subset
of �+. Let f∼ be a P�-name and assume that p ∈ P forces that f∼ is fresh.

LetG ⊆ P� be generic over V . For every 	 < �+, let p	 ∈ G be a condition which
decides f∼ � 	. For every 	 < �+ there exists α	 < � such that the support of p	 is
bounded by α	 . Let A ⊆ �+ and α∗ < � be such that |A| = �+ and α	 = α∗ for
every 	 ∈ A.

By shrinking A ⊆ �+ even further (to a set of cardinality �+), we can assume that
there exists q∗ ∈ P� such that, for every 	 ∈ A, p	 � α∗ = q∗ � α∗, and q∗ � [α∗, �)
is trivial.

Let h =
⋃
{g : ∃	 < � q∗ � f∼ � 	 = g}. Clearly, h : �+ → 2 is a function and

q∗ � f∼ = ȟ.
� of Lemma 2.23. �

4Note that when iterating Prikry forcings, Δ /∈W holds for every normal measureW ∈ V [G ] on κ,
since every suchW concentrates on regulars.
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§3. On jW (κ) > jU (κ) and the existence of N . Assume in this section that P =
Pκ is an iteration of Prikry forcings. Let W,U =W ∩ V, i : V → N be as in the
previous section.

Clearly, jW (κ) ≥ jU (κ). Our interest here will be in situations where a strict
inequality holds.

Note that such a phenomenon is impossible with the nonstationary support,
where, for every normal measureW ∈ V [G ] on κ, jW (κ) = jU (κ) (see [7]).

On the other hand, in the full support iteration, it is possible that jW (κ) >
jU (κ) starting with o(κ) ≥ 2. Indeed, under the assumption that there are normal
measures U0 � U1 on κ in V , take W = (U1)× (in the notations of [9]). Assume
that 	 �→ U0(	) is a function in V which represents U0 in Ult (V,U1), and, for every
	 ∈ Δ, U0(	) is the normal measure used to singularize 	 at stage 	 in the iteration
P = Pκ. ThenW extends U0, but jW (κ) = jU1(κ) > jU0(κ). The other direction is
also true: if jW (κ) > jU (κ), let U ′ be a measure on κ in V such thatW = (U ′)×.
Then U � U ′ and thus o(κ) ≥ 2.

Let us discuss this situation in the context of the Easton support iteration.

3.1. On jW (κ) > jU (κ). Start with the following simple observation:

Proposition 3.1. The set

{jW (f)(κ) | f : κ → κ,f ∈ V }

is unbounded in jW (κ).
Hence, k′′jU (κ) is unbounded in jW (κ), where k([f]U ) = [f]W is the embedding

defined in Lemma 2.15.

Proof. P satisfies κ-c.c. Hence for every g : κ → κ in V [G ] there is f : κ → κ
in V which dominates it, i.e., for every � < κ, g(�) < f(�). �

Let us present a first example of a situation where jW (κ) > jU (κ).

Definition 3.2 (W. Mitchell). A cardinal κ is called �-measurable iff there exists
an extender E over κ such that Eκ ∈ME , where Eκ = {A ⊆ κ | κ ∈ jE(A)}.

Note that we can use a witnessing extender E with two generators only—κ and
the ordinal � < 22κ which codes Eκ. The ultrapower by such an extender is closed
under κ-sequences.

The next lemma is obvious:

Lemma 3.3. Suppose that κ is �-measurable and E is an extender witnessing this.
Then jEκ (κ) < jE(κ).

Proposition 3.4. Suppose that κ is �-measurable and E is an extender witnessing
this which ultrapower is closed under κ-sequences. Let U = Eκ and Δ ⊆ κ be a set of
measurable cardinals which is not in U. Force with an Easton support iteration P of
the Prikry forcings over Δ. Let G ⊆ P be a generic.

Then, in V [G ], there is a normal ultrafilter W which extends U such that jW (κ) >
jU (κ).

Proof. Construct W as in Theorem 1.1 using E, i.e., i = jE and N =ME .
Then jU (κ) < jE(κ) = i(κ) = jW (κ). �
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Let us observe now that we need a �-measurable in order to have jW (κ) > jU (κ),
provided V = K, where K denotes the core model.

Proposition 3.5. Assume ¬0¶. Suppose that V = K. Let U be a normal ultrafilter
over κ and Δ ⊆ κ be a set of measurable cardinals which is not in U. Force with an
Easton support iteration P of the Prikry forcings over Δ. Let G ⊆ P be a generic.

Suppose that, in V [G ], there is a normal ultrafilter W which extends U such that
jW (κ) > jU (κ).

Then κ is a �-measurable in V. Moreover, U is a normal measure of a witnessing
extender.

Proof. Suppose otherwise.
Consider jW � V . Since V = K is the core model, jW � V is a normal5 iterated

ultrapower of K = V by its measures and extenders (see [13]).
Recall thatW ∩ V = U , and so,U = {A ⊆ κ | A ∈ V, κ ∈ jW (A)}. The assump-

tion that U is not a normal measure of an extender which witnesses a�-measurability
of κ implies then that U must be used first in this iterated ultrapower.

Apply now the arguments of [4, 8] in KU the core model of MU . For every
measurable α, κ ≤ α < jU (κ), there will be a bound �α (which depends on o(α))
on the number of possible applications of measures and extenders over α with their
images, and, by the assumption that there are no strong cardinals, �α < jU (κ).
Therefore, for every such α, there exists an upper bound �∗α < jU (κ) on the image
ofα in the iterated ultrapower by the measures or extenders taken onα or its images.
�∗α < jU (κ) since none of the extenders participating has length jU (κ) or above (by
¬0¶), and �α < jU (κ).

This implies that the rest of the iteration from jU to jW � K cannot move jU (κ):
otherwise, jU (κ) participates as a critical point in the iteration (it cannot be moved
by an extender with a critical point below jU (κ), as explained above; it surely
cannot moved by an extender with a critical point above jU (κ); thus, it moves since
an extender on it participates in the iteration). Decompose jW � V = k1 ◦ i1, where
i1 is the iteration with all the extenders below jU (κ), and k1 is an iteration with
critical point jU (κ). Then

{jW (f)(κ) : f : κ → κ, f ∈ V }
is bounded in jW (κ), since, for every f : κ → κ in V ,

jW (f)(κ) = k1 ◦
(
i1 (f) (κ)) = i1 (f) (κ) < jU (κ),

where we used the fact that i1 (f) (κ) does not move in k1 since it is strictly below
jU (κ). This, contradicts Proposition 3.1. �

The situation changes if we do not assume V = K. Let us argue now that the
consistency strength of jW (κ) > jU (κ) is just a measurable which is a limit of
measurable cardinals.

Proposition 3.6. Let V0 be a model of GCH with a measurable cardinal κ which
is a limit of measurable cardinals.

5Extenders with smaller indexes are used first.
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16 MOTI GITIK AND EYAL KAPLAN

Then there is a cardinal preserving generic extension V of V0 which satisfies the
following:

Let Δ be an unbounded subset of κ consisting of measurable cardinals. Force with
an Easton support iteration P of the Prikry forcings over Δ. Let G ⊆ P be a generic.

There exists a normal ultrafilter U over κ in V and a normal ultrafilter W in V [G ]
which extends U such that jW (κ) > jU (κ).

Proof. The idea is as follows. Let U0 be a normal ultrafilter over κ in V0 which
concentrates on non-measurable cardinals. ConsiderU 2

0 = U0 ×U0 andU 3
0 = U0 ×

U0 ×U0.
Let j1 = jU0 , j2 = jU 2

0
, j3 = jU 3

0
,M1 =MU0 ,M2 =MU 2

0
,M3 =MU 3

0
, κ1 = j(κ),

κ2 = j2(κ), κ3 = j3(κ). We have natural commuting embeddings j12 :M1 →
M2, j23 :M2 →M3 and j13 :M1 →M3. Namely, j12(j1(f)(κ)) = j2(f)(κ),
j23(j2(g)(κ, κ1)) = j3(g)(κ, κ1), etc. Note that the critical point of j12, j13 is κ1

and of j23 is κ2. However there is an additional way to embedM2 intoM3. Define
� :M2 →M3 by setting �(j2(f)(κ, κ1)) = j3(f)(κ, κ2). Clearly, � is elementary
and its critical point is κ1 and it is moved to κ2.

The idea will be to force in order to extendU0 to a normal ultrafilter U such that:

1. MU is a generic extension ofM2,
2. U 3

0 extends to a κ-complete ultrafilter E withME a generic extension ofM3,
3. U is the normal ultrafilter which is strictly below E with the corresponding

embedding extending �.

Now, κ2 < κ3 will imply jU (κ) < jE(κ), since jU (κ) = κ2 and jE(κ) = κ3.
Such construction was used in [3]. We refer to this paper for details. Let us only

sketch the argument.
We force a Cohen function fα : α → α for every inaccessible α ≤ κ using the

iteration with an Easton support.
Denote a generic object which produces such 〈fα | α ≤ κ, α is an inaccessible 〉

by G0.
Let V = V0[G0].
It is possible to extend all the embeddings, j1, j2, j3, j12, j13, j23, �. We change

one value of fκ3 at κ by setting it to κ2. Let G3 be such generic over M3 Then,
j3 : V0 →M3 extends to j∗3 : V0[G0] →M3[G3]. Derive now U and E from j∗3 , in
V = V0[G0], by setting U = {A ⊆ κ | κ ∈ j∗3 (A)} and E = {B ⊆ κ3 | 〈κ, κ1, κ2〉 ∈
j∗3 (B)}.

Finally, we apply the construction of Section 2 to U and E to produce an extension
W of U in V [G ]. �

Note that U produced in 3.6 can be picked to be the minimal in the Mitchell
order, which is not true about one of 3.4, where V = K. Let us argue that under
rather strong assumptions it is possible to find such U in K.

Proposition 3.7. Let U be a normal ultrafilter over κ. Suppose that the set

{α < κ | α is κ-strong }

is unbounded in κ. Force with P as above. Let G ⊆ P be a generic. Then, in V [G ],
there is a normal ultrafilter W over κ such that:
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1. U ⊆W ,
2. jU (κ) < jW (κ),

moreover, jW � V = k ◦ i , where
• i : V → N ,
• jU (κ) < i(κ),
• i, N satisfy the conditions of Theorem 1.1.

Proof. Work in MU . Pick some α, κ < α < jU (κ) which is jU (κ)-strong. Let
E ∈MU be an (α, jU (κ))-extender witnessing this. Set N to be the ultrapower of
MU by E and let i = jE ◦ jU . We have

jU (κ) ≤ jE(α) < jE(jU (κ)) = i(κ).

Note that the embedding i satisfies the assumptions of Theorem 1.1. Indeed, the
only nontrivial properties of i that require verification are:

1. {i(f)(κ) : f : κ → κ} is unbounded in i(κ): InMU , denote � = jU (κ). Then �
is regular, and thus the (α, �)-extender embedding jE is continuous at �. Thus,
for every � < i(κ) = jE (�), there exists � ′ < � such that jE(� ′) > � . Now, find
f ∈ V , f : κ → κ, such that � ′ = jU (f)(κ). Then i(f)(κ) = jE(� ′) > � , as
desired. |jE(κ)| =

(
jU (κ))

+
.

