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High Frequency Resolvent Estimates and
Energy Decay of Solutions to the Wave
Equation

Fernando Cardoso and Georgi Vodev

Abstract. We prove an uniform Hölder continuity of the resolvent of the Laplace-Beltrami operator

on the real axis for a class of asymptotically Euclidean Riemannian manifolds. As an application we

extend a result of Burq on the behaviour of the local energy of solutions to the wave equation.

1 Introduction and Statement of Results

Let (M, g) be an n-dimensional unbounded, connected Riemannian manifold with

a Riemannian metric g of class C∞(M) and a compact C∞-smooth boundary ∂M

(which may be empty), of the form M = X0 ∪ X, where X0 is a compact, connected

Riemannian manifold with a metric g|X0
of class C∞(X0) with a compact boundary

∂X0 = ∂M ∪ ∂X, ∂M ∩ ∂X = ∅, X = [r0,+∞) × S, r0 ≫ 1, with metric g|X :=

dr2 + σ(r). Here (S, σ(r)) is an n − 1 dimensional compact Riemannian manifold

without boundary equipped with a family of Riemannian metrics σ(r) depending

smoothly on r which can be written in any local coordinates θ ∈ S in the form

σ(r) =

∑

i, j

gi j(r, θ)dθidθ j , gi j ∈ C∞(X).

Denote Xr = [r,+∞) × S. Clearly, ∂Xr can be identified with the Riemannian mani-

fold (S, σ(r)) with the Laplace-Beltrami operator ∆∂Xr
written as follows

∆∂Xr
= −p−1

∑

i, j

∂θi
(pg i j∂θ j

),

where (g i j) is the inverse matrix to (gi j) and p = (det(gi j))1/2
= (det(g i j ))−1/2. Let

∆g denote the Laplace-Beltrami operator on (M, g). We have

∆X := ∆g |X = −p−1∂r(p∂r) + ∆∂Xr
= −∂2

r −
p ′

p
∂r + ∆∂Xr

,

where p ′
= ∂p/∂r. We have the identity

(1.1) ∆
♯
X := p1/2

∆X p−1/2
= −∂2

r + Λr + q(r, θ),
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where

Λr = −
∑

i, j

∂θi
(g i j∂θ j

),

and q is an effective potential given by

q(r, θ) = (2p)−2
( ∂p

∂r

) 2

+ (2p)−2
∑

i, j

∂p

∂θi

∂p

∂θ j

g i j + 2−1 p∆X(p−1).

We make the following assumptions:

(1.2)
∣

∣

∣

∂kq

∂rk
(r, θ)

∣

∣

∣
≤ Cr−k−δ0 , k = 0, 1,

with constants C, δ0 > 0. Set g
i j

♭ := r2g i j and denote

h♭(r, θ, ξ) =

∑

i, j

g
i j

♭ (r, θ)ξiξ j , (θ, ξ) ∈ T∗S.

We suppose that

(1.3)
∣

∣

∣

∂h♭

∂r
(r, θ, ξ)

∣

∣

∣
≤ Cr−1−δ0 h♭(r, θ, ξ), ∀(θ, ξ) ∈ T∗S,

with constants C, δ0 > 0.

Denote by G the selfadjoint realization of ∆g on the Hilbert space

H = L2(M, dVolg)

with Dirichlet or Neumann boundary conditions on ∂M. Given a real s > 1/2,

choose a real-valued function χs ∈ C∞(M), χs = 1 on M \ Xr0+1, χs = r−s on Xr0+2.

Also, given a > r0 choose a real-valued positive function ηa ∈ C∞(M), ηa = 0 on

M \ Xa, ηa = 1 on Xa+1.

