THE CONJUGATE FUNCTION IN PLANE CURVES

BY
JOSE J. GUADALUPE AND M ${ }^{\text {a }}$ LUISA REZOLA

Abstract

We prove that the conjugate function operator is bounded in $L^{p}(\Gamma, w d s), 1<p<\infty$, if and only if $w \in A_{p}(\Gamma)$, where Γ is a quasiregular curve.

The weighted norm inequality problem for the conjugate function on the unit circle \mathbf{T} consists in characterizing the nonnegative functions w such that

$$
\int_{\mathbf{T}}|\widetilde{f}(\theta)|^{p} w(\theta) d \theta \leqq C \int_{\mathbf{T}}|f(\theta)|^{p} w(\theta) d \theta
$$

for a given $p, 1<p<\infty$, and constant C independent of f. When $w=1$, the inequality turns out to be the well known M. Riesz theorem [7]. In the general case the weights are characterized as belonging to the classes A_{p} of Muckenhoupt, i.e., there is a constant $C_{p}>0$ such that

$$
\left[\frac{1}{|I|} \int_{I} w(\theta) d \theta\right]\left[\frac{1}{|I|} \int_{I}|w(\theta)|^{-1 / p-1} d \theta\right]^{p-1} \leqq C_{p}
$$

for every interval I (see [1]).
The main aim of this paper is to study the analogous problem for a special class of curves in the complex plane. Let Ω be a plane domain whose boundary Γ is a rectifiable Jordan curve, and let ϕ be the normalized conformal mapping from the unit disc D onto Ω, and ψ the inverse function of ϕ.

Let μ be a finite nonnegative measure on Γ which is absolutely continuous with respect to arc length $(d \mu=w d s)$. The space $L^{p}(\Gamma, \mu), 0<p<\infty$, is the class of complex μ-measurable functions defined on Γ, such that

$$
\int_{\Gamma}|f|^{p} d \mu<\infty
$$

For $1<p<\infty$, we say that $w \in A_{p}(\Gamma)$ if there is a constant $C_{p}>0$ such that for every interval $J \subset \Gamma$

$$
\left(\frac{1}{s(J)} \int_{J} w d s\right)\left(\frac{1}{s(J)} \int_{J} w^{-1 / p-1} d s\right)^{p-1} \leqq C_{p}
$$

[^0]where $s(J)$ is the arc length of J. This is the natural definition of the A_{p} classes in this context.

If f is a μ-measurable complex function on Γ and $f \circ \phi \in L^{1}(\mathbf{T})$ we may define the conjugate function as $\widetilde{f}=(f \circ \phi)^{\sim} \circ \psi$, where $(f \circ \phi)^{\sim}$ is the classical conjugate function of $f \circ \phi$. As it happens in the case of the unit circle, if $P(z)$ is a polynomial and $f(z)=\operatorname{Re} P(z)$ with $z \in \Gamma$, then $\widetilde{f}(z)=\operatorname{Im} P(z)$.

In the unweighted case $(w=1)$, the conjugate function operator turns out to be bounded in $L^{p}(\Gamma)$, via conformal mapping, if and only if $\left|\phi^{\prime}\right| \in A_{p}$, $1<p<\infty$, and therefore $\left|\phi^{\prime}\right| \in A_{\infty}$ is needed. A kind of curves verifying this last condition are the chord-arc curves, which play an important role in the study of generalized Hardy spaces and in deducing estimates for singular integrals $[3,6] . \Gamma$ is said to be a chord-arc curve if there is a constant $C>0$ such that for all points z_{1}, z_{2} of $\Gamma, s\left(z_{1}, z_{2}\right) \leqq C\left|z_{1}-z_{2}\right|$ where $s\left(z_{1}, z_{2}\right)$ is the length of the shortest arc of Γ with endpoints z_{1} and z_{2}. These curves are characterized by the condition $\log \phi^{\prime} \in B M O A$ [5], which implies $\left|\phi^{\prime}\right| \in A_{\infty}$.
P. Jones and M. Zinsmeister [4] proved that for every fixed p there is a chord-arc curve Γ such that $\left|\phi^{\prime}\right| \notin A_{p}$. Thus, the conjugate function operator is not bounded in $L^{p}(\Gamma)$ for this curve.

Consequently, we must restrict our attention to the class of curves verifying $\left|\phi^{\prime}\right| \in A_{p}$ for all $p>1$.

Definition 1. Let Γ be a rectifiable Jordan curve. Γ is said quasiregular if for each $\epsilon>0$ there is a $\eta>0$ such that if $z_{1}, z_{2} \in \Gamma$ verify $\left|z_{1}-z_{2}\right| \leqq \eta$, then $s\left(z_{1}, z_{2}\right) \leqq(1+\epsilon)\left|z_{1}-z_{2}\right|$.