2. |i(κ)| = κ+: Using the above notations,MU � |jE(�)| = �+. But V � |�+| =
κ+ since 2κ = κ+.

Now apply Theorem 1.1 to construct the desired measureW . �
We do not know whether the assumption of 3.7 is really necessary. However, it is

possible to show the following.

Proposition 3.8. Suppose ¬0¶.
Assume V = K.
Let U be a normal ultrafilter over κ which is minimal in the Mitchell order.
Let P be an Easton support iteration of Prikry-type forcing notions up to κ and

G ⊆ P be a generic.
Suppose that W is a normal ultrafilter in V [G ] which extends U.
Then jU (κ) = jW (κ).

Proof. Since V = K is the core model, jW � K is a normal iterated ultrapower
of K by its measures and extenders (see [13]).

The minimality of U implies that it must be used first in this iteration.
Apply now the arguments of [4, 8] in KU the core model of MU . For every

measurable α, κ ≤ α < jU (κ), there will be a bound �α (which depends on o(α))
on number of possible applications of measures and extenders over α with their
images, and, by the assumption that there is no strong cardinal, �α < jU (κ). Now
complete the argument as in Proposition 3.5 by showing that, if jU (κ) < jW (κ) then
an extender with critical point jU (κ) participates in the iteration, and thus the set
{jW (f)(κ) : f : κ → κ, f ∈ V } is bounded by jU (κ); this contradicts Proposition
3.1. �

We conjecture that the needed strength (for 3.8) is exactly

{α < κ | α is κ-strong } is unbounded in κ.
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18 MOTI GITIK AND EYAL KAPLAN

Thus, Schindler [12] extension of the Mitchell result can be used to argue that jW � K
is a normal iterated ultrapower of K by its measures and extenders. A missing part
is an extension of [4] beyond strong which is likely to hold.

3.2. On existence of N . As before, letW ∈ V [G ] be a normal measure on κ, and
U =W ∩ V ∈ V . In Section 4 we will prove that ifW is constructed as in Theorem
1.1 then jW � V = k ◦ i , where k is an iteration of N by normal measures only. A
natural question in view of this result is whether for every W ∈ V [G ] there exists
N, κN ⊆ N such that M is obtained from it by iterating normal measures only.
We do not know the answer in general. However, it turns out to be an affirmative
provided some anti large cardinal assumptions and V = K.

Proposition 3.9. Assume ¬0¶ and V = K.
Let U be a normal ultrafilter over κ and Δ ⊆ κ be a set of measurable cardinals

which is not in U. Force with an Easton support iteration P of the Prikry forcings over
Δ. Let G ⊆ P be a generic.

Suppose that, in V [G ], there is a normal ultrafilter W which extends U.
Then there are N, i : V → N which satisfy the conditions of Theorem 1.1 such that

jW � V = k ◦ i and k is formed by iterating normal measures only, starting from N.

Proof. As in Section 3.1, we analyze j := jW � K.
By elementarity, j : K → (K)MW andMW is a generic extension of (K)MW by an

Easton support iteration of Prikry forcings with normal measures in j(Δ).
Since V = K is the core model, j is an iterated ultrapower of K by its measures

and extenders (see [13]). Recall thatW ∩ K = U , and so,U = {A ⊆ κ | A ∈ V, κ ∈
jW (A)}. So, this iterated ultrapower starts either with U or with an extender F such
that U = {X ⊆ κ : κ ∈ jF (X )}.

Note thatMF must be closed under κ-sequences. Otherwise, there will be a set of
ordinals a, |a| < κ which consists of generators and which is not inMF . The further
Easton support iteration of Prikry forcings will not be able to add such a. Thus, by
our assumption, the length of F must be below the first measurable cardinal above κ
inMF . The iteration of Prikry forcings above κ does not add new bounded subsets
below the first measurable > κ.

By the same reason, extenders used to continue the iteration must be κ-closed.
None of them can be used infinitely many times (or infinitely many extenders

cannot be used), since otherwise, �-sequences which cannot be added by an Easton
support iteration of Prikry forcings, will be produced. It follows from the strong
Prikry condition of the forcing, which can be shown for the relevant parts as in Ben
Neria [2].

This leaves us with a finite iteration by κ-closed extenders (measures).
It is the first part of the iteration.
The rest consists of an iteration of normal measures, each of them is applied

�-many times.
Take N to be the first part of the iteration and i : K → N be the corresponding

embedding. �

§4. Properties of k. We continue and use the notations of Theorem 1.1. We first
state the following lemma.
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Lemma 4.1. Assume that 2κ = κ+. Let P = Pκ be an Easton support iteration of
Prikry-type forcings, and i : V → N , Δ ⊆ κ,U ∈ V ,W ∈ V [G ] and k : N →M be
as in Section 2.

Assume that there are no elements in
(
κ, crit(k)) ∩ i(Δ). Then crit(k) ∈ i(Δ),

namely, it is the least element above κ in i (Δ).

Remark 4.2. The assumption
(
κ, crit(k)) ∩ i(Δ) = ∅ holds in the typical case

where P = Pκ is an iteration of Prikry forcings. Indeed, denote � = crit(k), and
assume, by contradiction, that there exists � ∈ (κ, �) ∩ i(Δ). Then � = k (�), and
thus in M

[
jW (G)

]
, � changes cofinality to �. Therefore, in V [G ], cf (�) = �.

Since P preserves cofinalities above κ, it follows that in V , cf (�) ≤ κ. The sequence
witnessing this belongs to V ∩ (κN ) and thus, by our assumption on N , belongs
already to N . This contradicts the measurability of � in N .

Proof. Denote � = crit (k). Then for some h ∈ V and κ = �0 < �1 < ··· < �k ,

� = i(h) (κ, �1, ... , �k) .

By the definition of k, � > κ.
We first prove that � ∈ i (Δ). Assume otherwise. We can assume without loss of

generality that for every 	, �1, ... , �k below κ, h (	, �1, ... , �k) > 	 does not belongs to
Δ: this can be assumed by replacing the function h with the function h′ : [κ]k+1 → κ
defined as follows: For every 	, �1, ... , �k , h′ (	, �1, ... , �k) equals h (	, �1, ... , �k) if
h (	, �1, ... , �k) > 	 is not measurable in V ; and else, h′ (	, �1, ... , �k) is an arbitrary
non-measurable above 	. By our assumption,

i (h) (κ, �1, ... , �k) = i (h′) (κ, �1, ... , �k)

so we can replace h with h′. Since � is regular (as a critical point of an elementary
embedding), we can assume, using a similar argument, that each h (	, �1, ... , �k) is
regular.

We can assume that for every 	, �1, ... , �k , there are no elements of Δ in the interval
(	, h (	, �1, ... , �k)).

Let f ∈ V [G ] be a function such that [f]W = �. Then

[f]W = � < k(�) = jW (h)

(
κ, �[

f�1

]
W

, ... , �[
f�k

]
W

)
.

By the definition ofW , there exist p ∈ G and r ∈ H such that

p�r � i(f∼)(κ) < i(h)
(
κ, �

i
(
f�1

)
(κ)
, ... , �

i
(
f�k

)
(κ)

)
.

Recall that, for every 1 ≤ i ≤ k, there exists a condition inH forcing that �
i
(
f�i

)
(κ)

=

�i . Thus by extending r inside H ,

p�r � i(f∼)(κ) < i(h) (κ, �1, ... , �k) .

Since there are no measurables of N in the interval
(
κ, i(h) (κ, �0, ... , �k)

]
, we can

find r′ ≥∗ r insideH such that

p � ∃α < i(h) (κ, �1, ... , �k) , r′ � i(f)(κ) < α,
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and since P = Pκ is κ-c.c. and i(h) (κ, �1, ... , �k) is regular, there exists α <
i(h) (κ, �1, ... , �k) such that

p�r′ � i(f∼)(κ) < α.

Now apply k on both sides. By Lemma 2.18,

M
[
jW (G)

]
� � = [f]W < k (α)

but α < i(h) (κ, �1, ... , �k) = � and thus � < k(α) = α < �, which is a contradic-
tion. �

Remark 4.3. Assume thatP = Pκ is an iteration of the one-point Prikry forcings.
A one-point Prikry forcing on a measurable α is a forcing, which depends on a
normal measure U on α, and is defined as follows: Conditions are of the form A
where A ∈ U or 	 for some ordinal 	 < α. The latter kind of condition cannot be
extended. A condition of the form A for A ∈ U can be extended in two ways: A
direct extension is a condition B where B ∈ U and B ⊆ A; a non-direct extension
is of the form 	 where 	 ∈ A is an ordinal.

We argue that in this case, the question of whether
(
κ, crit(k)) ∩ i(Δ) �= ∅, and,

as a result, the value of crit(k), depend on the choice of H :
1. Denote by � the first element above κ in i(Δ). Assume first that H is chosen

such that the condition on coordinate � is a measure one set. In this case,
� = crit(k). Indeed, crit(k) < � cannot hold, since then

(
κ, crit(k)) ∩ i(Δ) = ∅

which implies, by the last lemma, that� = crit(k). And� < crit(k) cannot hold
since then k(�) = �; in this case, denote by �0 < � the one point added below
� in jW (G). Then H at coordinate � has a condition which is incompatible
with �0 (by shrinking the large set and applying a density argument), which is
a contradiction. Thus � = crit(k).

2. Denote now by � the least element in i(Δ), for which H does not specify
the one-point element added to it. We argue that crit(k) = �, even though �
doesn’t have to be the least element above κ in i(Δ).

Repeat the proof of the last lemma, and note that the ≤∗ forcing in the
interval (κ, �) is trivial, since no condition in this interval can be non-trivially
extended. This replaces the assumption that there are no elements of i (Δ) in
the interval

(
κ, i(h) (κ, �1, ... , �k)). Therefore, � = crit(k).

Let us deal here with an Easton support iteration P of the Prikry forcings over a
set Δ of a measurable length κ. Let U be a normal ultrafilter over κ in V with Δ �∈ U .
Let G ⊆ P be a generic and W be a normal ultrafilter in V [G ] which extends U.

Let i : V → N be an elementary embedding as in Theorem 1.1, and assume that
W = UH and k : N →M are as in Lemma 2.15.

In the setting of iteration of Prikry forcings, much more can be said about the
embedding k : N →M . From Remark 4.2, it follows that crit(k) is the least element
in i(Δ) above κ. In particular, by elementarity, k(�) ∈ jW (Δ) in M , and thus a
Prikry sequence is added to k(�) in jW (G).

Lemma 4.4. Denote � = crit(k). Then � appears in the Prikry sequence of k(�).

Remark 4.5. � is not necessarily the first element in the Prikry sequence of k(�).
The initial segment of this Prikry sequence below � depends on the choice of H .
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For every finite sequence t ∈ [�]<� , we can choose H ⊆ i(P) \ κ such that t is an
initial segment of the Prikry sequence of �. This way, in M

[
jW (G)

]
, t will be an

initial segment of the Prikry sequence of k(�) below �.