It was proved in [3] (in a more general situation) that (for z ≥ C0, 0 < ε ≤ 1, and

the constant a > r0 big enough) the following estimates hold true

‖χs(G − z ± iε)−1χs‖L(H) ≤ eCz1/2

,(1.4)

‖ηaχs(G − z ± iε)−1χsηa‖L(H) ≤ C ′z−1/2,(1.5)

with some constants C0,C,C
′ > 0 independent of z and ε. One of the purposes of

the present paper is to prove the following

Theorem 1.1 Under the assumptions (1.2) and (1.3), for every s > 1/2, there exist

constants a > r0 and C0,C,C
′ > 0 so that for z ≥ C0, the limit

R±
s (z) := lim

ε→0+

χs(G − z ± iε)−1χs : H → H
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exists and satisfies the estimates, for C0 ≤ z1 ≤ z, C0 ≤ z2 ≤ z,

‖R±
s (z2) − R±

s (z1)‖L(H) ≤ C ′|z2 − z1|µeCz1/2

,(1.6)

‖ηaR±
s (z2)ηa − ηaR±

s (z1)ηa‖L(H) ≤ C ′|z2 − z1|eCz1/2

+ C ′|z2 − z1|µ,(1.7)

where 0 < µ < 1 is a constant depending only on s and δ0.

We will use this theorem to extend a result by Burq [1] on the behaviour of the

local energy of the solutions of the mixed problem for the wave equation

(1.8)















(∂2
t + ∆g)u(t, x) = 0 in R × M,

Bu(t, x) = 0 on R × ∂M,

u(0, x) = f1(x), ∂t u(0, x) = f2(x), for x ∈ M,

where B denotes either Dirichlet or Neumann boundary conditions. Recall that the

solutions to (1.8) can be expressed by the formula

(1.9) u = cos
(

t
√

G
)

f1 +
sin

(

t
√

G
)

√
G

f2.

Our main result is the following:

Theorem 1.2 Under the assumptions (1.2) and (1.3), for every s > 1/2, and m > 0,

the following estimates hold for t ≫ 1:

‖χs cos
(

t
√

G
)

ψ(G)(G + 1)−m/2χs‖L(H) ≤ Cm,s(log t)−m,(1.10)

‖χs sin
(

t
√

G
)

ψ(G)(G + 1)−m/2χs‖L(H) ≤ Cm,s(log t)−m,(1.11)

with a constant Cm,s > 0, where ψ denotes the characteristic function of the interval

[C ′
0,+∞) and C ′

0 > C0 is arbitrary and fixed.

Remark 1 It follows easily by an interpolation argument that we have analogues of

(1.10) and (1.11) for 0 < s ≤ 1/2 as well, but with Oǫ

(

(log t)−m(2s)2+ǫ
)

, 0 < ǫ ≪ 1,

in place of (log t)−m.

Remark 2 Clearly, the above results still hold true for the selfadjoint realization of

∆g + V (x), where V is a real-valued potential, V (x) ≥ 0, provided the assumption

(1.2) is satisfied with q replaced by q + V |X .

Remark 3 When ∂M = ∅ and the metric g is nontrapping (that is, every geodesic

reaches the region Xr , ∀r > r0, in a finite time), one can easily show by the meth-

ods of [3] (see also [4] where a similar bound is proved in a semi-classical setting)

that (1.4) holds with O(z−1/2) in place of the exponential term. As a consequence,

our proof of the above theorems gives that in this case one can improve (1.6) and

(1.7) replacing the exponential terms by constants, and have (1.10) and (1.11) with

O
(

t−νm/(m+2)
)

in the right-hand side, where 0 < ν < 1 is independent of m but

depending on s.
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Remark 4 We can take ψ ≡ 1 in Theorem 1.2 if the resolvent satisfies the following

estimates:

‖λR±
s (λ2)‖L(H) ≤ C,

‖λ2R±
s (λ2

2) − λ1R±
s (λ2

1)‖L(H) ≤ C|λ2 − λ1|µ,

for all 0 < λ, λ1, λ2 ≤
√

C0, with some constants C, µ > 0, where C0 is as in

Theorem 1.1.