In [5] it is shown that Γ is quasiregular if and only if $\log \phi^{\prime} \in \operatorname{VMOA}(D)=$ $H^{1}(D) \cap V M O(\mathbf{T})$, where $V M O(\mathbf{T})$ is the span of trigonometric polynomials in $B M O(\mathbf{T})$. In particular, if Γ is quasiregular, then Γ is chord-arc and $\left|\phi^{\prime}\right| \in A_{p}$ for all $p>1$.

The following property of quasiregular curves will be needed for our main result.

Lemma 2. If Γ is quasiregular and $w \in A_{p}(\Gamma)$, then, $(w \circ \phi)\left|\phi^{\prime}\right| \in A_{p}$.
Proof. Let J be an arc of Γ and $\psi(J)=I$ the corresponding arc of T. As with \mathbf{T} or $\mathbf{R}^{n}, w \in A_{p}(\Gamma)$ implies that $w \in A_{p-\epsilon}(\Gamma)$ for some $\epsilon>0$ ([1]). Then, by using Hölder's inequality, we have

$$
\begin{aligned}
& \left.\left(\frac{1}{|I|} \int_{I}(w \circ \phi)\left|\phi^{\prime}\right|\right)\left(\frac{1}{|I|} \int_{I}(w \circ \phi)\left|\phi^{\prime}\right|\right)^{-1 / p-1}\right)^{p-1} \\
& \leqq\left(\frac{1}{|I|} \int_{I} \cdot(w \circ \phi) \cdot\left|\phi^{\prime}\right|\right)\left(\frac{1}{|I|} \int_{I}(w \circ \phi)^{-1 / p-\epsilon-1} \cdot\left|\phi^{\prime}\right|\right)^{p-\epsilon-1} \\
& \cdot\left(\frac{1}{|I|} \int_{I}\left|\phi^{\prime}\right|^{-(p-\epsilon) / \epsilon}\right)^{\epsilon \epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq\left(\frac{1}{|I|} \int_{I}(w \circ \phi)\left|\phi^{\prime}\right|\right)\left(\frac{1}{|I|} \int_{I}(w \circ \phi)^{-1 / p-\epsilon-1}\left|\phi^{\prime}\right|\right)^{p-\epsilon-1}\left(\frac{|I|}{s(J)}\right)^{p-\epsilon} C \\
& \leqq\left(\frac{1}{s(J)} \int_{J} w\right)\left(\frac{1}{s(J)} \int_{J} w^{-1 / p-\epsilon-1}\right)^{p-\epsilon-1} C \leqq C^{\prime}
\end{aligned}
$$

and the lemma is proved.
Before passing to the following lemma we include some well known results about A_{p} classes.
(A) $w \in A_{\infty}$ if and only if there exists $\epsilon>0$ such that

$$
\left(\frac{1}{|I|} \int_{I} w^{1+\epsilon}\right)^{1 / 1+\epsilon} \leqq K_{\epsilon}\left(\frac{1}{|I|} \int_{I} w\right),
$$

which is denoted by $w \in \operatorname{RHI}(1+\epsilon)$ (reverse Hölder inequality).
(B) Let $\phi=\log w$. Then $w \in A_{p}, 1<p<\infty$, if and only if

$$
\sup _{I} \frac{1}{|I|} \int_{I} e^{\phi-\phi_{I}}<\infty \quad \text { and } \sup _{I} \frac{1}{|I|} \int_{I} e^{-\left(\phi-\phi_{I}\right) /(p-1)}<\infty
$$

Lemma 3. Let f be a real valued function on \mathbf{T}, and $w=\exp (f)$. The following conditions are equivalent:
i) $f \in \overline{L_{B M O}^{\infty}}(\mathbf{T})\left(\right.$ closure of L^{∞} in $\left.B M O\right)$.
ii) $w \in A_{p} \forall p>1$ and $w \in R H I(q)$ for all $q>1$.
iii) $w \in R H I(q), w^{-1} \in R H I(q)$ for all $q>1$.
iv) $w^{q} \in A_{\infty}, w^{-q} \in A_{\infty}$ for all $q>1$.
v) $w \in A_{p}, w^{-1} \in A_{p}$ for all $p>1$.

Proof.
i) \Rightarrow ii).

That $w \in A_{p}$ for all $p>1$ is an immediate consequence of the Garnett-Jones theorem, see [2].

