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Abstract

Reaction-diffusion systems are widely used to model the population densities of biological
species competing for natural resources in their common habitat. It is often not too difficult
to establish positive uniform upper bounds on solution components of such systems, but
the task of establishing strictly positive uniform lower bounds (when they exist) can be
quite troublesome. Two previously established criteria for the permanence (non-extinction
and non-explosion) of solutions of general weakly-coupled competition-diffusion systems
with diagonally convex reaction terms are used here as background to develop more easily
verifiable and concrete conditions for permanence in various well-known competition-
diffusion models. These models include multi-component reaction-diffusion systems with
(i) the by now classical Lotka-Volterra (logistic) reaction terms, (ii) higher order "logis-
tic" interaction between the species, (iii) logistic-logarithmic reaction terms, (iv) Ayala-
Gilpin-Ehrenfeld ^-interaction terms (which are used to model Drosophila competition),
(v) logistic-exponential interaction between the species, (vi) Schoener-exploitation and
(vii) modified Schoener-interference between the species. In (i) a known condition for per-
manence (for the ODE-system) is recovered, while in (ii)—(vii) new criteria for permanence
are established.

1. Introduction

One of the most fundamental problems in the analysis of asymptotic solution behaviour
of biological population dynamics models is the study of permanence of solution com-
ponents, in other words, the non-extinction (uniform persistence) and non-explosion
(uniform dissipation) of the interacting biological species under consideration. Of
these two issues the former is often much more difficult to establish than the latter.
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FIGURE 1. Diagonally convex reaction terms.

A number of papers discuss this topic (see for example [2,4,6,8,9,12,13,15,16,20]
and [22,23]), but research has hitherto largely been confined to two or three com-
ponent biological systems, or, in the case of multi-component models, population
densities were assumed to be constant over space (resulting in ordinary differential
models), or otherwise only very specific reaction terms were considered. In the above
mentioned papers the conditions for permanence obtained are either very specific or
else quite complex (involving, for example, definite integrals which are difficult to
evaluate, etc.).

One exception is an easily verifiable and concrete condition on the system parame-
ters for the uniform persistence of solution components of Lotka-Volterra ordinary dif-
ferential systems proved in [6,12] and [20], and confirmed in [23] for two-component
Lotka-Volterra systems with constant diffusion and interaction coefficients. This con-
dition, together with uniform upper boundedness, implies permanence of solutions. As
far as the authors could establish there are no such concrete conditions for permanence
available for models consisting of general competitive partial differential systems, or,
for that matter, for models of biological competition other than that of Lotka-Volterra
type. It has often been pointed out (see, for example, [3]) that Lotka-Volterra interac-
tion is based on the logistic theory of population growth and that it is therefore subject
to the same serious criticisms as the logistic theory: it does not take into account the
age of organisms, their sex, or genetic differences between them. It also ignores time
lags and assumes the competitive interactions, both intra and inter-specific, are linear.
Ayala et al. [3] write "Despite these limitations, the model is widely used. It does
give a fair representation of competition between protozoan species . . . and [it] has
[been] argued that the model is always applicable near equilibrium populations. Yet
these considerations do not explain why the Lotka-Volterra model should be almost
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TABLE 1. Diagonally convex reaction terms
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the only model of competition, when, for predation, there is a host of alternative
models."1 Hence it is, in our opinion, clearly desirable to also establish concrete
and easily verifiable conditions for permanence in non Lotka-Volterra competitive
systems.

The most striking common feature of models of biological competition is often con-
vexity of the growth rate of the /-th species with respect to its population density, which
can be justified by the expectation that, due to the competitive species interaction, the
growth rate of each species should be small and increasing for small population den-
sities, while for densities close to the carrying capacity of the ecosystem, the growth
rate should decrease until the population density reaches some threshold due to limited
natural resources, after which the growth rate should become negative and decreasing
(as shown in Figure 1). Table 1 contains thirteen sets of diagonally convex reaction
terms which have been widely used to model biological competition in the past (see
for example [3,10,11,17-19]).

In a previous paper [21] we considered the relatively general class of non-autono-

'See paragraph 3 on page 332 of [3].
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mous, space-dependent competitive reaction-diffusion systems with diagonally convex
reaction terms (for an arbitrary number of competing species in an arbitrary dimen-
sional habitat) and found criteria for the i-th growth rate which is sufficient to ensure
uniform persistence and upper boundedness of the i-th solution component. Because
of the generality of the system, these conditions for persistence seemed somewhat
"theoretical", but in this paper we use them as background to develop concrete and
more easily verifiable conditions for permanence in seven special classes of well-
known competition-diffusion models. The aim of this paper is therefore twofold:
first to generalise the result of [12] and [20] to multi-component reaction-diffusion
systems of Lotka-Volterra type and secondly (and more importantly) to establish sim-
ilar results for multi-component non Lotka-Volterra reaction-diffusion systems with
reaction terms as in entries II—XIII of Table 1 (where the parameters are allowed to
vary over space and time).