It is easy to see that a long-range perturbation of the Euclidean metric on Rn,
n ≥ 2, provides an example of a manifold of the kind described above and satisfying

the assumptions (1.2) and (1.3), and hence to which our results apply. More precisely,

let O ⊂ Rn be a bounded domain with a C∞-smooth boundary and a connected

complement Ω = Rn \ O. Let g be a Riemannian metric in Ω of the form

g =

n
∑

i, j=1

gi j(x)dxidx j , gi j(x) ∈ C∞(Ω),

satisfying the estimates

(1.12) |∂αx (gi j(x) − δi j)| ≤ Cα〈x〉−γ0−|α|,

for every multi-index α, with constants Cα, γ0 > 0, where 〈x〉 := (1 + |x|2)1/2 and

δi j denotes the Kronecker symbol. It is easy to see that (Ω, g) is isometric to a Rie-

mannian manifold of the form described above satisfying assumptions (1.2) (with

δ0 = 2) and (1.3) (with δ0 = γ0) because of (1.12) and the fact that they are satisfied

for the Euclidean metric on Rn.

In the case when gi j = δi j for |x| ≥ ρ0 with some ρ0 ≫ 1, Burq [1] proved (1.4)

with χs replaced by a cutoff function χ ∈ C∞
0 (Rn), χ(x) = 1 for |x| ≤ ρ0 + 1. As a

consequence he obtained (1.10) and (1.11) with χs replaced by χ. His proof is based

on the fact that in this case the exponential bound of the cutoff resolvent on the real

axis implies that it extends analytically to a region of the form

{z ∈ C : |Im z| ≤ e−C1|z|
1/2

, Re z ≥ C2}

for some constants C1,C2 > 0. In [2] he extended these results to long-range met-

rics analytic outside some compact. His approach, however, does not work anymore

when the metric is not analytic outside a compact or when we have a weighted func-

tion instead of a cutoff. We show in the present paper that a uniform Hölder conti-

nuity of R±
s (z) suffices to establish the time decay in Theorem 1.2.

Usually, the Hölder continuity of the weighted resolvent near the real axis is proved

by Mourre’s method. To prove Theorem 1.1, however, we do not use this method.

Instead, we show that this property follows from the estimate (1.4) and the Hölder

continuity of the weighted resolvent of the Dirichlet self-adjoint realization of the

operator ∆X on the Hilbert space L2(X, dVolg). Thus we are reduced to studying the

resolvent of a much simpler operator. This is carried out in Section 3. The main
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point in our analysis is that, roughly speaking, the operator 2∆
♯
X + [r∂r,∆

♯
X] is of

order O(r−δ0 ) for r ≫ 1, because of the assumptions (1.2) and (1.3). The only

place where this fact is used is in the proof of the boundedness of the operator B

introduced in Section 3. All the other arguments work out under the less restrictive

assumptions of [3]. It is worth noticing that Mourre’s method does not work in our

situation without extra assumptions, because it requires some information about the

double commutator [r∂r, [r∂r,∆
♯
X]]. Therefore, an application of this method would

require making assumptions on ∂k
r g

i j

♭ for k = 0, 1, 2, and hence restricting the class

of the Riemannian manifolds to which our results apply.

2 Proof of Theorems 1.1 and 1.2

Denote by G0 the Dirichlet selfadjoint realization of ∆X on H0 = L2(X, d Volg). Re-

call that r ≥ r0 > 0 on X, so the function r−s belongs to C∞(X) for all real s. We will

derive Theorem 1.1 from the bounds (1.4), (1.5) and the following:

Proposition 2.1 Under the assumptions (1.2) and (1.3), for every s > 1/2, there exist

constants C0,C1 > 0, 0 < µ < 1, so that for C0 ≤ Re z1 ≤ z, 0 < Im z1 ≤ 1,

C0 ≤ Re z2 ≤ z, 0 < Im z2 ≤ 1, we have

(2.1) ‖r−s(G0 − z2)−1r−s − r−s(G0 − z1)−1r−s‖L(H0) ≤ C1|z2 − z1|µ.