Proof. Let t be the finite initial segment of the Prikry sequence of k(�) below
�, and assume that 〈	, �1, ... , �l 〉 �→ t(	, �1, ... , �l ) is a function in V , such that

t = i
(
〈	, �1, ... , �l 〉 �→ t(	, �1, ... , �l )) (κ, �1, ... , �l )

for some generators �1, ... , �l of i . For every 	 < κ, let s(	) = min{Δ \ (	 + 1)}, so[
	 �→ s(	)

]
W

= �. In V [G ], define, for every 	 < κ,

�(	) = the first element above t
(
	, �f�1 (	), ... , �f�k (	)

)
in the Prikry sequence of s(	)

and, if t
(
	, �f�1 (	), ... , �f�k (	)

)
is not an initial segment of the Prikry sequence of

s(	), set � (	) = 0.
It suffices to prove that

[
	 �→ �(	)

]
W

= �.
Assume first that � < �. Work in N [G ]. Since H is ≤∗-generic, it meets an

element q ∈ i(P) \ κ, for which Aq� ⊆ � \ (� + 1). Since q ∈ H , we can assume
that tq� is an initial segment of t: Indeed, t, tq� are compatible sequences, since,
for any p ∈ G which forces that q ∈ H and decides the value of tq�, the condition
k (p�q) = p�k(q) belongs to jW (G), and decides an initial segment, below �, of
the Prikry sequence of k(�). By our assumption, this initial segment is contained
in t, and p�k(q) forces that every possible extension of it is above �. Thus, in
M
[
jW (G)

]
, each element in the Prikry sequence of k(�) after t is strictly above �.

The argument given in the previous paragraph also shows that for every q ∈ H , tq�
is either empty or equals to t: As mentioned, it must be an initial segment of t. Let us
argue that if it is proper, then it is empty. Apply the above paragraph for � = max(t).
Then by direct extending q insideH , it forces that the element after tq� in the Prikry
sequence of � is strictly above �. By applying k : N →M , there exists a condition
in jW (G) which forces that the Prikry sequence of k(�) has an initial segment tq�,
followed only by elements above �. So tq� cannot be a proper initial segment of t.

Assume now that � <
[
	 �→ �(	)

]
W

. Write � = [f]W and assume that for every
	 < κ,

f(	) < �(	) < s(	).

Let p ∈ G be a condition which forces this. Work in N [G ]. Take q ∈ H such that
tq� = t. Then i(p)�q = p�q forces that i(f∼)(κ) is below the first element above t in
the Prikry sequence of �. Thus, its value can be decided by taking a direct extension.
So, by direct extending q inside H we can assume that

p � ∃α < �, q � i (f∼) (κ) < α,

and thus there exists α < � in V , such that

p�q � i(f)(κ) < α.

Thus, inM
[
jW (G)

]
, � = jW (f)(κ) < k(α) = α < �, as desired. �

In the next subsection we will decompose the embedding k to an iterated
ultrapower of N . We now demonstrate the first step in the iteration:
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Lemma 4.6. Let � = crit(k) and let U� = {X ⊆ � : � ∈ k(X )} ∩N . Then U� ∈
N .

Proof. For every 	 < κ, denote byW	 the measure inV
[
G	
]

used to singularize
	 in the Prikry forcing at stage 	 in the iteration. Let U	 =W	 ∩ V . We first argue
that there exists a set F ∈ N of measures on �, with |F| < �, such that, for some
p ∈ G and q ∈ H ,

p�q � i (	 �→ U∼	) (�) ∈ F . (1)

Indeed, let α∼ be a jU (P)-name for the index of i (	 �→ U∼	) (�) in a prescribed well
order of the normal measures � carries in N . Work in N [G ]. For some q ∈ H ,
there exists an ordinal � such that q � α∼ = � . Thus, by κ – c.c. of the forcing
i(P)� = Pκ, there exist p ∈ G and a set S ⊆ 22� of ordinals with |S| < �, such that
p�q � α∼ ∈ S. In particular, p�q forces that i (	 �→ U∼	) (�) belongs to F , where F
is the set of measures on � indexed in S.

Now apply k on equation (1), and work inM
[
jW (G)

]
. Since |F| < �, it follows

that there exists a measure F ∈ F such that

jW (	 �→ U	) (k (�)) = k (F )

so it suffices to argue that F = {X ⊆ � : � ∈ k(X )} ∩N . Fix X ∈ F . Write X =
i(g) (κ, �0, ... , �k). Then

jW (g)
(
κ, �[

f�1

]
W

, ... , �[
f�k

]
W

)
∈ jW (	 �→ U	)

(
k(�)) .

Recall the function 	 �→ s(	) = min (Δ \ (	 + 1)), for which
[
	 �→ s(	)

]
W

= k(�).
We can assume that for every 	 < κ,

g
(
	, �f�1 (	), ... , �f�k (	)

)
∈ Us(	)

and let p ∈ G be a condition which forces this. Then for strong enough q ∈ H ,

p�q � i(g) (κ, �1, ... , �k) ∈ i (	 �→ U∼	) (�) ,

and thus by direct extending q further, we can assume that q forces that the first
element after t in the Prikry sequence of � belongs to i(g) (κ, �1, ... , �k) = X . Thus
k(q) ∈ jW (G) forces that the first element after t in the Prikry sequence of k(�)
belongs to k(X ). By the previous lemma, it follows that � ∈ k(X ), as desired. �

4.1. Description of jW � V . We now generalize the previous subsection, in order
to completely decompose jW � V . We continue to assume the hypotheses of
Theorem 1.1, and also that P = Pκ is an iteration of Prikry forcings. For technical
reasons, we will assume that the measures used in the iterationP = Pκ to singularize
the measurables in Δ are all simply generated; this is needed only in the proof of
Claim 6 which will be presented in the next subsection.

At each stage α ∈ Δ, let Q
∼α

be the Pα-name for the Prikry forcing on α, using
a simply generated normal measure W∼ α on α. Denote U∼α =W∼ α ∩ V ∈ V . Let
H∼α ⊆ (jU∼α (Pα) \ α,≤∗), H∼α ∈ V [Gα], be ≤∗-generic over MU∼α [Gα], such that
W∼ α = (U∼α)H∼α .

Let G ⊆ Pκ be generic over V .
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Our goal is to prove the following theorem:

Theorem 4.7. Assume the hypotheses of Theorem 1.1. LetH ∈ V [G ] be a generic
set for 〈i(P) \ κ,≤∗〉 which satisfies (∗). LetW = UH be the corresponding normal
measure on κ extending U , and denote its ultrapower embedding jW : V [G ] →
M
[
jW (G)

]
	 Ult (V [G ] ,W ) for some model M . Factor jW � V to the form

jW � V = k ◦ i for some elementary k : N →M , as in Theorem 1.1.
Assume thatP is an Easton support iteration, where at each step � ∈ Δ,Q

∼�
is forced

to be Prikry forcing with a simply generated normal measure on � .
Then k is an iterated ultrapower of N by normal measures and jW (κ) = i(κ).
Furthermore, if W itself is simply generated, than jW � V = k ◦ jU is an iterated

ultrapower with normal measures only, and jW (κ) = jU (κ).

This, in contrast to full-support and nonstationary-support iterations of Prikry
forcings, where, assuming GCH≤κ, jW � V is an iteration ofV by normal measures
only, for every normal measureW ∈ V [G ].

Throughout this section, we fix the notation mentioned in the formulation of
the theorem. Let H ∈ V [G ] be a generic for 〈i(P) \ κ,≤∗〉 over N [G ] with the
property (∗). In the case where i = jU andN =MU , any generic for 〈i(P) \ κ〉,≤∗〉
is such. Let W = UH ∈ V [G ] be the corresponding normal measure on κ. Let
jW : V [G ] →M

[
jW (G)

]
be the corresponding ultrapower embedding.

Denote byB ⊆
(
κ, i(κ)) the set of generators of i . By property (∗) ofH , for every

� ∈ B , there exists a function f� in V such that H forces that � = �i(f)(κ). The
mapping � �→ f� is available in V [G ].

Recall the embedding k : N →M defined in Lemma 2.15:

k
(
i(f) (κ, �1, ... , �k)) = jW (f)

(
κ, �[

f�1

]
W

, ... , �[
f�k

]
W

)

for every f ∈ V and �1, ... , �k ∈ B . Then k is elementary, crit(k) > κ and jW �
V = k ◦ i .

Denote κ∗ = i(κ). Define by induction a linearly directed system 〈〈Mα : α ≤
κ∗〉, 〈jα,� : α < � ≤ κ∗〉〉 such that:

1. M0 = N , j0 = i .
2. Successor Step: Assume thatα < κ∗ andMα has been defined. We will define an

elementary embedding kα : Mα →M , such that jW � V = kα ◦ jα . We denote
�α = crit (kα) and define

U�α = {X ⊆ �α : �α ∈ kα(X )} ∩Mα.

We will prove that U�α ∈Mα and take Mα+1 	 Ult
(
Mα,U�α ). We also

take jα,α+1 : Mα →Mα+1 to be the ultrapower embedding jMαU�α , and jα+1 =
jα,α+1 ◦ jα .

3. Limit Step: For every limit α ≤ κ∗, the system 〈M� : � < α〉, 〈j�,� : � < � < α〉
is linearly directed, and we take direct limit to form the model Mα and the
embedding jα : V →Mα .
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For every α < κ∗, define kα : Mα →M as follows:

kα
(
jα (f)

(
κ, j0,α(�1), ... , j0,α (�l ) , �α1 , ... , �αk

))
= jW (f)

(
κ, �[

f�1

]
W

, ... , �[
f�l

]
W

, �α1 , ... , �αk

)

for every f ∈ V , �1, ... , �l generators of i and α1 < ··· < αk < α.
Our goal is to prove by induction on α < κ∗ the following properties:
(A) kα : Mα →M is an elementary embedding, and jW � V = kα ◦ jα .
(B) �α is measurable inMα . Moreover, it is the least measurable in jα (Δ), which

is greater or equal to sup{�� : � < α}, and whose cofinality is above κ in V .
(C) ��α appears in the Prikry sequence of kα (�α).
(D) Let U�α be defined in V [G ] as above. Then U�α ∈Mα is a normal measure

which concentrates on �α \ jα (Δ). Moreover,

kα
(
U�α ) = jW (� �→ U�) (kα (�α)) ,

where, for every � ∈ Δ, U� =W� ∩ V , forW� which is the measure used in
the Prikry forcing at stage � in the iteration P.

After that, we will prove in Lemma 4.20, that kκ∗ : Mκ∗ →M is the identity, and
thus jW � V = jκ∗ . This will conclude the proof of Theorem 4.7.