In Section 2 the general diagonally convex competition-diffusion model, together
with the assumptions which will be made throughout, is given and in Section 3 the
results obtained in [21] for this system are briefly stated and preliminary definitions are
given. The seven special sub-classes of the model to be considered (in Sections 4-10)
are:

(1) classical Lotka-Volterra (logistic) interaction (entry I in Table 1)
(2) higher order "logistic" interaction (entries II-VI in Table 1)
(3) logistic-logarithmic interaction (entry VII in Table 1)
(4) logistic-exponential interaction (entries VIII and IX in Table 1)
(5) Ayala-Gilpin-Ehrenfeld ^-interaction (entries X and XI in Table 1)
(6) Schoener exploitation (entry XII in Table 1)
(7) modified Schoener interference (entry XIII in Table 1).

In each of these sections uniform upper boundedness of solution components is
established and then a sufficient condition for the persistence of solution components
is proved. We conclude in Section 11 by listing (in table form) the various conditions
for permanence and asymptotic stability of the models in Sections 4-10.

2. The general model

The initial and Neumann boundary-value problem,

dw
f (1)

uj(j[, 0) =£(£), l_e® and (2)
dw
"7= (f, T) = 0 f o r ^ £ o n the boundary d® of & and all x e &, (3)
dr) -
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has often been used to model the population densities, to,(|_, r), i = 1 , . . . , n, of
n competing biological species at time r € & = [0, oo) and at position £ =
[£i,. . . , £m]r in a simply connected, m-dimensional spatial domain Si e W with
smooth boundary d@. Here ?j denotes the outward pointing unit normal to the bound-
ary d@ and the zero-flux Neumann boundary conditions represent the situation where
the habitat $ is enclosed and species members cannot leave or enter the domain.

ASSUMPTIONS 2.1. Define § = @ x &.

1. Diffusion in isotropic media: (No cross-diffusion) The (diagonal) diffusion ma-
trix, D(£, r) = diag{c?i(£, r ) , . . . , dn(t;, r)}, is strictly positive, uniformly bounded
and analytic on S.

2. Nature of interaction between the species: Let W+ = {x e SR" : x_ > 0} denote
the positive cone of the n-dimensional real vector space and define si = S x SH|J..

(a) (Structure of reaction terms)

(i) The /-th component of/ : si -> ?R"+ has the form

/«(£. T, w) = iy,-(|_, r)g,(|_, r, uO,

where the functions gt•, : si —> 31 are once continuously differentiable with respect
to Wj (J ^ i) and twice continuously differentiable with respect to wt, and where
l imm^0/ , ( i , T, uj) = 0 for all ( | , r) € ^ .

(ii) For any (|_, T) 6 g the hyper surfaces g,(|_, r, u>) = 0, i = 1 , . . . , n, intersect
in exactly one point u>*(£, T) > 0; the function w_* : S -> 9t|J. being continuous and
uniformly bounded away from zero.

(iii) The set of all points in si on the hyper surface g,(£, r, w) = 0 is uniformly
bounded for all i = 1, . . . , n.

(b) (Competitive interaction) The off-diagonal entries of the Jacobian matrix

are non-positive, continuous and uniformly bounded on si, while the diagonal entries
are continuously differentiable and uniformly bounded on si.
(c) (Diagonal convexity) The i-th component of/ is strictly convex with respect to

the i-th component of w, that is, there exist constants /,- such that on si,
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3. Preliminaries

Define $ (£ , r) as the set of the i-th components of all points in sf on the hy-
per surface g,(£, x, w) = 0. It then follows by Assumptions 2.1.2 (a) (ii)—(iii) that
sup(£ r)e,?{$(£> T)J > 0 exists. It was shown in [21] that Assumptions 2.1 are suffi-
cient to guarantee the existence of a unique, continuous and strictly positive solution
to the system (l)-(3), and the following uniform upper boundedness result was also
established.

THEOREM 3.1 (Solution vector uniformly bounded from above), (a) The solution
vector w.(%, x) of (l)-{3) is uniformly bounded from above by the constant vector
K_=[K\, ... , Kn]

T, where

I max{0,(|;)}, sup {$•(£_, r ) } |Kj = max I max{0,(£)}, sup {S^(£, r )} | , i = I,... ,n.

(b) There exists a non-negative constant f, such that the i-th component, iu, (£, T), of
the solution vector w_ (£, T ) o/ (1 )-(3) is uniformly bounded from above on@x[Zi, oo)

fry

K i = s u p {Sf,(|_, T ) } , i = l , . . . , n .
(£,r)e<?

A solution component of the system (l)-(3) is said to be permanent if there exists
a compact set Jf in the interior of 9i+ = {x € 9t : x > 0} such that the solution
component eventually enters J ^ after some finite time and then remains within J ^
as x —> oo. Therefore a solution component is permanent if it does not explode (is
uniformly bounded from above) and is persistent (uniformly bounded from below
by a positive constant). A solution component of (l)-(3) is said to be automatically
permanent if it is permanent regardless of the choice of possible system parameters,
otherwise it is said to be conditionally permanent. The solution of (l)-(3) itself is said
to be (automatically/conditionally) permanent if all its components are (automatically/
conditionally) permanent. The automatic non-explosion of all solution components
of (l)-(3) is a consequence of Theorem 3.1 (a). In [21] the following criteria were
found to be sufficient to ensure uniform persistence of the i-th solution component

THEOREM 3.2 (Permanence result I: Automatic permanence). If, in addition to As-
sumptions2.\, the function gi(J-, x,w) blows up everywhere on the hyperplane io,- = 0,
then the i-th component, iu,(^, r), of the solution vector o/(l)-{3) is (automatically)
permanent.
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Note that, by Assumption 2.1.2 (a) (i), the function g, (£, r, w) can blow up no faster
than 1/tu, as iu, 4- 0.