Let ρ ∈ C∞(M), ρ = 1 on M \Xa+1, ρ = 0 on Xa+2. Given any u ∈ D(G), we have

(1 − ρ)u ∈ D(G0), and G(1 − ρ)u = G0(1 − ρ)u. Therefore, we have the following

identity

(2.2) χs(G − z2)−1χs − χs(G − z1)−1χs

= (z2 − z1)χs(G − z2)−1ρ(2 − ρ)(G − z1)−1χs

+ χs(G − z2)−1(1 − ρ)2(G − z1)−1χs

= (z2 − z1)χs(G − z2)−1ρ(2 − ρ)(G − z1)−1χs

+
(

χs(G − z2)−1[G0, ρ] + (1 − ρ)χs

) (

(G0 − z2)−1 − (G0 − z1)−1
)

×
(

χs(1 − ρ) + [ρ,G0](G − z1)−1χs

)

.

On the other hand, it is easy to see that (1.4) and (1.5) imply, respectively,

[ρ,G0](G − z j)
−1χs = O

(

eCz1/2)

: H → H,

[ρ,G0](G − z j)
−1χsηa = O (1) : H → H,

where j = 1, 2. Thus, for these values of z1 and z2, (1.6) and (1.7) follow from (2.1),

(2.2), (1.4) and (1.5). This in turn implies the existence of the limit, and hence (1.6)

and (1.7) hold for real z1 and z2.
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In what follows in this section we will show that the bounds (1.4)–(1.6) imply

Theorem 1.2. We let ‖ · ‖ denote the norm in L(H). Let A0 =
√

C ′
0 and let A > A0

be a big parameter to be fixed later on. We can write

(2.3) J(t) := χs cos
(

t
√

G
)

ψ(G)(G + 1)−m/2χs

=

2
∑

j=1

χs cos
(

t
√

G
)

ψ j(G)(G + 1)−m/2χs := J1(t) + J2(t),

where ψ1 is the characteristic function of the interval [A2
0,A

2) and ψ2 is the charac-

teristic function of the interval [A2,+∞). Clearly, by the spectral theorem we have

(2.4) ‖ J2(t)‖ ≤ ‖ψ2(G)(G + 1)−m/2‖ ≤ max
σ

|ψ2(σ)(σ + 1)−m/2| ≤ A−m.

On the other hand,

(2.5) J1(t) =

∫ A

A0

cos(tλ)F(λ) dλ,

where

F(λ) = (πi)−1λ(1 + λ2)−m/2
(

R+
s (λ2) − R−

s (λ2)
)

satisfies the bound (in view of (1.4) and (1.6))

(2.6) ‖F(λ2) − F(λ1)‖ ≤ |λ2 − λ1|µeCA,

for A0 ≤ λ1 ≤ A, A0 ≤ λ2 ≤ A, with possibly a new constant C > 0. Let φ ∈ C∞
0 (R)

be a real-valued function, φ ≥ 0, such that
∫

φ(σ)dσ = 1. The function

Fǫ(λ) = ǫ−1

∫

F(λ− σ)φ(σ/ǫ) dσ, 0 < ǫ≪ 1,

is smooth with values in L(H) and, in view of (2.6), satisfies the bound (for A0 ≤
λ ≤ A)

(2.7)

‖Fǫ(λ) − F(λ)‖ ≤ ǫ−1

∫

‖F(λ) − F(λ− σ)‖φ(σ/ǫ) dσ

≤ eCAǫ−1

∫

σµφ(σ/ǫ) dσ ≤ O(ǫµ)eCA.