On the other hand, by applying the John-Nirenberg inequality, given $\epsilon>0$ sufficiently small, there is a constant C such that for all $g \in B M O$ with $\|g\|_{*}<\epsilon$ we have

$$
\frac{1}{|I|} \int_{I} e^{\left|g-g_{I}\right|} \leqq C
$$

for all interval $I \subseteq T$. Hence, $\exp g \in A_{2}$ with A_{2}-constant smaller or equal than C^{2} and then, there exists $\delta>0$ so that $\exp (g) \in R H I(1+\delta)$, whenever $\|g\|_{*}<\epsilon$, where δ depends only on ϵ.

Since f belongs to the closure of L^{∞} in $B M O$, for each $\epsilon>0$ we can put $f=f_{1}+f_{0}$, where $f_{1} \in L^{\infty}, f_{0} \in B M O$ and $\left\|f_{0}\right\|_{*}<\epsilon$. Thus, $w=e^{f_{1}} \cdot e^{f_{0}}$ and $w_{0}=e^{f_{0}}$ are equivalent (i.e., there are constants $c_{1}, c_{2}>0$ such that
$\left.c_{1} w_{0} \leqq w \leqq c_{2} w_{0}\right)$. Then, there exists $\delta>0$ such that $w_{0} \in R H I(1+\delta)$ and also $w \in R H I(1+\delta)$. By applying the same arguments to the function $q f(q>1)$ which belongs to $\overline{L_{B M O}^{\infty}}$ also, we get $w^{q} \in R H I(1+\delta)$. Choosing $q=1+\delta$, we obtain $w \in \operatorname{RHI}\left((1+\delta)^{2}\right)$ and, by iterating this argument, we conclude that $w \in \operatorname{RHI}(q)$, for all $q>1$.
ii) \Rightarrow iii).

If $w \in A_{p}$ for all $p>1$ then $w^{-1} \in A_{\infty}$ and, by using $(A), w^{-1} \in$ $R H I(1+\epsilon)$ for some $\epsilon>0$. Both, this last condition and Hölder's inequality, lead us to

$$
1 \leqq K_{\epsilon}\left(\frac{1}{|I|} \int_{I} w^{-1}\right)\left(\frac{1}{|I|} \int_{I} w^{r}\right)^{1 / r}
$$

with $r=1+1 / \epsilon$. Now, by applying $w \in \operatorname{RHI}(q)$ for all $q>1$, it follows that

$$
\begin{aligned}
\left(\frac{1}{|I|} \int_{I} w^{-q}\right)^{1 / q} & \leqq C_{q}\left(\frac{1}{|I|} \int_{I} w\right)^{-1} \\
& \leqq C_{q} K_{r}\left(\frac{1}{|I|} \int_{I} w^{r}\right)^{-1 / r} \leqq C_{q} K_{r} K_{\epsilon}\left(\frac{1}{|I|} \int_{I} w^{-1}\right)
\end{aligned}
$$

iii) \Rightarrow iv).
(A) and Hölder's inequality lead us to

$$
\left(\frac{1}{|I|} \int_{I}\left(w^{q}\right)^{1+\epsilon}\right)^{1 / 1+\epsilon} \leqq K_{\epsilon}\left(\frac{1}{|I|} \int_{I} w\right)^{q} \leqq \frac{K_{\epsilon}}{|I|} \int_{I} w^{q} .
$$

The verification for w^{-1} is similar.
iv) \Rightarrow v).

It follows from $w^{q} \in A_{\infty}$ and $w^{-q} \in A_{\infty}$ for all $q>1$ that

$$
\begin{aligned}
& \sup _{I} \frac{1}{|I|} \int_{I} e^{q\left(\phi-\phi_{I}\right)}<+\infty \text { and } \\
& \sup _{I} \frac{1}{|I|} \int_{I} e^{-q\left(\phi-\phi_{I}\right)}<\infty . \text { Then } \\
& \sup _{I} \frac{1}{|I|} \int_{I} e^{\phi-\phi} I<\infty \text { and } \\
& \sup _{I} \frac{1}{|I|} \int_{I} e^{-\left(\phi-\phi_{I}\right) / p-1}<+\infty \quad \text { for all } p>1
\end{aligned}
$$

Therefore, $w \in A_{p}$ for all $p>1$. The same argument works for w^{-1}.
$\mathrm{v}) \Rightarrow \mathrm{i}$). It is obvious from (B) and the Garnett-Jones theorem.

Theorem 4. Let Γ be a quasiregular curve. Then the conjugation operator is bounded on $L^{p}(\Gamma, w d s)(1<p<\infty)$ if and only if $w \in A_{p}(\Gamma)$.

Proof. Since the conjugate function operator is bounded on $L^{p}(T, w \circ \phi \cdot$ $\left.\left|\phi^{\prime}\right| d \theta\right)$ if and only if $(w \circ \phi)\left|\phi^{\prime}\right| \in A_{p}$, the "if part" of the theorem is an immediate consequence of Lemma 2.