THEOREM 3.3 (Permanence result II: Conditional permanence). If the function
£,(£, T,W) is uniformly bounded from above on si/, and if there exists a positive
constant 77,, such that

(4)

on ^ , tfien ffte i-//i component, tu,(f, T), o/?/ie solution vector of (l)-(3) is (condi-
tionally) permanent.

The qualitative large-time behaviour of solutions of (l)-(3) within the upper and
lower bounds of permanence does not fall within the scope of this paper. However, we
quote, without proof, the following three results from [21] for the sake of completeness.

THEOREM 3.4 (Autonomous asymptotic behaviour). Ifw_(£, t) is a permanent so-
lution of (l)-(3), and if the system (1) is autonomous and spatially homogeneous,
then lim^oo w_(t-, T) = uf uniformly for % e @.

THEOREM 3.5 (Non-autonomous asymptotic behaviour). If there exist constants
r, > 0 such that

(5)

uniformly on 2 x (t*, oo) x 9^ for some t* > 0, then solutions of (l)-(3) are
asymptotically stable with respect to perturbations of the initial conditions (2) in the
sense that there exist, for any two solution vectors wj&, r) and t;(§, T) of (l)-(3), a
y > 0 and a f3 > 0 such that

uniformly on £.

THEOREM 3.6 (Periodic asymptotic behaviour). If there exist constantsT, > Osuch
that (5) holds uniformly on Si x (t*, oo) x SR+ for some t* > 0, and if the system
functions gi(i-, x, w)anddi(t-, x) are Q-periodic with respect tor for alii = 1 , . . . , n,
then there exists a unique, strictly positive, uniformly bounded Q-periodic global
(exponentially) asymptotic attractor of permanent solutions of (l)-(3).
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It is known that when n = 2, the conditions (5) (which may be seen as conditions
for resilience) may be dropped from Theorems 3.5 and 3.6 (see, for example, [1,2,7]
and [14] for the special case of Lotka-Volterra interaction).

In the following six sections the results quoted above are applied to well-known
competition models in order to obtain concrete and easily verifiable conditions for
permanence of their solutions.

Well-known special cases

4. Logistic (Lotka-Volterra) interaction

Consider the classical Lotka-Volterra competition equations with diffusion,

^ i = w,G, T) b,{$, r) -£>«,-($, T)wjQ, r) + f^ ^T U(£> r ) ^ r l - (6)

for i = 1 , . . . , n, where the analytic functions ay(%, r) and &,(£, r) are assumed
to be uniformly bounded from above and below on & by positive constants for all
i = 1 , . . . , n, while the analytic functions ay (£, T) need only be uniformly bounded
from above and non-negative on <o for all i ^ j = 1 , . . . , n. Here £, represents the
birth rate proportion of the i-th species; a<y (i ^ j) represents the death rate proportion
of the i-th species due to the competitive behaviour between species i and j ; and ay
represents the death rate proportion of the i-th species due to self overcrowding. To
avoid degenerate cases it will also be assumed that the linear algebraic system

u ( | , T)WJ % r) = b,% T), 1 = 1 n, (7)

has a unique, strictly positive solution for each (£, r) e S. For the system (6),

and

Since the functions a,-,-(|_, T) are uniformly bounded from below on S by positive
constants, there exist constants /" such that

0</;<o, ,• = !,....„,
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so that Assumptions 2.1.2 are indeed satisfied by the system (6).
For this case the set (Sl (!•, x) is defined as all points in sf on the i-th hyper plane (7),

and it can easily be verified that

sup {$(£, r)} < .
~ i

so that, by Theorem 3.1 (a), the solution vector tw(£, r) of (6) and (2)-(3) is uniformly
bounded from above by the constant vector K_=[KI, ... , Kn]

T, where

( , . , . , . p f t , T ) ^ { . ( | ) } |
Ki = max \ max{0,(|)}, — ^ — - — - \ , i = 1,... ,n.

[ | ® - inf(i,r)e<?{a,,(f_, r)}J

By Theorem 3.1 (b) there also exists a non-negative constant f, such that the i-th
component of the solution vector w_(%, r) of (6) and (2)-(3) is uniformly bounded
from above on @ x [f,, oo) by

Let f* = max1<,<n{f,} and define & = $ x [f*, oo) c £• It is clear that for this
case all the functions

