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INTEGRODIFFERENTIAL SYSTEMS
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Abstract

Sufficent conditions for controllability of nonlinear neutral Volterra integrodiffer-
ential systems are established. Controllability of an infinite-delay neutral Volterra
system is also considered.

1. Introduction

Several authors [4, 6, 8, 12] have studied the theory of functional differ-
ential equations. In [2, 9] the problem of controllability of linear neutral
systems has been investigated. Motivation for such control systems and its
importance in other fields can be found in [8, 10]. Chukwu [3] and Angell
[1] studied the functional controllability and Underwood and Chukwu [13],
null controllability of nonlinear neutral systems. Onwuatu [11] discussed
the problem for nonlinear systems of neutral functional differential equa-
tions with limited controls. Gahl [7] derived a set of sufficient conditions for
controllability of nonlinear neutral systems through the fixed point method
developed by Dauer [5]. In this paper, we shall study the controllability of
neutral Volterra integrodifferential system and infinite delay neutral Volterra
systems, by suitably adapting the technique of Dauer [5].
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2. Preliminaries

Let Q be the Banach space of all continuous functions

( x , M ) : [ 0 , r 1 ] x [ 0 ) < 1 ] ^ i ? n x J R m

with the norm denned by

where ||x|| = sup|x(OI for t e [0, tx].
Consider the linear neutral Volterra integrodifferential system of the form

i:\x{t)- f'c(t-s)x(s)ds-g(t)\
dt[ Jo J

= Ax(t)+ I G(t-s)x(s)ds + B(t)u(t)
Jo

and the nonlinear system

= Ax(t)+ I G(t-
Jo

f(t,x(t),u(t))

where x e Rn, w e Rm, C(t) and G(t) are n x « continuous matrix
valued functions and B(t) is a continuous « x m matrix valued function, A
a constant n x n matrix, / and g are respectively continuous and absolutely
continuous «-vector functions.

We consider the controllability on a bounded interval J — [0, t{] of the
system (1) and (2). That is, system (1) or (2) is said to be controllable on /
if for every x(0), x{ e Rn there exists a control function u, denned on J,
such that the solution of (1) or (2) satisfies x(tx) = x{.

The solution of (1) can be written as [14]

x(t) = Z(t)[x(0) - g(0)] + g(t) + f'z(t- s)g(s) ds

Z(t-s)B{s)u(s)ds

where Z(t) is an n~x.it continuously differentiable matrix satisfying

^ [z(0- I C{t-s)Z(s)ds\ =AZ(t)+ f G(t-s)Z(s)ds

/
Jo
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with Z(0) = / and the solution of the nonlinear system (2) is given by

(t) = Z(t)[x(0) - g(0)] + g(t) + f Z(t - s)g(s) ds

Z(t - s)[B(s)u(s) + f(s, x(s), u(s))] ds./
Jo
/

Jo
Define the matrix W by

W(0, t)= [ Z(t-s)B(s)B*(s)Z*(t-s)ds (5)
Jo

where the star denotes the matrix transpose.

3. Main results

THEOREM 1. The system (1) is controllable on J iff W is nonsingular.

PROOF. Assume W is nonsingular. Let the control function u be defined
on J as

u(t) = B\t)Z\tx - t)W~l(0, /,) [x, - Z(r,)(x(0) - g(0))

-*(*,)- J^Z(tl-s)g(s)dsj.
Then from (3), it follows that x(tt) = x , .

Conversely suppose that (1) is controllable. In order to show that W is
nonsingular let us assume the contrary. Then, there exists a vector v ^ 0
such that v*Wv = 0. It follows that

' /, - s)B{s)(v*Z(tl - s)B(s))* ds = 0.

Therefore, v*Z(tl - s)B(s) = 0 for s e J. Consider the initial point,
x(0) = 0, and the final point, xx = v. Take g = 0; since the system
is controllable there exists a control u(t) on / that steers the response to
x, = v at t = t{, that is

and hence

x(t,) = v = / Z{tx - s)B(s)u(s) ds
Jo

v*v= f ' v*Z(tl - s)B(s)u{s) ds = 0.

This is a contradiction for v ^ 0. Hence W is nonsingular.
Now we shall consider the nonlinear system (2). For this, take p =

(x, u) G R" x Rm and set \p\ = |x| + |u|.
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THEOREM 2. If the continuous Junction f satisfies the condition

\p\

uniformly in ttJ and if the system (1) is controllable on J, then the system
(2) is controllable on J.

PROOF. Define T: Q^Q by

where
v(t) = B*(t)Z\tl-t)W-1(O,tl)

. (6)
/ Z(tl-s)g(s)ds

-j^Z(tl-s)f(s,x(s),u(s))dsj

and

y(t) = Z(t)[x(O) - g(0)] + g(t) + f Z(t - s)g(s) ds
Jo

Let

r r (7)
+ / Z{t-s)B(s)v(s)ds + Z (t-s)f(s,x(s),u{s))ds].