Remark 4.8. We remark thatkα is well-defined in the sense that there is noα′ < α
and generator � of i , for which j0,α(�) = �α′ . Indeed, assume otherwise. Note that
�α′ = j0,α (�) ≥ j0,α′(�). Strict inequality is not possible here, since if j0,α′(�) < �α′
then j0,α′(�) = j0,α(�) = �α′ , which is a contradiction. Thus, j0,α′ (�) = �α′ (which
is, by itself, possible for α′ < α - see Remark 4.9), but then, applying jα′,α on both
sides, we get

j0,α(�) = jα′,α (�α′) > �α′ ,

where the last inequality follows since �α′ = crit (jα′,α).

Remark 4.9. It is possible that a generator � of i is measurable inN and belongs
to i(Δ). In this case, there exists α < κ∗ such that �α = � = j0,α(�). Such � will
appear as an element in the Prikry sequence of kα (�) ∈ jW (Δ), which also has the
form �[f� ]W

.

Properties (A) – (D) of kα , presented above, will be proved by induction on α <
κ∗. The proof of the inductive step at stage α < κ∗ will be carried out in Section 4.3,
using the tools presented in [7] and [9]. Fixing α < κ∗, we can assume by induction
that kα′ : Mα′ →M and �α′ , U�α′ , for α′ < α, satisfy properties (A) – (D). Denote
by tα′ the initial segment of the Prikry sequence of kα′ (�α′) below �α′ .

Definition 4.10. Fix α < κ∗ and a sequence of generators 〈�1, ... , �l 〉 for i . An
increasing sequence 〈α1, ... , αk〉 below α is called a 〈�1, ... , �l 〉-nice sequence if there
are functions g1, ... , gk, t1, ... , tk in V, such that

�α1 = jα1 (g1)
(
κ, j0,α1 (�1) , ... , j0,α1 (�l )

)
,

tα1 = jα1

(
tα1

) (
κ, j0,α1 (�1) , ... , j0,α1 (�l )

)
,

U�α1
= jα1 (F1)

(
κ, j0,α1 (�1) , ... , j0,α1 (�l )

)
,
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and, for every 1 ≤ i < k,

�αi+1 = jαi+1 (gi+1)
(
κ, j0,α1 (�1) , ... , j0,α1 (�l ) , �α1 , ... , �αi

)
,

tαi+1 = jαi+1 (ti+1)
(
κ, j0,α1 (�1) , ... , j0,α1 (�l ) , �α1 , ... , �αi

)
,

U�αi+1
= jαi+1 (Fi+1)

(
κ, j0,α1 (�1) , ... , j0,α1 (�l ) , �α1 , ... , �αi

)
.

Fix now α < κ∗. Assume by induction that properties (A) – (D) above hold for
every α′ < α. Fix also a sequence of generators 〈�1, ... , �l 〉 for i , and a 〈�1, ... , �l 〉-
nice sequence 〈α1, ... , αk〉 below α. We define, inV [G ], functions which can be used
to represent �αi , tαi , Uαi . Assume that �αi is the ni th element in the Prikry sequence
of kαi

(
�αi
)
.

First, set

�α1(	) = the n1th element in the Prikry sequence of g1(	, �f�1 (	), ... , �f�l (	)
).

By induction, define, for every i < k,

�αi+1(	) =the (ni+1)th element in the Prikry sequence of

gi+1(	, �f�1 (	), ... , �f�l (	)
, �α1(	), ... , �αi (	))

and U�αi (	) =W�αi (	) ∩ V . Here, given � ∈ Δ,W� is the measure on � used in the
Prikry forcing which was applied at stage � in the iteration.

Claim 5.

[
	 �→ �αi (	)

]
W

= �αi and
[
	 �→ U�αi (	)

]
W

= kαi
(
U�αi

)
.

Proof. We begin by proving that
[
	 �→ �αi (	)

]
W

= �αi . We present the
argument for i = 1. Higher values of i ≤ k are proved similarly, using induction.
Recall that

�α1 = jα1 (g1) (κ, j0,α1 (�1) , ... , j0,α1 (�l ))

and by applying kα1 on both sides,

kα1

(
�α1

)
= jW (g1) (κ, �[

f�1
(	)
]
W

, ... , �[
f�l

(	)
]
W

).

By induction, �α1 is the n1th element in the Prikry sequence of kα1

(
�α1

)
, and thus it

is represented as the n1th element in the Prikry sequence of g1

(
	, �f�1 (	), ... , �f�l (	)

)
.

As for
[
	 �→ U�αi (	)

]
W

= kαi
(
U�αi

)
, this follows since, by induction,

kαi

(
U�αi

)
= jW (� �→ U�)

(
kαi
(
�αi
))
. �

Let us argue that kα : Mα →M is elementary.

Lemma 4.11. kα : Mα →M is elementary.

Proof. Assume that x, y ∈Mα , and let us prove, for example, that x ∈ y if and
only if k(x) ∈ k(y). Let f, g ∈ V , �1, ... , �l and α1 < ··· < αk < α be such that
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x = jα(f)
(
κ, j0,α (�1) , ... , j0,α (�l ) , �α1 , ... , �αk

)
,

y = jα(g)
(
κ, j0,α (�1) , ... , j0,α (�l ) , �α1 , ... , �αk

)
.

Assume that α = α′ + 1 is successor (the limit case is simpler). For simplicity, we
assume also that αk = α′. Then x ∈ y if and only if

�α′ ∈ jα′,α
(
{	 < �α′ : jα′(f)

(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
∈

jα′(g)
(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
}
)
,

which is equivalent to

{	 < �α′ : jα′(f)
(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
∈

jα′(g)
(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
} ∈ U�α′

which, by the definition of U�α′ , is equivalent to

�α′ ∈ kα′
(
{	 < �α′ : jα′(f)

(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
∈

jα′(g)
(
κ, j0,α′(�1), ... , j0,α′(�l ), �α1 , ... , �αk–1 , 	

)
}
)
,

namely kα(x) ∈ kα(y). �
Let us describe now the main ideas behind the proof that �α = crit (kα) is

measurable inMα . Note that this is not trivial since kα : Mα →M is not definable in
Mα . The full argument will be presented in Lemma 4.17, but will require a technical
theorem (Theorem 4.12). Mainly we would like to follow the methods developed
in [7] and [9], which deal with nonstationary and full support iterations of Prikry
forcings, respectively.

We consider the function f ∈ V [G ], for which �α = [f]W . We will prove that if
�α is not measurable inMα , then �α = [f]W ∈ Im (kα), contradicting the fact that
�α = crit (kα). For that, we first fix a function h ∈ V such that, for some sequence
�1, ... , �l of generators of i , and for some nice sequence 〈α1, ... , αk〉 below α,

�α = jα (h)
(
κ, j0,α (�1) , ... , j0,α (�l ) , �α1 , ... , �αk

)
since �α = crit (kα), we can assume that for every 	 < κ,

f(	) < h
(
	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)
.

Pick a condition p ∈ G which forces this. For every 	 < κ, �� = 〈�1, ... , �l 〉 and
�� = 〈�1, ... , �k〉, denote

e (	, ��, ��) = {r ∈ P \ �k : there exists a bounded subset A ⊆ h (	, ��, ��) such that

r � f∼(	) ∈ A}.
This set is ≤∗-dense open above conditions which extend p and force that

〈�f�1 (	), ... , �f�l (	)
, �α1(	), ... , �αk (	)〉 = 〈��, ��〉. (2)

We would like to follow [7] and [9], and construct a condition p∗ ∈ G above p, such
that, very roughly6, for every 	, ��, �� as above, and for every extension r of p∗ which

6We omitted some of the details in the version described here, for sake of simplicity.
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forces (2),

r � �k � r\�k ∈ e (	, ��, ��) .
Essentially, such p∗ will have the following property: every extension r of it which
forces that equation (2) holds, forces also that f (	) belongs to a bounded subset
A (	, ��, ��) ⊆ h (	, ��, ��) (which depends only on p∗ and 〈	, ��, ��〉, and not on the
choice of the extension of p∗ which forces (2)). In [7] and [9] the construction of
such p∗ was done by a Fusion argument which allows, in a sense, to absorb a lot
of data into a single direct extension p∗ of p. Such a method is not available in
the Easton support iteration. We bypass this problem by constructing, for every
sequence 〈	, �1, ... , �l 〉, a system of non-direct extensions of p,

〈p (	, �1, ... , �l , �1, ... , �k) : �1 < ··· < �k < κ〉
and sets

〈A (	, �1, ... , �l , �1, ... , �k) : �1 < ··· < �k < κ〉
such that the following properties hold:

1. If p (	, �1, ... , �l , �1, ... , �k) forces (2), then it also forces thatf∼(	) ∈ A (	, ��, ��),
which is a bounded subset of h (	, ��, ��).

2. For a set of 	-s inW , p
(
	, �f�1 (	), ... , �f�l (	)

, �α1 (	), ... , �αk (	)
)

belongs to G.

This suffices, since, by combining the above properties,

V [G ] � {	 < κ : f (	) ∈ A
(
	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)
} ∈W,

and thus, inM
[
jW (G)

]
,

�α = [f]W ∈
[
	 �→ A

(
	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)]
W

= kα ( jα (〈	, ��, ��〉 �→ A (	, ��, ��)) (κ, �1, ... , �l , �1, ... , �k) ) ⊆ Im (kα) ,

where the last inclusion follows since jα (〈	, ��, ��〉 �→ A (	, ��, ��)) (κ, �1, ... , �l , �1, ... ,
�k) is a bounded subset of �α = jα (h)

(
κ, �1, ... , �l , �α1 , ... , �αk

)
.

We will complete the missing details in the proof in Lemma 4.17. Before that, we
present the proof of Theorem 4.12.

4.2. Theorem 4.12 and its proof. We devote this subsection to the proof of the
following theorem:

Theorem 4.12. Let p ∈ G be a condition. Assume that for every increasing
sequence 〈	, �1, ... , �k〉, and for every �� = 〈�1, ... , �l 〉 above 	, the set

e (	, �1, ... , �l , �1, ... , �k) ⊆ P \ �k
is ≤∗-dense open above conditions in P \ �k which force that

〈�1, ... , �l , �1, ... , �k〉 = 〈�f�1 (	), ... , �f�l (	)
, �α1(	), ... , �αk (	)〉.

Then there are s < �, a new sequence of generators � ′l , ... , �
′
s of i which contains

�1, ... , �l , and a system of extensions of p,

〈p (	, �1, ... , �s , �1, ... , �k) : �1, ... , �s < κ, �1 < ··· < �k < κ〉
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with the following properties:

1. There exists a set of 	-s inW for which

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
\ �αk (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
.

2. There exists a set of 	-s inW for which

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
∈ G.

(Intuitively, for the majority of values of 〈	, �1, ... , �s , �1, ... , �k〉, the condition
p (	, �1, ... , �s , �1, ... , �k) which we will construct, forces that

〈�f�1 (	), ... , �f�s (	), �α1(	), ... , �αk (	)〉 = 〈�1, ... , �s , �1, ... , �k〉

and its final segment belongs to e (	, �1, ... , �s , �1, ... , �k).)