,( | , T, w) = *,-(£, r) - ^ a , y (£, r)^- (£, T), i = 1, . . . , n,
7 = 1

are uniformly bounded from above on si and hence that solutions of the system will
not necessarily be permanent. The condition for persistence of the i-th species,

inf{*,(r)>>

which was proposed in [12] and [20] for the spatially independent Lotka-Volterra
system,

dx

has the obvious generalisation,

1^2,aij{x)Wj{x) , / = 1 , . . . , n ,

>= ' J
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to incorporate the spatial dependence of (6). The sufficiency of this condition for
the permanence of the i-th solution component of (6) is proved by noting that, since
io,(£, T) is uniformly bounded from above on & by ich there exists by (8) a positive
constant TJ, such that

inf,{*,(*. r)}> „«,,(*, r) + £ ^ ' ^ f ™ sup (*,(*, r)>

on <^\ since & <Z. £• But now

*,-(£, T ) > inf {*,(£, r)}

sup

ii«i(|_, r ) + > sup {^ ( ^ , T ) } sup

> JJ,;«;,•(!, r) + £ sup {ao-(|, r)} sup {wjfa r)}

> rj,-io.-(£, r) + sup | V] «y(I. ^)u;;(^, r) 1

> r?,iy,(|, T) + £ ay (|, r)iy;- (|, r) ,

so that

_ _ T) > IJj!«,•(£, T) (9)

on &. Finally,

£;(£. T, tu(£, r)) &<•(£, r) — £" = 1 a,y (£, T)IO; (^, r)

i t ) 2 5 ^ (by(9))

on & x SĤ , so that the general condition for persistence of the /-th component, (4), is
satisfied on «̂ " x SR̂ .. Therefore, by Theorem 3.3, the /-th component of the solution
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vector is uniformly bounded from below by a positive constant on &', which, in this
case, is given by

f, = min I min{u>,(£, r,)}, £, \ ,

where

This result is already known for the two-component Lotka-Volterra system with dif-
fusion, where the system functions a,y and bt are constant over time and space (see
for example [23]).

Note that when the Lotka-Volterra interaction terms in (6) are reformulated in terms
of logistic theory as in entry I of Table 1, that is, if the i-th component of the reaction
term is defined by

r,(£, x)wt ,
*,-(£, x) -wt- > or/,- (f, x)wj

where the functions r,-(|, T) and jfc,-(|, r) represent the linear growth rate for small
population densities and the carrying capacity of the ecosystem for the /-th species
respectively (here both /•,•(£, r) and Jfc,-(£, r) are assumed to be uniformly bounded
from above and below by positive constants, while the functions ay (£, r) need only
be nonnegative and uniformly bounded from above on <?), then the condition for
permanence of the i-th species, (8), becomes

inf {*,(£, r )}> T sup K ( £ , T ) } sup {*,($, r)}. (10)

5. Higher-order "logistic" interaction

In this section the permanence of solutions of competitive reaction-diffusion sys-
tems containing M-th order "logistic" reaction terms, that is, systems of the form

P=2 ,=1 y=i
tw Wt> Sir]' ••=i.....n.

together with initial and boundary conditions of the form (2)-(3), will be considered
(see entries II-VI in Table 1). Here the analytic functions r,-(£,r) and £,-(£, r)
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are assumed to be uniformly bounded from above and below by positive constants,
while the analytic functions a^ (£, r) and ^'q)(J^, r) need only be nonnegative and
uniformly bounded from above on S'. To avoid degenerate cases it will also be
assumed that the nonlinear algebraic system

au% z)wj + E E E $ ' " % *)™>r" = k<% T)' (12)
j=u& p=i 9=1 ; = i

for i = 1 , . . . , n, has a unique, strictly positive solution for each (£, r) € §. Note
that, for this case,

&fi
M p

p=2 9=1

P n

p=2 9=1 ; / i J

so that Assumptions 2.1.2 are indeed satisfied by the system (11). For this case the
set #/(£, r) is defined by the set of all points on the hyper surface (12), so that it can
easily be seen that

sup {#,(£. T ) } < sup {*,•(£,*)},

and hence, by Theorem 3.1 (a), the solution vector w;(£, T) of (H) and (2)-(3) is
uniformly bounded from above by the constant vector K_ = \K.\,... , icn]

T, where

Ki = max I max{0f(£)}, sup {*,•(?, r)} i , i = 1 , . . . , n.

By Theorem 3.1 (b) there also exists a non-negative constant f, such that the i-th
component, u>,(|_, T), of the solution vector of (11) and (2)-(3) is uniformly bounded
from above on ̂  x [f,, oo) by

i<i = sup {&,(£, r)} i = l , . . . , n.

Let f* = maxi<,<n{f,} and define the set & = @ x [r*, oo) c S'. Persistence
of solution components is considered next. It is clear that, also for this case, all the
functions

n M p n

j = l,jfr p=2 g=l y=l
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[13] Permanence in biological competition models 207

i = 1 , . . . , n, are uniformly bounded from above on JZ/, SO that solution components
of the system will not necessarily be permanent. It is now shown that the condition
for permanence, (10), obtained in Section 4, is in fact also sufficient for solution
permanence in higher-order logistic systems of the form (11). To prove this, note that,
since the /-th solution component of (11) is uniformly bounded from above on & by
supWl)e<?{£,(£, r)}, and since the functions r,(£, r) and &,(£, r) are also uniformly
bounded from above, with r,(£, T) additionally bounded away from zero on &, there
exists by (10) a positive constant nt such that

inf {£,-(!_, T)} > 2 ^ sup

but now

* , ( £ , T ) > inf {*,(£, r)}

sup {*,(£, r )}+
/-,•(£, T)

sup {«<,(*, r)} sup {*,(£,
)iki(%, r)Wi{$, r )

so that

on ^". Finally,

y,(^, T)
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r,
kiU

n
ki

JanH.

p=2

van Vuuren and John Norbury

p=l q=\ I
P f

j ^ \ P P l i Wi +qWj

n 1
x ^ Q(P*Q) P~~Q 1
/ D-- XV • /

n

on & x 9t+, so that the general condition for permanence, (4), is met on & x W+

and hence the permanence of the i-th solution component of the system follows by
Theorem 3.3.