Jo Jo

a, = sup \Z(t- s)B{s)\, §<s<t<tx,

a2 = \W~\0,tx)\,

a, = sup Z(t)(x(O) - g(0)) + g(t) + f Z(t - s)g(s) ds
Jo

a 4 = s u p | Z ( / - 5 ) | , (t,s)eJxJ.

b= max{/1a1 , 1} ,

c, = 4bala2a4t1,

c2 = 4a4tl,

d{ = 4ala2aib, d2 = 4<z3,

c = max{c,, c2}, d = ma.x{dl, d2}

s u p | / | = s u p [ | / ( . s , x ( s ) , u(s))\ :s£j].
T h e n ,
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and

: f l 3 + /1fl1||t;|| + r1fl4sup|/|

By hypothesis, / satisfies the following condition (Proposition 1 in [5]): for
each pair of positive constants c and d, there exists a positive constant r
such that, if \p\ < r, then

c\f{t,p)\ + d<r for all f e . / . (8)

Also, for given c and d, if r is a constant such that (8) is satisfied, then any
rt such that r < r, will also satisfy (8). Now take c and */ as given above,
and let r be chosen so that (8) is satisfied. Therefore, if ||x|| < r/2 and
||«|| < r/2 then %x, u)|| < r. It follows that rf + c sup | / | < r. Therefore,

|«(OI<i forallre/

and hence \\v\\ < r/4b. It follows that

\y(t)\ < r/4 + r/4 = r/2 for all f e /

and hence that \\y\\ < r/2. Thus we have proved that, if

H = {(x,u)eQ: \\x\\ < r/2 and \\u\\ < r/2},

then T maps H into itself. Since all the functions involved in the definition
of the operator T are continuous, it follows that T is continuous. Using
the Arzela-Ascoli theorem, it is easy to see that T is completely continuous.
Since H is closed, bounded and convex, the Schauder fixed point theorem
guarantees that T has a fixed point {x, u) e H. It follows that

x(t) = Z(t)[x(0) - g(0)] + g(t) + f'z(t- s)g{s) ds
Jo

+ f Z(t-s)B(s)u(s)ds+ I Z(t-s)f(s,x(s),u(s))ds
Jo Jo

for t e J.

Hence x(t) is a solution of the system (2) and it is easy to verify that
x{t — 1) = x, . Hence (2) is controllable on J.
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4. Infinite neutral systems:

We shall consider the following neutral system represented by

d [ [' 1

3FI" - / _* ' — •"-«">] (9)
- ^x(0 + / G(* - s)x(s) ds + B(t)u(t),

J—oo

x(t) = <j>(t) on (-oo, 0] where the initial function <f> is continuous and
bounded on Rn . Equivalently, (9) takes the form

d_
dt

x(t)- f'c(t-s)x(s)ds-g(t)- f° C(t-sMs)ds\
JO J-oo J

= Ax(t)+ / G(t-s)x(s)ds+ / G(t-s)<j)(s)d
JO J-oo

Using (3), the solution of (10) can be written as

x(t) = Z{t) \x(0) - g(0) - £ C(-s)<t>(s) ds] + g(t)

g(s)+ [ C(s-x)(j)(T)dT\ ds
J J

C{t-s)ct>(s)ds+ [Z(t-s)
Jo

+ f Z(t- s)B(s)u{s) ds+ f Z(t-s) f G(s- x)(j>{x) dxds.
Jo Jo J-oo

(11)

Here the system (9) is said to be controllable if for each initial function
<f> 6 Cn(-oo, 0] and for every xl e Rn , there exists a control «(f), denned
on J , such that the solution x{t) of (9) satisfies x{t{) = x{.

THEOREM 3. System (9) is controllable on J iff W is nonsingular.

PROOF. Assume W is nonsingular. Let the control function u be defined
on / by
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u(t) = B\t)Z\tl-t)W-\0,tl)

x \xx - Z(tx) (x(0) - g(0) - J C(-s)<Ks)ds\ -g{tx)

- f'c(t1-s)g{s)ds
Jo

- / Z{tx-S) \g(s)+ / C(s-T)<t>(T)dT\ ds
JO [ 7-oo J

- / ' ' Z ( f , - J) / G($ - T)«^(T) ^ T ^ •
JO I/-00 J J

Then from (11), it follows that *(£,) = xl. The converse part follows as in
Theorem 1.

REMARK. By similar argument, with the same condition on the nonlinear
function / as in Theorem 2, one can establish the controllability relationship
between the linear system (9) and its corresponding nonlinear system.
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