Remark 4.13. When we extend a sequence of generators 〈�1, ... , �l 〉 to a sequence
〈� ′1, ... , � ′s〉 we will naturally identify the set e (	, �1, ... , �l ), with

e′ (	, �1, ... , �s) = e
(
	, �i1 , ... , �il

)
,

where ij is the index for which � ′ij = �j , for every 1 ≤ j ≤ l .
Similarly, whenever a function g ∈ V is given, whose variables are 	, �1, ... , �l ,

�1, ... , �k , we abuse the notation and denote g (	, �1, ... , �s , �1, ... , �k) to mean
g
(
	, �i1 , ... , �il , �1, ... , �k

)
.

The proof of Theorem 4.12 goes by generalizing the given sets e
(
	, �1, ... , �l , �1, ... ,

�k
)
:

Definition 4.14. For every �1, ... , �l < κ, 1 ≤ i ≤ k and an increasing sequence
〈	, �1, ... , �i〉, we define a set e (	, �1, ... , �l , �1, ... , �i) ⊆ P \ �i .

We provide the definition by inverse induction, namely, first define the above
set for i = k; then, given i < k and a sequence 〈	, �1, ... , �l , �1, ... , �i〉, and,
under the assumption that e (	, �1, ... , �l , �1, ... , �i , �) is defined for every � <
gi+1 (	, �1, ... , �l , �1, ... , �i), we provide the definition of e (	, �1, ... , �l , �1, ... , �i).

For i = k, the set e (	, �1, ... , �l , �1, ... , �k) is given in the formulation of the
theorem.

Assume that 1 ≤ i < k. Assume that for every � < gi+1 (	, �1, ... , �l , �1, ... , �i), the
set e (	, �1, ... , �l , �1, ... , �i , �) is defined. Denote gi+1 = gi+1 (	, �1, ... , �l , �1, ... , �i).
Let us define the set e (	, �1, ... , �l , �1, ... , �i), as follows: A condition q ∈ P \ �i
belongs to e (	, �1, ... , �l , �1, ... , �i) if and only if the following properties hold:

1. (A technical requirement) q � gi+1 decides the statements

Fi+1 (	, �1, ... , �l , �1, ... , �i) =W∼ gi+1 ∩ V , t
q
gi+1

= ti+1 (	, �1, ... , �l , �1, ... , �i) .
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Also, if q � gi+1 decides that tqgi+1 �= ti+1 (	, �1, ... , �l , �1, ... , �i), it also
decides whether one of the sequences is an initial segment of the other,
and if so, which one it is. Finally, if it forces that tqgi+1 is a strict initial
segment of ti+1 (	, �1, ... , �l , �1, ... , �i), it also forces that Aqgi+1 ⊆ gi+1 \
max (ti+1 (	, �1, ... , �l , �1, ... , �i)).

2. (The essential requirement) If both statements in the technical requirement are
decided positively, there exists a sequence

〈 q (�) : � < gi+1 (	, �1, ... , �l , �1, ... , �i) 〉

such that, for every � < gi+1 (	, �1, ... , �l , �1, ... , �i) above �i , q(�) ∈ P \ �
extends q \ �, and

q � if �∼αi+1 (	) = �, then q(�) ∈ G \ � and q(�) ∈ e (	, �1, ... , �l , �1, ... , �i , �) .

For sake of clearness, we explicitly define e (	, �1, ... , �l ), assuming that
e (	, �1, ... , �l , �) is already defined for every � < g1 (	, �1, ... , �l ). Let e (	, �1, ... , �l )
be the set of conditions q ∈ P \ 	 which decide whether F1 (	, �1, ... , �l ) =
Wg1(	,�1,...,�l ) ∩ V , t1 (	, �1, ... , �l ) = tq

g1(	,�1,...,�l )
, and, assuming that it is decided

positively, have a system of extensions

〈q (�) : � < g1 (	, �1, ... , �l )〉

such that, for every � < g1 (	, �1, ... , �l ), q(�) ∈ P \ �, and

q � if �∼α1(	) = � then q(�) ∈ G \ � and q(�) ∈ e (	, �1, ... , �l , �) .

If it is decided negatively, then q � g1 knows how to compare tqg1 and t1 (	, �1, ... , �l )
as in the second point above.

By induction, we will argue that for every i ≤ k and 	, �1, ... , �l , �1, ... , �i , the set
e (	, �1, ... , �l , �1, ... , �i) ⊆ P \ �i is ≤∗-dense open above conditions q ∈ P \ �i for
which

q � 〈�f�1 (	), ... , �f�l (	)
, �∼α1(	), ... , �∼αi (	)〉 = 〈�1, ... , �l , �1, ... , �i〉, and for

every 1 ≤ j ≤ i, Fj+1 (	, �1, ... , �l , �1, ... , �j) =W∼ gj+1(	,�1,...,�l ,�1,...,�j) and

tj+1 (	, �1, ... , �l , �1, ... , �j) = tq
gj+1(	,�1,...,�l ,�1,...,�i )

.

The induction will be inverse: The basis, for i = k, is true, as it is known that the
set e (	, �1, ... , �l , �1, ... , �k) ⊆ P \ �k is ≤∗-dense open above conditions q ∈ P \ �k
which force that

〈�f�1 (	), ... , �f�l (	)
, �∼α1(	), ... , �∼αk (	)〉 = 〈�1, ... , �l , �1, ... , �k〉.

The inductive step is given in the following lemma:

Lemma 4.15. Fix �1, ... , �l < κ, 1 ≤ i < k and an increasing sequence
〈	, �1, ... , �i〉. Denote gi+1 = gi+1 (	, �1, ... , �l , �1, ... , �i). Assume that for every
� ∈ (�i , gi+1), the set

e (	, �1, ... , �l , �1, ... , �i , �) ⊆ P \ �
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is ≤∗-dense open above conditions q ∈ P \ � for which

q � 〈�f�1 (	), ... , �f�l (	)
, �∼α1(	), ... , �∼αi (	), �∼αi+1(	)〉 = 〈�1, ... , �l , �1, ... , �i , �〉, and

for every 1 ≤ j ≤ i + 1, Fj+1 (	, �1, ... , �l , �1, ... , �j) =W∼ gj+1(	,�1,...,�l ,�1,...,�j)
and tj+1 (	, �1, ... , �l , �1, ... , �j) = tq

gj+1(	,�1,...,�l ,�1,...,�i )
.

Then e (	, �1, ... , �l , �1, ... , �i) is ≤∗-dense open above conditions q ∈ P \ �i for which

q � 〈�f�1 (	), ... , �f�l (	)
, �∼α1(	), ... , �∼αi (	)〉 = 〈�1, ... , �l , �1, ... , �i〉, and for

every 1 ≤ j ≤ i, Fj+1 (	, �1, ... , �l , �1, ... , �j) =W∼ gj+1(	,�1,...,�l ,�1,...,�j) and

tj+1 (	, �1, ... , �l , �1, ... , �j) = tq
gj+1(	,�1,...,�l ,�1,...,�i )

.

Proof. Let q ∈ P \ �i be a condition which forces that

�f�1 (	), ... , �f�l (	)
, �∼1(	), ... , �∼i(	)〉 = 〈�1, ... , �l , �1, ... , �i〉

and for every 1 ≤ j ≤ i, Fj+1 (	, �1, ... , �l , �1, ... , �j) =W∼ gj+1(	,�1,...,�l ,�1,...,�j)
and tj+1 (	, �1, ... , �l , �1, ... , �j) = tq

gj+1(	,�1,...,�l ,�1,...,�i )
.

Denote

g = gi+1 (	, �1, ... , �l , �1, ... , �i) ,

Ug = Fi+1 (	, �1, ... , �l , �1, ... , �i) ,

t = ti+1 (	, �1, ... , �l , �1, ... , �i) .

Assume that q � g forces that

W∼ g ∩ V = Ug, t = t∼
q
g

(if not, we are done since q ∈ e (	, �1, ... , �l , �1, ... , �i)). Denote n = lh(t). We will
now apply the following claim:

Claim 6. Assume that p ∈ G is a condition, n < � and g ∈ Δ is measurable in V .
Assume thatUg is a normal measure on g in V , t is a finite sequence below g of length
n, and

p � t∼
q
g = t, W∼ g ∩ V = Ug.

For every � < g, assume that e (�) ⊆ P \ � is a P�-name for a subset of P \ �, which
is ≤∗-dense open above conditions which force that � is the (n + 1)th element in the
Prikry sequence of g. Then there exists a direct extension p∗ ≥∗ p and a sequence
〈p (�) : � < g〉, such that, for every � < g,

p∗ �if � appears after t in the Prikry sequence of g, then p(�) ∈ (G \ �) ∩ e(�)
and p∗ � � � p (�) ≥∗ p∗ � [�, g)�〈t�〈�〉, A∼

p∗
g \ �〉

�
p∗ \ (g + 1) .
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Proof. For every � < g, consider the set

d (�) = {r ∈ P � [�, g) : r ‖ � ∈ A∼
p
g , and if r � � ∈ A∼

p
g then

r � ∃s ≥∗ 〈t�〈�〉, A∼
p
g \ �〉�p \ (g + 1) , r�s ∈ e(�)}.

Then d (�) ⊆ P � [�, g) is ≤∗-dense open above p � [�, g). Let Hg be the Pg -name,
forced by p � g, to be the ≤∗-generic subset of jUg (Pg) \ g, for which

W∼ g = (Ug)H∼g
(such a generic exists since Wg is simply generated). Let q∼ ∈ Ult (V,Ug) be a Pg -
name, forced by p to be a condition in

[
� �→ d (�)

]
Ug

∩H∼g . Let � �→ q∼(�) ∈ P �
[�, g) be a function in V such that [� �→ q∼ (�)]Ug = q∼. Then we can assume that for
a set of �-s in Ug ,

p � � � q∼(�) ∈ d (�) (3)

and, by Lemma 2.18, p � g forces that there exists a set C∼ ∈Wg , such that for every
� ∈ C ,

p � �� q∼(�) ∈ G∼ � g.

By shrinking C if necessary, we can assume that every � ∈ C also satisfies equation
(3). Now let us define the extension p∗ ≥∗ p, and, for every � < g, the condition
p(�) ∈ P \ �. First, set

p∗ � g = p � g

and, in VP�� , set

p(�) � g = q∼(�).