The condition for persistence of the i-th solution component of the system (11) and
(2)-(3) is the same as that for the system with logistic reaction terms—the addition of
higher-order interaction does not affect the condition for persistence. This illustrates
the underlying relationship between a condition for persistence and a condition for
linear instability of the origin and all the other unacceptable steady states (those
representing the extinction of some species) as well as the simultaneous linear stability
of the non-trivial steady state (representing the co-existence of the species with other
species).

6. Logistic-logarithmic interaction

The permanence of solutions of competitive reaction-diffusion systems containing
logistic-logarithmic reaction terms, that is, systems of the form

log ki (|, T) - log wi - E aU % r ) l o§ W 1
J Jdx logki(l,x)

• J - U t f . r ) ^ ! , « = ! , . . . , » , (13)

together with initial and boundary conditions of the form (2)-(3), are considered in this
section (see entry VII in Table 1). Here the analytic functions r,-(£, r) are assumed be
uniformly bounded from above and below by positive constants, the analytic functions
^ (§, r) are also assumed to be uniformly bounded from above, but uniformly bounded
from below by constants greater than unity, while the analytic functions a,y (£, r) need
only be nonnegative and uniformly bounded from above. Finally, to avoid degenerate
cases, the algebraic system

log w,(l, r) + ^ au (£' r ) lo&wJ ( i r> = log*,-(|[f r), i = 1 , . . . , n, (14)
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[15] Permanence in biological competition models 209

is assumed to have a unique, strictly positive solution for each (£, T) e £. Note that
for this case

af. r.(P. T}U::(£. T}UL(1-, T)

^ < 0 ,
dWj io,(f_, T) logki(l_, r)

and

dwf u;,(£, T) log&,(£, z)

Since r,(f, r) is uniformly bounded from below on g by a positive constant, and
&,(£, r) and hence log/fc,-(f, T) is uniformly bounded from above on S, there exist
constants / , such that

T 4 < / 1 < 0 , i = l , . . . ,n ,

provided that all solution components of the system are uniformly bounded from
above. To prove this uniform upper boundedness, observe that the set ^ ( £ , r) is
defined by all points on the hyper surface (14) and hence

sup {$( | , T)} < sup {*,•(£, T)},

so that, by Theorem 3.1 (a), the solution vector w(£, T) of (13) and (2)-(3) is uniformly

bounded from above by the constant vector K_ = [K1, ... ,Kn]
T, where

AC, = max | max{</>;(£)}, sup {&,(£, T)} | , i = I,... ,n.

Hence Assumptions 2.1.2 are indeed satisfied by the system (13). By Theo-
rem 3.1 (b) there also exists a non-negative constant f, such that the /-th component,
u>,(£, r), of the solution vector of (13) and (2)-(3) is uniformly bounded from above
on Si x [ii, oo) by

Hi = sup {£,(£, r)}, / = 1, . . . , n.

Persistence of solution components is considered next. Let f* = max^^l f ,} and
define & = & x [f*, oo) c £. For this case it is clear that the function

£.(£> r, w) = log*,•(£, r ) - log wi - Y^ aU (£> T) l o 8 WJ
J=Ljfr

blows up everywhere on the hyper plane wt = 0, and hence that all solution com-
ponents of (13) and (2)-(3) are necessarily permanent by Theorem 3.2. It is in fact
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possible to show that the solution is uniformly bounded from below by the strictly
positive constant vector K_ = [H\, ... , icn]

T, where

We prove this by contradiction. Suppose that at some point (£*, r*) € S we
have that u;,-(f *, r*) < £, for an arbitrary 1 < i < n. Then there exists by the
continuity of wt a positive constant p, and a point (£**, r**) 6 ^ x [0, r*) such that
u>,-(|. T) > Ki - Pi for all ( | , T) € ^ x [0, r**] and io,-(|_**, r " ) = /f, - p,. Since
the function io,(^, T) attains its minimum value in Q x [0, r**] at (£**, T**), we must
have

and

which, if substituted into (13), yields

r»wr
log*;*

which in turn means that

where if , fc**, a** and u;** denote the values of r,-(|**, T**), *,-(£**. r**), a,j (£**, r**)
and w,(£**. r**) respectively. Since IU = £,- — p, < ict and «̂ " c ^ , we also have

and hence
n

log w** < loginf{fc,(|, r)} - ^ supfoiy (£, r)} log sup{^ (£, r)}

< loginf{A:,(^, T)} - > sup{a,ji(^, r)} logsup{u;;(^, T)}
9 ~ i^TT^i & &

which contradicts (15), and establishes the above mentioned uniform lower bounds of
permanence.
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7. Logistic-exponential interaction