Hence,

(2.8)
∥

∥ J1(t) −
∫ A

A0

cos(tλ)Fǫ(λ) dλ
∥

∥ ≤ O(ǫµ)eCA,
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with possibly a new constant C > 0. On the other hand, integrating by parts gives

(2.9)

t

∫ A

A0

cos(tλ)Fǫ(λ) dλ = Fǫ(A0) sin(A0t) − Fǫ(A) sin(At)

−
∫ A

A0

sin(tλ)
dFǫ(λ)

dλ
dλ.

By (1.4) we have (with k = 0, 1)

(2.10)
∥

∥

∥

dkFǫ(λ)

dλk

∥

∥

∥
≤ O(ǫ−k)eCA,

for A0 ≤ λ ≤ A. By (2.9) and (2.10), we conclude

(2.11)
∥

∥

∥

∫ A

A0

cos(tλ)Fǫ(λ) dλ
∥

∥

∥
≤ O(ǫ−1)t−1eCA.

Choosing ǫ = t−1/(1+µ), we get from (2.8) and (2.11),

(2.12) ‖ J1(t)‖ ≤ O(t−ν)eCA,

where ν = µ/(1 + µ). Choose now A = O(log t) so that eCA
= tν/2. Then it is clear

that (1.10) follows from (2.3), (2.4) and (2.12). The estimate (1.11) is treated in the

same way.

3 Proof of Proposition 2.1

Denote by G
♯
0 the Dirichlet self-adjoint realization of the operator ∆

♯
X on the Hilbert

space H
♯
0 = L2(X, drdθ). Clearly, it suffices to prove (2.1) with G0 replaced by G

♯
0,

and H0 replaced by H
♯
0. In what follows ‖ · ‖ will denote the norm in L(H

♯
0). It is easy

to see that (1.3) implies

−[∂r,Λr] ≥
C

r
Λr, C > 0,

for r big enough. Therefore, it follows from Theorem 2.1 of [5] that we have the

estimate (for s > 1/2, 0 < ε ≤ 1, k = 0, 1)

(3.1)
∥

∥ r−s
D

k
r (G

♯
0 − z ± iε)−1r−s

∥

∥ ≤ Cz−1/2, z ≥ C0,

where Dr = −iz−1/2∂r , with constants C0,C > 0 independent of z and ε. Thus, it

suffices to prove (2.1) when 0 < |z2 − z1| ≤ 1. Obviously, if (2.1) holds true for some

s0 > 1/2 with µ = µ0 > 0, it also holds for every s > s0 with µ = µ0. Let us see

that it holds for 1/2 < s < s0, too. Given any A ≫ 1, denote by χ(r ≤ A) (resp.
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χ(r ≥ A)) the characteristic function of the set r ≤ A (resp. r ≥ A). In view of (3.1),

we have

∥

∥ r−s(G
♯
0 − z2)−1r−s0 − r−s(G

♯
0 − z1)−1r−s0

∥

∥

≤
∥

∥ rs0−sχ(r ≤ A)
(

r−s0 (G
♯
0 − z2)−1r−s0 − r−s0 (G

♯
0 − z1)−1r−s0

)
∥

∥

+
∥

∥ r−(2s−1)/4χ(r ≥ A)r−(2s+1)/2(G
♯
0 − z2)−1r−s0

∥

∥

+
∥

∥ r−(2s−1)/4χ(r ≥ A)r−(2s+1)/2(G
♯
0 − z1)−1r−s0

∥

∥

≤ CAs0−s|z2 − z1|µ0 + CA−(2s−1)/4
= O

(

|z2 − z1|µ
)

,

if we choose A = |z2 − z1|−4µ0/(4s0−2s−1), where µ = µ0(2s − 1)/(2s0 − s − 1).

Proceeding in the same way once more we can replace s0 on the right by s as well.