For the converse, we suppose that $(w \circ \phi)\left|\phi^{\prime}\right| \in A_{p}$ and then $(w \circ \phi)\left|\phi^{\prime}\right| \in$ $A_{p-\epsilon}$ for some $\epsilon>0$. Since Γ is quasiregular, $\log \left|\phi^{\prime}\right| \in V M O \subset \overline{L_{B M O}^{\infty}}$, and therefore, by Lemma 3, $\left|\phi^{\prime}\right|$ and $\left|\phi^{\prime}\right|^{-1}$ verify $\operatorname{RHI}(q)$ for all $q>1$. Thus

$$
\begin{aligned}
& \left(\frac{1}{s(J)} \int_{J} w\right)\left(\frac{1}{s(J)} \int_{J} w^{-1 / p-1}\right)^{p-1} \leqq\left(\frac{1}{|I|} \int_{I} w \circ \phi \cdot\left|\phi^{\prime}\right|\right) \\
& \cdot\left(\frac{1}{|I|} \int_{I}\left(w \circ \phi\left|\phi^{\prime}\right|\right)^{-1 / p-\epsilon-1}\right)^{p-\epsilon-1}\left(\frac{1}{|I|} \int_{I}\left|\phi^{\prime}\right|^{p / \epsilon}\right)^{\epsilon}\left(\frac{|I|}{s(J)}\right)^{p} \leqq C .
\end{aligned}
$$

Remark. In the proof of the preceding theorem we only use the fact that $\log \left|\phi^{\prime}\right| \in \overline{L_{B M O}^{\infty}}$. Quasiregular curves satisfy this condition and also every curve which is transformed of a quasiregular curve by a conformal mapping with bounded derivate (such curves are not necessarily quasiregular). The class of curves (boundaries of Jordan domains) for which Theorem 4 is verified, strictly contains the quasiregular curves and it is contained in the class of chord-arc curves. How can these curves be characterized? The answer comes from the following.

Theorem 5. Let Γ be a rectifiable curve which is the boundary of a Jordan domain, and which verifies the following property: For all weights w on Γ the conditions
i) the conjugation operator is bounded on $L^{p}(\Gamma, d \mu), 1<p<\infty$ and
ii) $w \in A_{p}(\Gamma)$
are equivalent.
Then, $\log \left|\phi^{\prime}\right| \in \overline{L_{B M O}^{\infty}}$.
Proof. Take $w=\left|\psi^{\prime}\right|$ which verifies i) for all $p>1$, and therefore $w \in A_{p}(\Gamma)$ for all $p>1$. Writing

$$
s(J)=\int_{I}\left|\phi^{\prime}\right| \quad \text { and } \quad q=\frac{p}{p-1}
$$

the last condition leads us to

$$
\left(\frac{1}{|I|} \int_{I}\left|\phi^{\prime}\right|^{q}\right)^{1 / q} \leqq C \frac{1}{|I|} \int_{I}\left|\phi^{\prime}\right|
$$

or equivalently, $\left|\phi^{\prime}\right| \in R H I(q)$ for all $q>1$.

On the other hand, $w=1$, satisfies $w \in A_{p}(\Gamma)$ which implies that the conjugation operator is bounded on $L^{p}(\Gamma, d s)$ and so $\left|\phi^{\prime}\right| \in A_{p}$ for all $p>1$.

Now, the theorem is proved by using Lemma 3.
The authors are grateful to J. L. Rubio de Francia for his helpful suggestions.

References

1. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), pp. 241-249.
2. J. B. Garnett and P. Jones, The distance in BMO to L^{∞}, Ann. of Math. II. Ser. 108, (1978), pp. 373-393.
3. D. S. Jerison and C. E. Kenig, Hardy Spaces. A_{∞} and Singular Integrals on Chord-arc Domains, Math. Scand. 50 (1982), pp. 221-247.
4. P. Jones and M. Zinsmeister, Sur la transformation conforme des domaines de Laurentiev, C. R. Acad. Sci. (Paris) 295 (1982), pp. 563-566.
5. Ch. Pommerenke, Schlichte functionen und analytische functionen von beschrankter mittlerer oszillation, Comm. Math. Helv. 52 (1977), pp. 591-602.
6. M. Zinsmeister, Courbes de Jordan vérifiant une condition corde-arc, Ann. Inst. Fourier 32, No. 2, (1982), pp. 13-21.
7. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, New York, 1959.

Dpto de Matematicas-Facultad de Ciencias Universidad de Zaragoza
50009 Zaragoza - Spain

[^0]: Received by the editors May 20, 1986, and, in revised form, June 12, 1987.
 Key words: Conjugate function, A_{p}-class.
 AMS Subject Classification: 42A50.
 © Canadian Mathematical Society 1986.