In this section the permanence of solutions of competitive reaction-diffusion sys-
tems containing logistic-exponential reaction terms, that is, systems of the form

' - • • • • -

together with initial and boundary conditions of the form (2)-(3), are considered (see
entries VIII and IX of Table 1). Here the analytic functions r,(f, T) and &,(|f, r) are
assumed to be uniformly bounded from above and below by positive constants, while
the analytic functions a,y (f, r) and Yj (£> r ) need only be uniformly bounded from
above, non-negative and satisfy

K,(|, T) sup {*,-(£, r)} < 2, i = l n, (17)
(|.r)e<?

on &'. To avoid degenerate cases it will be assumed that the algebraic system

n n

w, + J2 a>J(£' r)wJ + 1 2 (l - e~Yi%l)Wi) = * i ( £ , r ) , i = l , . . . , n, ( 1 8 )

has a unique, strictly positive solution for each (£, r) € &. For this case the set
tfitej r) is defined as the set of all points on the hyper surface (18), so that it can easily
be verified that

sup {$(£ , r )}< sup {*,(£, T)},

and hence, by Theorem 3.1 (a), the solution vector w(£, r) of (16) and (2)-(3) is
uniformly bounded from above by the constant vector K_ = [K\, ... , Kn]

T, where

Ki = I m a x { ( / > , ( § ) } , s u p { k i t e , *)) \ , i = l,... , n .
i — >

By Theorem 3.1 (b) there also exists a non-negative constant f, such that the i-th
component, to, (£, r), of the solution vector of (11) and (2)-(3) is uniformly bounded
from above on 2 x [f,, oo) by

kt= sup {kite,r)}, i = l,...,n.
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Let f* = maxi<,<n{f,} and define & = $ x [f *, oo) c &. On & we now have by
(17) that

2
^i(£. *0 5 sup {&,(£, r)} <

and hence

y,(£, r)w,(£, r) - 2 < 0

on <^\ so that

= ~ ~ [ay ( ,̂ r) + y;- ( ,̂ r)e "'i'1'1"''^' I < 0, i ^ j

and
2r,(£,r) r,(^, r)y,(£, r)fy,(f, r)u;,(^, r) — 2]

= - , ~ . + —= =—=--=- = e-
Yi(i-z)u"(S--z) < 0.

Since r,(^, r) and jfc,-(f, r) are uniformly bounded from above and below on ̂  by
positive constants, there exist constants / , such that

a2/,.

and hence Assumptions 2.1.2 are indeed satisfied by the system (16). It is clear that
the functions

gi(!-, T, W) = kj(i;, T) — U!j —
j

are uniformly bounded from above on srf, so that solution components of the system
are not necessarily permanent. We now show that the condition

inf {*,-}+ inf {ft}(e-sup<i^l) / i l sup'i '>^(M-l) (19)

n n

sup {ay} sup [ki] + ^2 SUP { ^ } ( l ~

is sufficient to ensure permanence of the i-th solution component. To prove this,
observe that by (19) and the uniform upper and lower boundedness of /•,-(£, r) and
&,(£, r) as well as the uniform upper boundedness of tu,(£, r) on g, there exists a
positive constant r)h such that

inf {*,-}+inf {ft} (c-»p«»i"vi*»» - 1)
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on &'. Now

kt + Pi (e-yiw< - 1)

* E> /ciin/Q^. j S\ip{Wj }
n

> S U P

so that

on &'. Finally,

-vw,
~e

)=\

r,

E
r,

-rHy-' = i,, + - ^ ( | , r, wQ, r))
3w -

on & x 9t|J., so that the general condition for persistence of the i-th solution component,
(4), is satisfied on & x 9̂J_ and hence (conditional) permanence of the j-th solution
component of (16) and (2)-(3) holds by Theorem 3.3.
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8. Ayala-Gilpin-Ehrenfeld 9 -interaction

In this section the permanence of solutions of competitive reaction-diffusion sys-
tems containing Ayala-Gilpin-Ehrenfeld ^-reaction terms, that is, systems of the form

(20)

together with initial and boundary conditions of the form (2)-(3), are considered (see
entries X and XI of Table 1). Here the analytic functions £,(£, *) and r,(£, r) are
assumed to be uniformly bounded from above and below by positive constants, while
the analytic functions a{j (£, r) need only be nonnegative and uniformly bounded from
above on S. The analytic exponents #,•(£, x) are assumed to be uniformly sandwiched
between positive constants less than or equal to unity. Finally, to avoid degenerate
cases, the algebraic system

(21)

is assumed to have a unique, strictly positive solution for each (£, r) e (?. Note that,
for this case,

dfj _ r«(jf,T)ttp(|,T)u;f(|,T) ^

3 ~ fc(fr) - ' l*J

and

0.-(j, r)[g,(| , r) + l]r,(g, T )^ ( £ ' T ) ~ ' (g , r)

Since the functions r,(£, T) are uniformly bounded from below on £ by positive
constants, since the functions &,(£, r) are uniformly bounded from above on S, and
since the exponents 0, ( | , r) are uniformly sandwiched on £ between positive constants
less than or equal to unity, there exist constants /" such that