Work in an arbitrary generic extension for P � g, where p∗ � g belongs. For every
� ∈ C ∩ Apg (which thus satisfies p � �� q∼(�) ∈ G � g), there exists s(�) ∈ P \ g,
s (�) ≥∗ 〈t�〈�〉, A∼

p
g \ �〉�q \ (g + 1), such that p(�) � g�s(�) ∈ e(�). Set

p∗ (g) = 〈 t∼
p
g , A∼

p
g ∩ C ∩

(
��<g, �∈C∩Apg A∼

s(�)
g

)
〉

(the definition above is carried in V [G � g], so C∼ is available there).
Let p∗ \ (g + 1) = s ( �∼), where �∼ is the (n + 1)th element in the Prikry sequence

of g. Finally, let

p (�) \ g = 〈t�〈�〉, Ap∗g \ �〉�p∗ \ (g + 1) ,

where the above definition is possible if p � ��p(�) � g � � ∈ A∼
p∗
g ; if not, let p (�) \

g be arbitrary.
This completes the definition of p∗ ≥∗ p and 〈p (�) : � < g〉. Let us prove that

for every � < g,

p∗ �if � appears after t in the Prikry sequence of g, then p(�) ∈ (G \ �) ∩ e(�)
and p∗ � � � p (�) ≥∗ p∗ � [�, g)�〈t�〈�〉, A∼

p∗
g \ �〉

�
p∗ \ (g + 1) .
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Fix � < g and let G be a generic set for P which includes p∗, such that, in V [G ],
� appears after t in the Prikry sequence of g. In particular, � ∈ C and thus q(�) ∈
G � [�, g). By the definition of p(�), and since p∗ ∈ G, q(�) ∈ G � [�, g), it follows
that p(�) ∈ G \ �, as desired. �

of Claim 6.
Apply Claim 6 with respect to the set e (	, �1, ... , �l , �1, ... , �i , �) ⊆ P \ � (recall

that 	, �1, ... , �l , �1, ... , �i are fixed), and direct extend q further, to a condition
q∗ ≥∗ q, which has a system of extensions

〈q (�) : � < g〉

as in the statement of the lemma.
It follows that, for every � < g,

q∗ � if �∼αi+1 (	) = � then q(�) ∈ G \ �i and q(�) \ � ∈ e (	, �1, ... , �l , �1, ... , �i , �) .

Therefore 〈q(�) : � < g〉 witnesses the fact that q∗ ∈ e (	, �1, ... , �l , �1, ... , �k). �

of Lemma 4.15.
We now proceed towards the proof of Theorem 4.12. We use the same notations

as in the formulation of the theorem.
By induction, the following holds: For every 	, �1, ... , �l , the set e (	, �1, ... , �l ) ⊆

P \ 	 is ≤∗-dense open above conditions q ∈ P \ 	 which force that

〈�f�1 (	), ... , �f�l (	)
〉 = 〈�1, ... , �l 〉

and that

F1 (	, �1, ... , �l ) =W∼ g1(	,�1,...,�l ) and t1 (	, �1, ... , �l ) = tq
g1(	,�1,...,�l )

.

We would like to perform another step, and move from conditions in P \ 	 to
conditions in P. This might require extending the sequence generators �1, ... , �l . We
do this in the following lemma, which concludes the proof of Theorem 4.12.

Lemma 4.16. There exists s < �, a sequence of generators 〈� ′1, ... , � ′s〉 of i which
extends 〈�1, ... , �l 〉, and a system of conditions

〈p (	, �′1, ... , �
′
s , �1, ... , �k) : �′1, ... , �

′
s < κ, 	 < �1 < ··· < �k〉

(all of them extend the condition p ∈ G given in the statement of Theorem 4.12), such
that,

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
\ �αk (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
∈ G} ∈W.
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Proof. Recall that W = UH is generated from the elementary embedding
i : V → N . Let us consider the set

i (〈	, �1, ... , �l 〉 �→ e (	, �1, ... , �l )) (κ, �1, ... , �l ) ⊆ i(P) \ κ,

it is ≤∗-dense open in i(P) \ κ, and thus meets a condition r ∈ H . Since r ∈ N ,
it can be represented using a sequence of generators 〈� ′1, ... , � ′s〉, on which we can
assume that it contains 〈�1, ... , �l 〉. Let

〈	, �′1, ... , �′s〉 �→ r (	, �′1, ... , �
′
s) ∈ P \ 	

be a function in V , such that

r = i (〈	, �′1, ... , �′s〉 �→ r (	, �′1, ... , �
′
s)) (κ, � ′1, ... , �

′
s) .

Now, for every 〈	, �′1, ... , �′s , �1, ... , �k〉, let us define the condition p
(
	, �′1, ... , �

′
s , �1,

... , �k
)
∈ P. We do this recursively, and define, for every 1 ≤ i ≤ k, a condition

p
(
	, �′1, ... , �

′
s , �1, ... , �i) ∈ P. Simultaneously, we prove that

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)

� �αi (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)
\ �αi (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)
∈ G} ∈W.

This will complete the proof of the lemma, and thus, the proof of Theorem 4.12.

• First, fix 	, �1, ... , �s , and let us define p (	, �1, ... , �s ). If p � 	 �
r (	, �1, ... , �s) ∈ e (	, �1, ... , �l ), set p (	, �1, ... , �s ) = p � 	�r (	, �1, ... , �s ).
Else, let p (	, �1, ... , �s) be an arbitrary condition above p. We argue that

{	 < κ : p � 	 � r
(
	, �f�′1

(	), ... , �f�′s (	)

)
∈ e

(
	, �f�′1

(	), ... , �f�′s (	)

)
and

p

(
	, �f�′1

(	), ... , �f�′s (	)

)
∈ G} ∈W.

Recall that r ∈ H was defined such that

p � r ∈ i (〈	, �1, ... , �l 〉 �→ e (	, �1, ... , �l )) (κ, �1, ... , �l )

applying the embedding k : N →M and reflecting down moduloW gives

{	 < κ : p � 	 � r
(
	, �f�′1

(	), ... , �f�′s (	)

)
∈ e

(
	, �f�′1

(	), ... , �f�′s (	)

)
} ∈W.

Finally, p � r ∈ H and thus p � k(r) ∈ jW (G), by Lemma 2.18. Reflecting
this down gives

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	)

)
∈ G} ∈W.
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• Fix 	, �′1, ... , �
′
s , �1 and let us define p

(
	, �′1, ... , �

′
s , �1

)
. Denote g1 =

g1
(
	, �′1, ... , �

′
s

)
.If p

(
	, �′1, ... , �

′
s

)
� 	 � p

(
	, �′1, ... , �

′
s

)
\ 	 ∈ e

(
	, �′1, ... , �

′
s

)
,

then p
(
	, �′1, ... , �

′
s

)
� 	 = p � 	 decides the statements

F1 (	, �1, ... , �l , �1, ... , �i ) =W∼ g1 ∩ V , t
q
g1 = t1 (	, �1, ... , �l , �1, ... , �i )

and, if it decides them positively, it forces that there exists a sequence 〈q(�) : � <
g1〉 witnessing this. Define

p
(
	, �′1, ... , �

′
s , �1

)
= p

(
	, �′1, ... , �

′
s

)
� �1�q(�1).

Ifp
(
	, �′1, ... , �

′
s

)
� 	�p

(
	, �′1, ... , �

′
s

)
\ 	∈e

(
	, �′1, ... , �

′
s

)
, orp

(
	, �′1, ... , �

′
s

)
�

	 � p
(
	, �′1, ... , �

′
s

)
\ 	 ∈ e

(
	, �′1, ... , �

′
s

)
but the statements

F1 (	, �1, ... , �l , �1, ... , �i ) =W∼ g1 ∩ V , t
q
g1 = t1 (	, �1, ... , �l , �1, ... , �i )

are decided negatively, let p
(
	, �′1, ... , �

′
s , �1

)
be an arbitrary condition above

p
(
	, �′1, ... , �

′
s

)
.We argue that

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)

� �α1(	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)
\ �α1(	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)
∈ G} ∈W.

First, by the previous point,

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	)

)
� 	 � p

(
	, �f�′1

(	), ... , �f�′s (	)

)
\ 	 ∈

e

(
	, �f�′1

(	), ... , �f�′s (	)

)
} ∈W.

By the properties of the set e
(
	, �f�′1

(	), ... , �f�′s (	)

)
, the condition

p

(
	, �f�′1

(	), ... , �f�′s (	)

)
� 	

decides the statements

F1

(
	, �f�′1

(	), ... , �f�′s (	)

)
=W∼ g1 ∩ V

and

t

p

(
	,�f

�′1
(	),...,�f

�′s
(	)

)
g1 = t1

(
	, �f�′1

(	), ... , �f�′s (	)

)
.
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Claim 7. For a set of 	-s inW , the above statements are decided in a positive
way.Before the proof of the claim, let us proceed with our argument. By the claim
and Definition 4.14,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)

= p
(
	, �f�′1

(	), ... , �f�′s (	)

)
� �α1 (	)

�

q
(
�α1 (	))

and, by the properties of the set e
(
	, �f�′1

(	), ... , �f�′s (	)

)
, the condition

p

(
	, �f�′1

(	), ... , �f�′s (	)

)

forces that

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	)
)

= p
(
	, �f�′1

(	), ... , �f�′s (	)

)
� �α1(	)

�

q
(
�α1(	)) ∈ G∼

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)
\ �α1(	) = q

(
�α1(	)) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	)
)
.

Thus,

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	)

)
� 	 � p

(
	, �f�′1

(	), ... , �f�′s (	)

)
\ 	 ∈

e

(
	, �f�′1

(	), ... , �f�′s (	)

)
} ∈W

which finishes the second step. Thus, it remains to prove Claim 7.

Proof. Let us prove first that{
	 < κ : p

(
	, �f�′1

(	), ... , �f�′s (	)

)
� 	 � F1

(
	, �f�′1

(	), ... , �f�′s (	)

)
=W∼ g1 ∩ V

}
.

Assume otherwise. Then inM
[
jW (G)

]
,

jW (〈	, �1, ... , �s 〉 �→ F1 (〈	, �1, ... , �s 〉))
(
κ, j0,α

(
� ′1
)
, ... , j0,α

(
� ′s
))

�=⎡
⎢⎣	 �→W

g1

(
	,�f

�′1
(	),...,�f

�′s
(	)

) ∩ V

⎤
⎥⎦
W

but both sides are equal to k1

(
U�α1

)
, contradicting property (D) of the

embedding kα1 .Now let us prove that
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{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	)

)
� 	 �

t

p

(
	,�f

�′1
(	),...,�f

�′s
(	)

)
g1 = t1

(
	, �f�′1

(	), ... , �f�′s (	)

)
}.

Assume otherwise. Then the condition s = jW

(
	 �→ p

(
	, �f�′1

(	), ... , �f�′s (	)

))
(κ) forces that

ts
kα1(�α1)

�= kα1 (tα1) = tα1 .

Note that s ∈ jW (G) � kα1 (�α1) and tα1 is the initial segment of the Prikry
sequence of kα1 (�α1) below �α1 in M

[
jW (G)

]
. Thus, one of the sequences

ts
kα1(�α1)

and tα1 is a strict initial segment of the other. By the second

requirement in Definition 4.14, s � kα1 (�α1) decides which one is an initial
segment of the other. Now this yields a contradiction:

1. If tα1 is a strict initial segment of ts
kα1(�α1)

: Recall that s = kα1(s ′), where

s ′ = jα1 (〈	, �1, ... , �s 〉 �→ p (	, �1, ... , �s ))
(
κ, j0,α1(� ′1), ... , j0,α1

(
� ′s
))
.

Then s ′ � �α1 forces that tα1 is a strict initial segment of ts
′
�α1

. Work over

Mα1 . Let � < �α1 be an ordinal, forced by s ′ � �α1 to be a bound on the
first ordinal in ts

′
�α1

\ tα1 (such a bound exists since the forcing jα1(P) �
�α1 is �α1 -c.c. in Mα1). Applying kα1 : Mα1 →M , � < �α1 is an upper
bound on the first ordinal in ts

kα1(�α1)
\ tα1 . However, inM

[
jW (G)

]
, this

element is �α1 itself, which is strictly above �. A contradiction.
2. Else, ts

kα1(�α1)
is a strict initial segment of tα1 : Denote � = max (tα1).