Thus, it suffices to prove (2.1) for s > 3/2. Let us see now that it would follow from

the following estimate

(3.2)
∥

∥ r−s(G
♯
0 − z ± iε)−2r−s

∥

∥ ≤ Cε−1+α,

for real z ≥ C0, with constants C0,C, α > 0 independent of z and ε. Fix z ∈ C,

Im z > 0, Re z ≥ C0, and let 0 < ε ≤ 1. Clearly, (3.2) implies

(3.3)
∥

∥ r−s(G
♯
0 − z − iε)−1r−s − r−s(G

♯
0 − z)−1r−s

∥

∥ ≤ Cεα.

Therefore, if z1 and z2 are as in Proposition 2.1, we have

(3.4)
∥

∥ r−s(G
♯
0 − z2)−1r−s − r−s(G

♯
0 − z1)−1r−s

∥

∥

≤
∥

∥ r−s(G♯
0 − z2 − iε)−1r−s − r−s(G♯

0 − z2)−1r−s
∥

∥

+
∥

∥ r−s(G
♯
0 − z1 − iε)−1r−s − r−s(G

♯
0 − z1)−1r−s

∥

∥

+
∥

∥ r−s(G♯
0 − z2 − iε)−1r−s − r−s(G♯

0 − z1 − iε)−1r−s
∥

∥

≤ 2Cεα + |z2 − z1|ε−2
= O

(

|z2 − z1|µ
)

,

if we take ε = |z2 − z1|1/(2+α), where µ = α/(α + 2).

Proof of (3.2) Set

A := 2∆
♯
g + [r∂r,∆

♯
g] = 2q + r

∂q

∂r
− r−1

∑

i, j

∂θi

( ∂g
i j

♭

∂r
∂θ j

)

.
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We have

2(z ∓ iε)r−s(G
♯
0 − z ± iε)−2r−s

= −2r−s(G
♯
0 − z ± iε)−1r−s

+ r−s(G
♯
0 − z ± iε)−12∆

♯
g(G

♯
0 − z ± iε)−1r−s

= −2r−s(G♯
0 − z ± iε)−1r−s

− r−s(G
♯
0 − z ± iε)−1[r∂r,∆

♯
g](G

♯
0 − z ± iε)−1r−s

+ r−s(G
♯
0 − z ± iε)−1

A(G
♯
0 − z ± iε)−1r−s

= −r−s(G♯
0 − z ± iε)−1r−s − r−s(G♯

0 − z ± iε)−1∂rr
−s+1

+ r−s+1∂r(G
♯
0 − z ± iε)−1r−s

+ r−s(G♯
0 − z ± iε)−1

A(G♯
0 − z ± iε)−1r−s,

and since s > 3/2, in view of (3.1), we obtain

(3.5) 2z
∥

∥ r−s(G
♯
0−z± iε)−2r−s

∥

∥ ≤ C +
∥

∥ r−s(G
♯
0−z± iε)−1

A(G
♯
0−z± iε)−1r−s

∥

∥ .

We need now the following

Lemma 3.1 For s > 1/2, 0 < ε ≤ 1, we have

(3.6)
∥

∥ r−s(G
♯
0 − z ± iε)−1

∥

∥ ≤ Cε−1/2z−1/4, z ≥ C0,

with constants C,C0 > 0 independent of ε and z.

By (3.1) and (3.6), ∀ 0 < δ ≤ 1/2, we have

∥

∥ r−s(G♯
0 − z ± iε)−1r−δ

∥

∥

(3.7)

≤
∥

∥ r−s(G
♯
0 − z ± iε)−1χ(r ≤ A)r−δ

∥

∥ +
∥

∥ r−s(G
♯
0 − z ± iε)−1χ(r ≥ A)r−δ

∥

∥

≤ As−δ
∥

∥ r−s(G♯
0 − z ± iε)−1r−s

∥

∥ + A−δ
∥

∥ r−s(G♯
0 − z ± iε)−1

∥

∥

≤ CAs−δ + CA−δε−1/2
= O

(

ε−1/2+ν
)