Yjfi<0, i = l , . . . , n ,
dwf

and hence the system (20) indeed satisfies Assumptions 2.1.2.
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Non-explosion of solution components of the above system is settled first. For this
case the set $ (£ , r) is defined by all points on the hyper surface (21). Hence it can
easily be shown that

sup{^(£, T ) } < sup {£,(£, r)},
(£,r)e.? (£,r)e<?

and consequently, by Theorem 3.1 (a), the solution vector u»(f, r ) of (20) and (2)-(3)
is uniformly bounded from above by the constant vector K_ = [KI,... , Kn]

T, where

Ki = max | max{</>,(|)}, sup {£,(£, r)} 1 , i = 1 , . . . , n.
£eS> - ( l . r)e*

i — j

By Theorem 3.1 (b) there also exists a non-negative constant f, such that the i-th
component, u>;(£, r) , of the solution vector of (20) and (2)-(3) is uniformly bounded
from above on ^ x [f,, oo) by

ici = sup {&,(£, r)}, i = 1, . . . , n.

Persistence of solution components is considered next. Let x* = maxi<,<n{f,} and
define & = $> x [f*, oo) c S. It is clear that the functions

are uniformly bounded from above on £? and hence the solution components of the
system are not necessarily permanent. We however show that the condition

n

inf {6>,(£, T)} inf {&,(£, r)} > ] T sup {aiy(£, r)} sup {ifc/(|_, r)} (22)

is sufficient to ensure the permanence of the i-th solution component. To prove this,
note that since the r-th solution component of (20) is uniformly bounded from above
on & by sup(£T)€^-{&,(£, r)}, and since the functions r,(£, r) and &,(£, T) are also
uniformly bounded from above, with r,(£, r) additionally bounded away from zero
on &', there exists by (22) a positive constant JJ(- such that

v ^ , , mkiWi
inf {#,} inf {k:} > > sup {a,,} sup IK,}-I

on &', since & C §. But since sup(? l)e^-{^,} < 1, it follows that

* / + (Pi — l)it- u>, > inf {/fc,-+ (0/— l)ifc- i o , |
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sup> inf m infJki)>

E , r VikjWi
sup {«„•} sup {u>,-} +

_,-= l j-^f(£,r)e^ (£.r)6#- /"i

sup

> sup
' 7 ; ^ " ' ,

so that

on &'. Now,

£••(?, r,«i($,T)) r,

;,•«, T)

k1

_ r I _/,,„».-
* i I I —fl- R- X — ^ I 'i**i *^i

I A.t T^ ll/i Ljn,- W-'j ^ ^ / ^* / / w j I " ^ „

' ' L y=ij#' J *<"

' T '

o n ^ x SR̂ .. Hence the general condition for permanence, (4), holds on & x SR̂ ., and
the (conditional) permanence of the i-th solution component of (20) and (2)-(3) is a
consequence of Theorem 3.3.

Note that in the special case where 9,•• = 1, the condition for persistence of the i-th
solution component, (22), reduces to (10), as expected.

9. Schoener exploitation

In this section the permanence of solutions of competitive reaction-diffusion sys-
tems containing Schoener exploitation reaction terms (see entry XII in Table 1) are
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considered, that is, systems of the form

Here the analytic functions or,(£, r) , /J,(£, r), y,(£, T) and 5,(£, T) are assumed to
be uniformly bounded from above and below on S by positive constants. To avoid
degenerate cases it is also assumed that the linear algebraic system

Bj (f_, x)Wj = ar,(f_, r)Pi(l_, r), i = 1 , . . . , n, (24)

has a unique, positive solution for each (£, r) € <?. For this case

df oti(j£, z)Bj(£, x)B; (£, r)(5,(£, r)iu,(£, T)
-i-i- = = = J—= = = - = <0

and

so that the uniform boundedness of the sum Yl]=\ Pj wj o n & ^y positive constants
from both above and below will imply the uniform upper boundedness of d2fi/dw2

i

by a negative constant, since the functions a,, /3, and <5, are uniformly bounded away
from zero. We first prove the uniform upper boundedness of the sum in question.

Note that the set #/(£, r) is defined by all points on the hyper surface (24) and
hence it can easily be shown that

sup {$•(£, T)} <

Consequently it follows by Theorem 3.1 (a) that the solution vector w(£, r) of (23) and
(2)-(3) is uniformly bounded from above by the constant vector K = [KU ... , Kn]

T,
where

f . . , , - , P ( t . r ) 6 * { ( £ ) } ] .
/c, = max j max{0,-(|)}, -—•^ —-—— \ , i = 1 , . . . , n.

£s> i n f { y ( £ r ) }
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Moreover, there exists, by Theorem 3.1 (b), a non-negative constant f,, such that the
i-th component, iu,-(|_, T), of the solution vector, u^(£, T), is uniformly bounded from
above on ty x [f,, oo) by

« \ n

The uniform upper boundedness of the sum 52J_, fij Wj therefore follows by the
uniform upper boundedness of the individual functions fl, (by assumption) and Wj
(by the above).

