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THE CONJUGATE FUNCTION IN PLANE CURVES 

BY 

JOSE J. GUADALUPE AND Ma LUISA REZOLA 

ABSTRACT. We prove that the conjugate function operator is 
bounded in If(T, wds), 1 < p < oo, if and only if w e Ap(T), where 
T is a quasiregular curve. 

The weighted norm inequality problem for the conjugate function on the unit 
circle T consists in characterizing the nonnegative functions w such that 

X l/W \pHW0 ^ c / T 1/(0) \Pw(0)dO 

for a given/?, 1 < p < oo, and constant C independent o f / When w = 1, 
the inequality turns out to be the well known M. Riesz theorem [7]. In the 
general case the weights are characterized as belonging 'to the classes A of 
Muckenhoupt, i.e., there is a constant C_ > 0 such that 

[^i"H^iH*)rl/'~^ CP 

for every interval / (see [1] ). 
The main aim of this paper is to study the analogous problem for a special 

class of curves in the complex plane. Let Œ be a plane domain whose boundary 
r is a rectifiable Jordan curve, and let <j> be the normalized conformai mapping 
from the unit disc D onto $2, and \p the inverse function of 0. 

Let JU be a finite nonnegative measure on T which is absolutely continuous 
with respect to arc length (dfi = wds). The space LP(T, JU), 0 < p < oo, is the 
class of complex ju-measurable functions defined on T, such that 

JT \f\Pdp < oo. 

For 1 < p < oo, we say that w G Ap(T) if there is a constant Cp > 0 such 
that for every interval J o T 
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where s (J) is the arc length of / . This is the natural definition of the A classes 
in this context. 

If / is a /z-measurable complex function on T and / o <j> G Ll(T) we 
may define the conjugate function as / = ( / o <f>)~ o ^, where ( / o <t>)~ 
is the classical conjugate function of / o <J>. As it happens in the case of the 
unit circle, if P(z) is a polynomial and f(z) = Re r ( z ) with z G T, then 
f(z) = Im P(z). 

In the unweighted case (w = 1), the conjugate function operator turns 
out to be bounded in If(T), via conformai mapping, if and only if |<J/| G Ap, 
1 < /? < oo, and therefore |<f>'| G ^4^ is needed. A kind of curves verifying this 
last condition are the chord-arc curves, which play an important role in the 
study of generalized Hardy spaces and in deducing estimates for singular 
integrals [3, 6]. T is said to be a chord-arc curve if there is a constant C > 0 
such that for all points zx, z2 of T, s(zx, z2) = C\zx — z2\ where s(zx, z2) is the 
length of the shortest arc of T with endpoints zx and z2. These curves are charac
terized by the condition log <f>' G BMOA [5], which implies |<f>'| G A^. 

P. Jones and M. Zinsmeister [4] proved that for every fixed p there is a 
chord-arc curve T such that |<f>'| £ Ap. Thus, the conjugate function operator is 
not bounded in If(T) for this curve. 

Consequently, we must restrict our attention to the class of curves verifying 
|<j/| G Ap for all p > 1. 

DEFINITION 1. Let Y be a rectifiable Jordan curve. V is said quasiregular if 
for each e > 0 there is a rj > 0 such that if zl9 z2 G Y verify \zx — z2\ ^ TJ, then 
s(zu z2) ^ (1 + c) \zx - z2\. 

In [5] it is shown that T is quasiregular if and only if log 4>' G VMOA(D) = 
H (D) n VMOCT), where VMOCT) is the span of trigonometric polynomials in 
BMOÇT). In particular, if T is quasiregular, then T is chord-arc and |<j>'| G A 
for all/? > 1. 

The following property of quasiregular curves will be needed for our main 
result. 

LEMMA 2. If T is quasiregular and w G A (Y), then, (w o <J>)|<j>'| G A . 

PROOF. Let / be an arc of T and \p(J) = I the corresponding arc of T. As with 
T or R", w G ^ ( T ) implies that w G Ap_€(T) for some € > 0 ( [1] ). Then, by 
using Holder's inequality, we have 

(]jj ft (w °*>M\]ii II <w ° «l*'" >"l/"~ T' 
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and the lemma is proved. 

Before passing to the following lemma we include some well known results 
about A classes. 

(A) w G A^ if and only if there exists c > 0 such that 

which is denoted by w G RHI(l -f c) (reverse Holder inequality). 
(B) Let <t> = log w. Then w G A , 1 < /? < oo, if and only if 

sup — / e+~+' < oo and sup — / «rC*-*/)'^"1) < oo. 
/ |/| Jl i \I\ Jl 

LEMMA 3. Let f be a real valued function on T, and w = exp(/). The following 
conditions are equivalent: 

i) / e LfMO(T) (closure of L°° in BMO). 

ii) w G ApVp > 1 and w G RHI(q) for all q > 1. 
iii) w G RHI(q\ w~l G # # / ( # ) /or a// # > 1. 
iv) yfl G ,4^, w~q G A^for all q > 1. 
v) w G ,4 w - 1 G 4̂ /or allp > 1. 