,

if we choose A = ε−1/(2s), where ν = δ/(2s). Furthermore, we have

(3.8) r−s(G
♯
0 − z ± iε)−1

A(G
♯
0 − z ± iε)−1r−s

=

(

r−s(G
♯
0 − z ± iε)−1[∂2

r , r
−δ0/2]

+ (z ∓ iε + i)r−s(G
♯
0 − z ± iε)−1r−δ0/2 + r−s−δ0/2

)

×B
(

r−s−δ0/2 + (z ∓ iε− i)r−δ0/2(G
♯
0 − z ± iε)−1r−s

+ [r−δ0/2, ∂2
r ](G

♯
0 − z ± iε)−1r−s

)

,
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where

B = (G♯
0 − i)−1rδ0A(G♯

0 + i)−1

is easily seen to be a bounded operator on H
♯
0. Indeed, it follows from the assump-

tions (1.2) and (1.3) that the real-valued quadratic form

β(v, v) = 〈rδ0Au, u〉
H
♯
0

, u = (G
♯
0 + i)−1v ∈ D(G

♯
0), v ∈ H

♯
0,

satisfies the estimate

|β(v, v)| ≤ C‖u‖2

H
♯
0

+ C〈Λru, u〉H
♯
0

≤ C‖u‖2

H
♯
0

+ C〈∆♯
gu, u〉

H
♯
0

≤ C‖v‖2

H
♯
0

, C > 0.

Therefore, by the Riesz theorem there exists a self-adjoint operator B1 ∈ L(H
♯
0) such

that

β(v, v) = 〈B1v, v〉
H
♯
0

.

Thus we get B = B1 and the desired property follows. Now, by (3.1), (3.7) and (3.8)

we conclude that

(3.9)
∥

∥ r−s(G♯
0 − z ± iε)−1

A(G♯
0 − z ± iε)−1r−s

∥

∥ ≤ Czε−1+α,

with α = δ0/(2s) if δ0 ≤ 1, and α = 1 if δ0 > 1. Clearly, (3.2) follows from (3.5)

and (3.9).

Proof of Lemma 3.1 It is actually contained in the proof of (3.1) (see the proof of

Theorem 2.1 of [5] or the proof of Proposition 2.4 of [3]). We will only sketch the

main points. Denote λ = z1/2, Dr = (iλ)−1∂r , P = λ−2
∆
♯
g − 1 + iελ−2, where

0 < ε≪ 1. It is proved in the above articles that, ∀u ∈ D(G
♯
0), we have

(3.10)
∥

∥ r−su
∥

∥

2

H
♯
0

≤ C
∥

∥Pu
∥

∥

2

H
♯
0

+ Cελ−1
∣

∣ 〈u,Dru〉H
♯
0

∣

∣ + Cλ
∣

∣ 〈Pu,Dru〉H
♯
0

∣

∣

≤ O
(

λ3ε−1
)

‖Pu‖2

H
♯
0

+ O
(

ελ−1
)(

‖u‖2

H
♯
0

+ ‖Dru‖2

H
♯
0

)

.

On the other hand,

(3.11) ελ−2‖u‖2

H
♯
0

= Im 〈Pu, u〉
H
♯
0

≤ O
(

λ2ε−1
)

‖Pu‖2

H
♯
0

+ 2−1ελ−2‖u‖2

H
♯
0

,

(3.12)

‖Dru‖2

H
♯
0

− 2‖u‖2

H
♯
0

≤ ‖Dru‖2

H
♯
0

+ 〈Λru, u〉H
♯
0

− 〈(1 − λ−2q)u, u〉
H
♯
0

= Re 〈Pu, u〉
H
♯
0

≤ ‖Pu‖2

H
♯
0

+ ‖u‖2

H
♯
0

.

By (3.10), (3.11) and (3.12),

(3.13) ‖r−su‖2

H
♯
0

≤ O
(

λ3ε−1
)

‖Pu‖2

H
♯
0

,

which clearly implies (3.6).
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