The uniform lower boundedness of the sum YL"j=\ Pj wj follows by a simple con-
tradiction argument, so that Assumptions 2.1 are indeed satisfied by the system (23)
and moreover the functions

i(l, r, w) =
£"=,

do not blow up everywhere on the hyper plane u\ = 0 (only at the origin). Conse-
quently it seems that solution components of the system are not necessarily permanent.
However, the contrary can be proved by noting that since (>/5 — l)/2 > 0, and since
the system functions a,-(£, r) , )8,-(£, r) and y,(£, r) are positive, uniformly bounded
from above and uniformly bounded away from zero on S', there exists a strictly positive
constant $,, satisfying

(25)

such that

V 2

on & = Si x [f*, oo) c 8, where f* = maxl5,<n{f,}. Therefore

2y, Z-^inf^tj/y} " 2Yi fa Yj ~ 2Yi

and, by squaring both sides of the above inequality, it follows that

/ \2 5a} fi Satf,
< < 1 > +

,̂ , _
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y, \ i n f A Y i •r- - * .
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(26)

— - * i | *i > 0, (by (25)),

so that, by developing the square on the left-hand side of (26), we have

f=(infAYj) ) Yt j ^

By multiplying both sides of the above inequality by the quantity

it follows that

S,mf,{Yi}

where

Now,

r)i = inf
« ) 6

2^j=lPj inf,{yj)J

+ m, (27)

r)
-Yi

s u p , lay

(by (27))

on & x 91 .̂, so that the condition for permanence, (4), is satisfied on & x ?R"+.
Automatic solution permanence of (23) and (2)-(3) is therefore a consequence of
Theorem 3.3.
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10. Schoener-interference

[26]

Competitive reaction-diffusion systems containing modified Schoener exclusive
resource reaction terms, that is, systems of the form

= ' - • t ) u "

Vj — yi(%, r)

£ [ * * • - > £ ] • •= • ••
together with initial and boundary conditions of the form (2)-(3) (see entry XIII in
Table 1), are considered in this section. Here the analytic functions a,(£, r), # ( ? , r),
y,(£, r ) , 5,(£, r) and A,(£, r) are assumed to be uniformly bounded from above and
below by positive constants, the exponents Vi(£> r ) are assumed to be uniformly
sandwiched between strictly positive constants less than unity, while the analytic
functions o",;/(£, r) need only be non-negative and uniformly bounded from above
on <f. To avoid degenerate cases it is also assumed that the nonlinear algebraic system

(29)

has a unique, strictly positive solution for each (£, T) e <f. Here Schoener's reaction
terms have been modified by the introduction of the exponents ir^, r) to ensure that
the function g,(£, r, u;) blows up no faster than 1/w, as u\ 4- 0. Note that for this case

dfi

+ < 0 for i

and

0.

Now there will exist constants / , such that

^ - 4 < / i < 0 , i = l , . . . ,n,

and hence Assumptions 2.1.2 will be satisfied by the reaction terms (28) if all solution
components of the system are uniformly bounded from above on &. To prove this
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TABLE 2. Criteria for permanence of solutions of reaction-diffusion models of the form (l)-(3) with
reaction terms defined as in Table 1.

Model no
in Table 1

I-VI

VII

VIII

IX

X

XI

XII
XIII

Condition for permanence of the i-th component

inf{*:,} > E ^ ^ j S u p t a . y l s u p ^ }

Automatic permanence

inf {*,-} + inf{ft} (e—pM"-**.! - l) > ZUJ*
 S U PK > SUP<*; J

inf{*,} + inf{ft} (e-"rt»»»p«*»» - l)
> E;=, ,^ , [ sup^Jsupf t} + sup{ft} (1 - e-™*"»>)]

inf{*,} > 2 X]"=,,^, sup{ay} sup{^}

inf{6,} inf {*,-} > E;=ijVl- *
U PK} sup{*,}

Automatic permanence
Automatic permanence

§

4 & 5

6

7

7

8

8

9
10

uniform boundedness, observe that since the set %; (£, T) is defined as the set of all the
i-th components of points in srf on the hyper surface (29),

Hence the solution vector of (28) and (2)-(3) is uniformly bounded from above on S
by the constant vector K_ — \K\,... , Kn]

T, where

sup»{X-] 1
for all / = 1 , . . . , n by Theorem 3.1 (a). For this case it is clear that the function
gi(f_. T, u;) blows up everywhere on the hyper plane wt = 0, and hence, by Theo-
rem 3.2, we are assured that all solution components of the system will be permanent.
It is in fact possible to show that the solution vector of (28) and (2)-(3) is uniformly
bounded from below on & by the positive constant vector K_ = [icu ... , icn]

T, where

K i = nun
inf^A

(£)}, —;
~ I sup^f)/,} + E/=i SUP^

for all J = 1 , . . . , n .
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11. Conclusions

The criteria for permanence in Theorems 3.2 and 3.3 were found to be not only of
academic value; they may be used profitably to establish concrete and easily verifiable
conditions for the permanence of solutions of specific competitive reaction-diffusion
systems with diagonally convex reaction terms, as was done in Sections 4-10 of this
paper for seven well-known classes of competition systems. We conclude by listing,
again in table form, the criteria for the permanence of the j-th solution component of
reaction-diffusion systems with reaction terms as given in Table 1. Here the parameters
in Table 1 are of course allowed to be functions of time and space. For more details
on the system parameters the reader is referred to the relevant sections of this paper
(which are also listed in Table 2).
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