Then, by Definition 4.14, s forces that the initial segment of the Prikry
sequence of kα1 (�α1) is ts

kα1(�α1)
, followed by an element strictly above

�; in particular, tα1 is not an initial segment of the Prikry sequence of
kα1 (�α1) inM

[
jW (G)

]
, which is a contradiction. �

� of Claim 7.
• Assume now that 1 ≤ i < k is arbitrary, and for every 	, �′1, ... , �

′
s , �1, ... , �i , a

condition p
(
	, �′1, ... , �

′
s , �1, ... , �i

)
is defined. Denote gi+1 = gi+1

(
	, �′1, ... , �

′
s ,

�1, ... , �i
)
. For every �i+1 < gi+1, let us define the condition p

(
	, �′1, ... , �

′
s , �1,

... , �i , �i+1
)
. If p

(
	, �′1, ... , �

′
s , �1, ... , �i

)
� �i � p

(
	, �′1, ... , �

′
s , �1, ... , �i

)
\ �i ∈

e
(
	, �′1, ... , �

′
s , �1, ... , �i

)
and p

(
	, �′1, ... , �

′
s , �1, ... , �i

)
� �i forces the state-

ments

Fi+1 (	, �1, ... , �l , �1, ... , �i ) =W∼ gi+1 ∩ V , t
q
gi+1 = ti+1 (	, �1, ... , �l , �1, ... , �i )

then p
(
	, �′1, ... , �

′
s , �1, ... , �i

)
� �i forces that there exists a sequence 〈q(�) : � <

gi+1〉 witnessing this. In this case, define

p
(
	, �′1, ... , �

′
s , �1, ... , �i , �i+1

)
= p

(
	, �′1, ... , �

′
s , �1, ... , �i

)
� �i+1

�
q(�i+1).
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Else, let p
(
	, �′1, ... , �

′
s , �1, ... , �i , �i+1

)
be an arbitrary condition which extends

the condition p
(
	, �′1, ... , �

′
s , �1, ... , �i

)
.Let us argue now that

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)

� �αi+1(	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)
\ �αi+1(	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)
∈ G} ∈W.

We do this as in the previous point. First,

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)

� �αi (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)
\ �αi (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	)
)
} ∈W.

Thus, for a set of 	-s inW , the condition

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	)
)

� �αi (	)

decides the statements

Fi+1

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	)
)

=

W∼
gi+1

(
	,�f

�′1
(	),...,�f

�′s
(	),�α1 (	),...,�αi (	)

) ∩ V

and

t

p

(
	,�f

�′1
(	),...,�f�′s

(	),�α1 (	),...,�αi (	)

)

gi+1

(
	,�f

�′1
(	),...,�f�′s

(	),�α1 (	),...,�αi (	)

) = ti+1

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	)
)
.

Arguing as in Claim 7, both statements are decided positively for a set of 	-s
inW . Thus,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)

=

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	)
)

� �αi+1(	)
�

q
(
�αi+1 (	)

)
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and the condition q
(
�αi+1(	)

)
is forced, by

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	)
)

to be in

G \ �αi+1 (	) ∩ e
(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)
.

Therefore,

{	 < κ : p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	), �αi+1(	)
)

� �αi+1 (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	), �αi+1(	)
)
\ �αi+1(	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αi (	), �αi+1(	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αi (	), �αi+1(	)
)
∈ G} ∈W,

as desired. �
� of Lemma 4.16. � of Theorem 4.12.

4.3. Properties of kα . In this subsection we complete the proof of properties
(A) – (D) of kα . After that, we will prove in Lemma 4.20 that kκ∗ : Mκ∗ →M is the
identity, and conclude the proof of Theorem 4.7.

Lemma 4.17. �α = crit (kα) is measurable in Mα . Moreover, �α is the least
measurable ofMα above sup{�� : � < α} which has cofinality above κ in V .

Proof. Write � = [f]W and � = jα (h)
(
κ, j0,α(�1), ... , j0,α (�l ) , �α1 , ... , �αk

)
,

for some f ∈ V [G ], h ∈ V , �1, ... , �l generators of i and α1 < ··· < αk < α.
Since � < kα (�), we can assume that for every 	 < κ,

f (	) < h
(
	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)
,

and let p ∈ G be a condition which forces this. Given 	, �1, ... , �l , �1, ... , �k , consider
the set

e (	, �1, ... , �l , �1, ... , �k) = {r ∈ P \ �k : for some bounded subset

A ⊆ h (	, �1, ... , �l , �1, ... , �k) , r � f∼(	) ∈ A}.
Then e (	, �1, ... , �l , �1, ... , �k) is ≤∗-dense open above conditions which extend p
and force that

〈�f�1 (	), ... , �f�l (	)
, �α1(	), ... , �αk (	)〉 = 〈�1, ... , �l , �1, ... , �k〉.

By Theorem 4.12, the sequence 〈�1, ... , �l 〉 can be extended to a sequence 〈� ′1, ... , � ′s〉,
and p can be extended to a system of conditions,

〈p (	, �1, ... , �s , �1, ... , �k) : 	, �1, ... , �s < κ, �1 < ··· < �k < κ〉
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such that, for a set of 	-s inW ,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
\ �αk (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
∈ G.

Assume now that 〈	, �1, ... , �s , �1, ... , �k〉 are given, such that

p (	, �1, ... , �s , �1, ... , �k) � �k �p (	, �1, ... , �s , �1, ... , �k) \ �k ∈
e (	, �1, ... , �s , �1, ... , �k) .

Let A∼ be a P�k -name, forced by p (	, �1, ... , �s , �1, ... , �k) � �k to be a witness to the
fact that p (	, ��, ��) \ �k ∈ e (	, ��, ��). Namely it is a bounded subset of h (	, ��, ��), and
p (	, ��, ��) \ �k � f∼(	) ∈ A∼.

LetA (	, ��, ��) be the set of ordinals � < h (	, ��, ��) such that, some r ≥ p (	, ��, ��) �
�k forces that � ∈ A∼. Since �k < h (	, ��, ��), A (	, ��, ��) is a bounded subset of
h (	, ��, ��). The function 〈	, ��, ��〉 �→ A (	, ��, ��) lies in V .

By the results of Theorem 4.12, there exists a set of 	-s inW for which

G �p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

�

f∼(	) ∈ A
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
.

Thus, inM
[
jW (G)

]
,

[f]W ∈
[
	 �→ A

(
	, �f�′

1
(	), ... , �f�′

s
(	), �α1 (	), ... , �αk (	)

)]
W

=

kα
(
jα (〈	, ��, ��〉 �→ A (	, ��, ��))

(
κ, j0,α

(
� ′1
)
, ... , j0,α

(
� ′s
)
, �α1 , ... , �αk

))
⊆ Im (kα) ,

where the last inclusion follows since

jα (〈	, ��, ��〉 �→ A (	, ��, ��))
(
κ, j0,α (� ′1) , ... , j0,α (� ′s) , �α1 , ... , �αk

)
is a bounded subset of

�α = jα (〈	, ��, ��〉 �→ h (	, ��, ��))
(
κ, j0,α (� ′1) , ... , j0,α (� ′s) , �α1 , ... , �αk

)
which is crit (kα).

Thus we proved that �α ∈ Im (kα), which is a contradiction. �

Lemma 4.18. �α appears in the Prikry sequence added to kα (�α) inM
[
jW (G)

]
.

Proof. In M [H ], denote by t∗ the initial segment of the Prikry sequence of
kα (�α) which consists of all the ordinals below �α . Denote by n∗ the length of t∗.
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Let 〈	, ��, ��〉 �→ t∗ (	, ��, ��) be a function in V such that

t∗ = jα (〈	, ��, ��〉 �→ t∗ (	, ��, ��))
(
κ, j0,α (�1) , ... , j0,α (�l ) , �α0 , ... , �αk

)
(we assumed here that t∗ can be represented using the same generators as �α . If this
is not the case, modify the set of generators).

We can assume that for every 〈	, ��, ��〉, t∗ (	, ��, ��) is a sequence of length n∗. Since
kα (t∗) = t∗,[

	 �→ t∗
(
	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)]
W

= t∗.

In V [G ], denote, for every 	 < κ,

�α(	) =the (n∗ + 1) th element in the Prikry sequence of

h
( �	, �f�1 (	), ... , �f�l (	)

, �α1(	), ... , �αk (	)
)
.

Clearly
[
	 �→ �α(	)

]
W

≥ �α .
We argue that equality holds. We will prove that for every � <

[
	 �→ �α(	)

]
W

,
� < �α . Assume that such � is given, and let f ∈ V [G ] be a function such that
[f]W = �. Then we can assume that for every 	 < κ,

f(	) < �α(	),

and let p ∈ G be a condition which forces this.
For every 	, ��, ��, consider the set

e (	, ��, ��) = {r ∈ P \ �k : ∃� < h (	, ��, ��) , r � if t∗ (	, ��, ��) is an initial segment of

the Prikry sequence of h (	, ��, ��) , then f∼(	) < �}

then e
( �	, ��1, ... , ��k

)
is ≤∗-dense open above conditions which force that

〈�f�1 (	), ... , �f�l (	)
, �α1(	), ... , �αk (	)〉 = 〈�1, ... , �l , �1, ... , �k〉.

This, since, given a name for an element f∼(	) which is forced to be strictly below
�α(	) (which is the element which appears right after t∗ (	, ��, ��) in the Prikry
sequence of h (	, ��, ��)), the element can be decided by taking a direct extension.

By Theorem 4.12, the sequence 〈�1, ... , �l 〉 can be extended to a sequence
〈� ′1, ... , � ′s〉, and p can be extended to a system of conditions,

〈p (	, �1, ... , �s , �1, ... , �k) : 	, �1, ... , �s < κ, �1 < ··· < �k < κ〉

such that, for a set of 	-s inW ,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
\ �αk (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
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and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
∈ G.

Assume now that 〈	, ��, ��〉 = 〈	, �1, ... , �s , �1, ... , �k〉 are given, such that

p (	, ��, ��) � �k �p (	, ��, ��) \ �k ∈ e (	, ��, ��) .
Let �∼ be a P�k -name, forced by p (	, �1, ... , �s , �1, ... , �k) � �k to an ordinal below
h (	, ��, ��), such that p (	, ��, ��) \ �k � f∼(	) < �∼. Let � (	, ��, ��) be the supremum of
the set of ordinals 
 < h (	, ��, ��) such that, some r ≥ p (	, ��, ��) � �k forces that �∼ =

. Since �k < h (	, ��, ��), � (	, ��, ��) < h (	, ��, ��). The function 〈	, ��, ��〉 �→ � (	, ��, ��)
lies in V .

By the results of Theorem 4.12, there exists a set of 	-s inW for which

G �p
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

�

if t∗
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

is an initial segment of the Prikry sequence of

h

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
, then

f∼(	) < �
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
.