PROOF. 

i) => ii). 
That w G 4̂ for all /? > 1 is an immediate consequence of the Garnett-Jones 

theorem, see [2]. 
On the other hand, by applying the John-Nirenberg inequality, given c > 0 

sufficiently small, there is a constant C such that for all g G BMO with 
llgll* < € we have 

171 Jl \I\ 
e\g~gi\ 

for all interval I Q T. Hence, exp g G A2 with v42-constant smaller or equal 
than C and then, there exists 8 > 0 so that exp(g) G RHI(l + 8), whenever 
llgll* < £, where 8 depends only on e. 

Since / belongs to the closure of L°° in BMO, for each e > 0 we can put 
/ = fx + /0> where/! G L°°, / 0 G £M<9 and ||/0|U < e. Thus, w = efi • e /o 

and w0 = e-*0 are equivalent (i.e., there are constants cl9 c2 > 0 such that 
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c{w0 §̂ w ë c2w0). Then, there exists 5 > 0 such that w0 <E RHI(l 4- S) and 
also w e RHI(\ 4- 8). By applying the same arguments to the function 

qf(q > 1) which belongs to L^MO also, we get wq G ##7 (1 -h 5). Choosing 
g = 1 4- S, we obtain w G RHI( (1 4- S)2) and, by iterating this argument, we 
conclude that w e RHI(q), for all q > 1. 

ii) =» hi). 
If w e i< for all p > 1 then w - 1 e ^ and, by using (A), w~l e 

RHI(l 4- €) for some c > 0. Both, this last condition and Holder's inequality, 
lead us to 

>*<J.*-%W 
with r = 1 4- 1/e. Now, by applying w G RHI(q) for all g > 1, it follows 
that 

G JH" «<&/•)" 
s c-< i>ns w(̂  .H) 

hi) => iv). 
(A) and Holder's inequality lead us to 

The verification for w - 1 is similar. 
iv) => v). 
It follows from wq e A^ and w~^ G A^ for all g > 1 that 

sup — / ^ (*~* / } < +00 and 
/ l/l Jl 

sup — / e"^*"*^ < 00. Then 
/ |/| Jl 

1 f <t>~<t>r 
sup — le < 00 and 
/ 1/1 J* 

sup — / e " ^ - * / ) ^ " 1 < +00 for allp > 1. 
/ l/l Jl 

Therefore, w G A for all/7 > 1. The same argument works for w l. 
v) => i). It is obvious from (B) and the Garnett-Jones theorem. 
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THEOREM 4. Let T be a quasiregular curve. Then the conjugation operator is 
bounded on LP(T, wds) (1 < p < oo) if and only if w ^ A (T). 

PROOF. Since the conjugate function operator is bounded on LP(T, w o <t> • 
W\dff) if and only if (w o 4>)\<l>'\ G A , the "if part" of the theorem is an immedi
ate consequence of Lemma 2. 

For the converse, we suppose that (w o 4>)|4>'| e A and then (w o <f>)\<j>'\ e 

A for some e > 0. Since T is quasiregular, log \<j>'\ e VMO C L ^ ^ , and 
therefore, by Lemma 3, |$' | and W\~x verify RHI(q) for all q > 1. Thus 

REMARK. In the proof of the preceding theorem we only use the fact that 
log \4>f\ e L^MO. Quasiregular curves satisfy this condition and also every curve 
which is transformed of a quasiregular curve by a conformai mapping with 
bounded derivate (such curves are not necessarily quasiregular). The class of 
curves (boundaries of Jordan domains) for which Theorem 4 is verified, strictly 
contains the quasiregular curves and it is contained in the class of chord-arc 
curves. How can these curves be characterized? The answer comes from the 
following. 

THEOREM 5. Let T be a rectifiable curve which is the boundary of a Jordan 
domain, and which verifies the following property: For all weights w on T the 
conditions 

i) the conjugation operator is bounded on LP(T, dfi), 1 < p < oo 
and 

ii) w e Ap(T) 
are equivalent. 

Then, log |$'| e LfM0. 

PROOF. Take w = \\p'\ which verifies i) for all/? > 1, and therefore w e A (T) 
for all p > 1. Writing 

s(J) = f |*'| and q = -?—, J1 p — 1 

the last condition leads us to 

(j^W^ÏTï/1*'1 

or equivalently, |<£'| e RHI(q) for all q > 1. 
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On the other hand, w = 1, satisfies w e A (T) which implies that the 
conjugation operator is bounded on LP(T, ds) and so |<f>'| e A for all /? > 1. 

Now, the theorem is proved by using Lemma 3. 

The authors are grateful to J. L. Rubio de Francia for his helpful 
suggestions. 
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