Thus, in M
[
jW (G)

]
, where indeed t∗ is an initial segment of the Prikry sequence

of kα (�α),

[f]W ∈
[
	 �→ �

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)]
W

=

kα
(
jα (〈	, ��, ��〉 �→ � (	, ��, ��))

(
κ, j0,α (� ′1) , ... , j0,α (� ′s) , �α1 , ... , �αk

))
<�α,

as desired. �

Lemma 4.19. Let U�α = {X ⊆ �α : �α ∈ kα(X )} ∩Mα . Then U�α ∈Mα . Fur-
thermore, kα

(
U�α ) = jW (� �→ U�) (kα (�α)), where, for every � ∈ Δ,U� =W� ∩ V ,

forW� which is the measure used in the Prikry forcing at stage � in the iteration P.

Proof. We first prove that jW (� �→ U�) (kα (�α)) ∈ Im (kα). Then, we will prove
that the measure F ∈Mα for which jW (� �→ U�) (kα (�α)) = kα(F ) equals toU�α .

In order to prove that jW (� �→ U�) (kα (�α)) ∈ Im(kα), we prove that
there exists a family F ∈Mα of measures on �α , with |F| < �α , such that
jW (� �→ U�) (kα (�α)) ∈ kα(F ) = k′′αF .

Fix, inV , an enumerationW of all the normal measures on measurable cardinals
below κ. For every 〈	, ��, ��〉, let � (	, ��, ��) be the index ofUh(	,��,��) in this enumeration.
Note that each measure Uh(	,��,��) belongs to V , but the sequence 〈Uh(	,��,��) : 	, ��, �� <
κ〉 might be external to V . So the function 〈	, ��, ��〉 �→ � (	, ��, ��) doesn’t necessarily
belong to V .
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Fix 〈	, ��, ��〉 and consider the set

e (	, ��, ��) ={r ∈ P \ �k : there exists a set of ordinals A of cardinality strictly smaller than

h (	, ��, ��) , such that r � h (	, ��, ��) � � (	, ��, ��) ∈ A}.
Then e (	, ��, ��) ⊆ P \ �k is ≤∗-dense open, since P � h (	, ��, ��) is h (	, ��, �)-c.c.

Now apply Theorem 4.12 and argue as in the previous lemma: There exists (in
V ) a mapping 〈	, ��, ��〉 �→ A (	, ��, ��) such that, inM

[
jW (G)

]
,[

	 �→ �
(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)]
W

∈[
	 �→ A

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)]
W

=

k′′α
(
jα (〈	, ��, ��〉 �→ A (	, ��, ��))

(
κ, j0,α (� ′1) , ... , j0,α (� ′s) , �α1 , ... , �αk

))
.

In Mα , let F be the set of measures on �α which are indexed in the enumeration
jα(W ) by an index in the set A = jα (〈	, ��, ��〉 �→ A (	, ��, ��))

(
κ, j0,α

(
� ′1) , ... ,

j0,α (� ′s) , �α1 , ... , �αk
)
. Note that |A| < �α and thus |F| < �α . Then jW (� �→ U�)(

kα (�α)
)

is enumerated by the ordinal[
	 �→ �

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)]
W

∈ k′′αA,

and thus jW (� �→ U�) (kα (�α)) ∈ k′′αF , as desired.
Let F ∈Mα be a measure on �α such that

jW (� �→ U�) (kα (�α)) = kα(F ).

Let us argue that F = U�α . It suffices to prove that F ⊆ U�α . Fix a set X ∈ F .
Assume that

X = jα (〈	, ��, ��〉 �→ X (	, ��, ��))
(
κ, j0,α (�1) , ... , j0,α (�l ) , �α1 , ... , �αk

)
(we assumed again that X can be represented using the same generators as
�α . If this is not the case, modify the set of generators of �α). Then kα(X ) ∈
jW (� �→ U�) (kα (�α)).

As in the previous lemma, let n∗ be the length of t∗, the initial segment of the
Prikry sequence of kα (�α) below �α . For every 〈	, ��, ��〉, let

e (	, ��, ��) = {r ∈ P \ �k : r � h (	, ��, ��) ‖ X (	, ��, ��) ∈ Uh(	,��,��),
if it decides positively, then r � h (	, ��, ��) � A∼

r
h(	,��,��) ⊆

X (	, ��, ��) ; else, r � h (	, ��, ��) � A∼
r
h(	,��,��) is disjoint

from X (	, ��, ��) .Moreover, r � h (	, ��, ��) ‖ lh
(
trh(	,��,��)

)
> n∗,

and if it decides positively, then there exists a bounded subset

A (	, ��, ��) ⊆ h (	, ��, ��) for which r � 	, ��, �� � the (n∗ + 1) th

element of trh(	,��,��) belongs to A (	, ��, ��)}.
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By Theorem 4.12, there exists a larger set of generators � ′1, ... , �
′
s and, for every

〈	, ��, ��〉, a condition p (〈	, ��, ��〉), such that, for a set of 	-s inW ,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	) �

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
\ �αk (	) ∈

e

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

and

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)
∈ G.

Let us argue first that for a set of 	-s inW ,

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	)

decides that

lh

⎛
⎜⎝tp

(
	,�f

�′1
(	),...,�f

�′s
(	),�α1 (	),...,�αk (	)

)

h

(
	,�f

�′1
(	),...,�f

�′s
(	),�α1 (	),...,�αk (	)

)
⎞
⎟⎠ ≤ n∗.

Indeed, assume otherwise. LetA∗ (	, ��, ��) be the bounded subset of h (	, ��, ��) which
consists of all the ordinals, which are forced by some extension of p (	, ��, ��) � �k to
be in A (	, ��, ��) (whenever p (	, ��, ��) forces that the length of tp(	,��,��)

h(	,��,��) is greater than

n∗). Then, inM
[
jW (G)

]
,

�α ∈ kα
(
jα (〈	, ��, ��〉 �→ A∗ (	, ��, ��))

(
κ, j0,α (� ′1) , ... , j0,α (� ′s) , �α1 , ... , �αk

))
but this is a contradiction, since jα (〈	, ��, ��〉 �→ A∗ (	, ��, ��))

(
κ, j0,α

(
� ′1) , ... ,

j0,α (� ′s) , �α1 , ... , �αk
)

is a bounded subset of �α .
Therefore, we can assume that

p

(
	, �f�′1

(	), ... , �f�′s (	), �α1(	), ... , �αk (	)
)

� �αk (	)

forces that

lh

⎛
⎜⎝tp

(
	,�f

�′1
(	),...,�f

�′s
(	),�α1 (	),...,�αk (	)

)

h

(
	,�f

�′1
(	),...,�f

�′s
(	),�α1 (	),...,�αk (	)

)
⎞
⎟⎠ ≤ n∗.

Denote now p∗ =
[
	 �→ p

(
	, �f�′1

(	), ... , �f�′s (	), �α1 (	), ... , �αk (	)
)]
W

. Then p∗ �

kα(�α) forces that �α ∈ A∼
p∗

kα(�α). By the definition of the sets e (	, ��, ��), the set

A∼
p∗

kα(�α) is forced to be either disjoint or contained in kα(X ). Since kα(X ) ∈
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jW (� �→ U�) (kα (�α)), it cannot be disjoint (again, by the definition of e (	, ��, ��)).
Therefore �α ∈ kα(X ) and thus X ∈ U�α , as desired. �

Finally, let us argue that jκ∗ = jW � V . Recall that κ∗ = i(κ), and note that
κ∗ = sup{�α : α < κ∗}.

Lemma 4.20. M =Mκ∗ , jW (κ) = i(κ) and jκ∗ = jW � V .

Remark 4.21. In particular, if i = jU (namely W is simply generated) then
jW (κ) = jU (κ). On the other hand, possibly jU (κ) < i(κ), and then jW (κ) >
jU (κ).

Proof. Define, similarly to kα : Mα →M , the embedding kκ∗ : Mκ∗ →M as
follows:

kκ∗
(
jκ∗ (f)

(
κ, j0,κ∗(�1), ... , j0,κ∗ (�l ) , �α1 , ... , �αm

))
=

jW (f)

(
κ, �[

f�1
(	)
]
W

, ... , �[
f�l

(	)
]
W

, �α1 , ... , �αm

)

for every f ∈ V , �1, ... , �l generators of i and α1 < ··· < αm < κ∗. Clearly
crit (kκ∗) ≥ κ∗. It suffices to prove that kκ∗ is the identity function.

Let 
 be an ordinal, and let f ∈ V [G ] be a function such that [f]W = 
. By
the κ-c.c. of Pκ, there exists F ∈ V such that for every 	 < κ, f(	) ∈ F (	) and
|F (	)| < κ. Therefore, inM

[
jW (G)

]
,


 = [f]W ∈ [F ]W = kκ∗
(
jκ∗(F )(κ)) .

But

|jκ∗(F )(κ)| < jκ∗ (κ) = κ∗ ≤ crit (kκ∗)

so 
 ∈ Im (kκ∗) , as desired. �

§5. Further directions and open problems. It is likely that the results of Section 4
can be extended to wider context of Prikry-type forcing notions. The first candidates
are one-element Prikry forcings and Prikry forcings with non-normal ultrafilters. For
the former it seems that the present arguments can be applied without much changes.
The latter looks to require more work since [id ] is not κ anymore and additional
generators may appear. Another example is Extender-based Prikry forcings. Here
some new ideas seem to be needed due to the Cohen parts of the forcings.

Let us state some open questions.

Question 5.1. Are there other ways to generate normal ultrafilters W in V [G ]
beyond those given in 1.1?

Let W ∈ V [G ] be a normal measure on κ. Assuming ¬o¶ (or even no inner
model with a Woodin cardinal) and exploring the closure of the ultrapower, it seems
possible to argue that N of the type of 1.1 should exist (see Section 3.2). So we
may extend the above question and ask, whether W must be generated from the
embedding i : V → N as in Section 2.

Question 5.2. What are the possibilities for non-normal κ-complete ultrafilters in
V [G ]?
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Recall that, given i : V → N and a measure W generated from it as in
Theorem 1.1, the assumption that ≤∗

Qα
=≤Qα holds for a final segments of α ∈ Δ

suffices for N =M (whereM is the ground model of Ult (V [G ] ,W )).

Question 5.3. Suppose that for unboundedly many α < κ, ≤α �=≤∗
α . Is thenM �=

N ?

Question 5.4. What are the exact conditions on Qα ’s that insureM = N ?

In Section 3 we studied sufficient and necessary conditions for having jW (κ) >
jU (κ). In Proposition 3.1, we proved, under the assumption that κ is a limit
of cardinals α < κ which are all κ-strong, that there are measures U ∈ K and
W ∈ K [G ] on κ extending U , such that jW (κ) > jU (κ).

Question 5.5. Is the assumption that κ is a limit of κ-strong cardinals really
necessary?

Question 5.6. In Theorem 4.7, can we omit the assumption that the normal
measures used in the iteration P = Pκ below κ are simply generated? How is the
structure of jW � V influenced from such a change?
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