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Abstract

A submanifold of a Riemannian manifold is called a rorally umbilical submanifold if the second
fundamental form is proportional to the first fundamental form. In this paper, we shall prove that there is
no totally umbilical submanifold of codimension less than rank M — 1 in any irreducible symmetric space
M. Totally umbilical submanifolds of higher codimensions in a symmetric space are also studied. Some
classification theorems of such submanifolds are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.)y. 53 B 20, 53 C 35, 53 C 40.

1. Introduction

Let N be an n-dimensional submanifold of an m-dimensional Riemannian manifold
M (n = 2) with metric g. Let V and V be the covariant differentiations on N and M,
respectively. Then the second fundamental form 4 of the immersion is defined by the
equation

(1.1 WX.Y)=V, Y-V, Y,

where X and Yare vector ficlds tangent to N. The submanifold N is said to be totally
umbilical if

(1.2) X, Y)=g(X,Y) H,

for all vector fields X, Ytangent to N, where H = 1/n trace h is the mean curvature
vector of N in M. The length of H is called the mean curvature of N in M. A totally
umbilical submanifold with vanishing mean curvature is called a rotally geodesic
submanifold.
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In Wolf (1963), totally geodesic submanifolds in rank one symmetric spaces are
classified. Totally geodesic submanifolds in symmetric spaces of higher ranks have
been studied in Chen-Nagano (1977, 1978) in which the (M., M _)-theory is
introduced. In this paper, we shall generalize the results of Wolf (1963) and Chen-
Nagano (1977, 1978) to totally umbilical submanifolds. In particular, we shall prove
the following theorems.

THEOREM 1. If an irreducible symmetric space M admits a totally umbilical
hypersurface N, then both M and N are of constant curvature.

THEOREM 2. Let N be a totally umbilical submanifold in a symmetric space M. If
dim M —dim N <rank M — 1, then the mean curvature vector is parallel (in the
normal bundle). In particular, the mean curvature is constant and N is either totally
geodesic or of constant curvature.

THEOREM 3. If N is a totally umbilical submanifold in an irreducible symmetric space
M, then

(1.3) codim N = rank M — 1.

THEOREM 4. Let N be a totally umbilical submanifold with constant mean curvature
in a compact symmetric space M. Then

(1) either N is totally geodesic or N is of positive constant curvature, and

(i) if the mean curvature vector H is not parallel, and dim N > 2, then
dimN < {dim M.

REMARK. Totally umbilical submanifold with parallel mean curvature vector in
(locally) symmetric spaces have been compiletely classified in Chen (1979).

For general results on symmetric spaces, see Helgason (1968).

The estimate of codimension in Theorem 2 is best possible.

2. Preliminaries

Let N be an n-dimensional submanifold of a Riemannian manifold M with metric
g. For a vector field £ normal to N, we write

(2.1 Vi&=—A,X+Dy¢,

where — A, X, Dy £ are the tangential and normal components of Vy & respectively.
A normal vector field ¢ is said to be parallel (in the normal bundle)if Dy & = Ofor all
X tangent to N.

Let R and R be the curvature tensors associated with V and V, respectively. For
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example,
(2.2) RIX,Y)=VxVy =V, V=V 1)

A Riemannian manifold M is locally symmetric if VR = 0.
For the second fundamental form h, we define the covariant derivative in
(TNY®(T* N), to be

(2.3) (Ve (Y, Z) = Dy(h(Y, Z)) — W(Vx Y, Z)— h(Y,Vx Z),

where TN and T+ N denote the tangent and normal bundles of N, respectively.
For vector fields X, Y, Z. W tangent to N, the equations of Gauss and Codazzi
take the forms:

(2.4) R(X,Y: Z, W) = R(X.Y; Z, W)+ g(h(X, W), (Y, Z)) — g(W( X, Z), h(Y, W),
(2.5) (RIX, VVZ) = (Vi (Y, Z)—(Vy ) (X, Z),

where R(X,Y; Z,W) = g(R(X,Y)Z, W),.., etc, and * in (2.5) denotes the normal
component.

Let X and Y be two orthonormal vectors tangent to N. The sectional curvature
K(X A Y) of the plane X A Yspanned by {X, Y} is given by

(2.6) K(X A Y)=R(X,Y; Y. X).

We denote by K the sectional curvature for M. By an extrinsic sphere we mean a
totally umbilical submanifold with nonzero parallel mean curvature vector. We
mention the following lemma for later use.

LemMA 1 (Chen 1979)). Let N be an n-dimensional extrinsic sphere in a locally
symmetric space M. Then M admits an (n+ 1)-dimensional totally geodesic sub-
manifold N such that (a) N is an extrinsic sphere of N and (b) both N and N are of
constant currature.

An isometry s of a Riemannian manifold is said to be involutive if its iterate 52 is
the identity map. A Riemannian manifold M is a symmetric space if, for each point p
of M, there exists an involutive isometry s, of M such that pis an isolated fixed point
of s,. It is well known that every symmetric space is a complete locally symmetric
space. And every locally svmmetric space is locally an open submanifold of a
symmetric space.

We denote by G the closure of the group of isometries generated by |s,: pe M}
in the compact-open topology. Then G acts transitively on M; hence the typical
isotropy subgroup K. say at 0, is compact and M = G/K.

Let g be the involutive automorphism of G given by g4(X) = 54 x50, x€ G. Then
o, fixes K and it induces an involutive automorphism of the Lie algebra g of G. The

https://doi.org/10.1017/51446788700016414 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016414

132 Bang-Yen Chen [4]

Cartan decomposition of g is then given by
2.7 g=f+m,

where t and m are the eigenspaces of g, with eigenvalues 1 and — 1, respectively. Itis
known that T is the Lie algebra of K and we have

(Ef]lct, [Emlem [mm]cl
Moreover, m can be identified with the tangent space of M at 0.
The following lemmas of E. Cartan are well known (sce Helgason (1968)).
LEMMA 2. The curvature tensor R of M at 0 satisfies
(2.8) RX,VVZ=-[[X.Y]2]
Jor X.V.Zem.

LEMMA 3. Let B be a totally geodesic submanifold of M through O. Then B is flat if
and only if [, 7] = 0 where n = TyB =« TyM = m.

We mention the following unpublished result of Chen-Nagano for later use. This
resuit is proved by using the (M ,, M _)-theory (Chen-Nagano (1978)).

LeMMA 4. Every totally geodesic submanifold B of an irreducible locally symmetric
space M satisfies

(2.9) dim B < dim M —rank M.

3. Proof of Theorem 1

Let N be a totally umbilical hypersurface of an irreducible symmetric space M.
Then by (1.2) and (2.3) we have

(3.1 (Vxh(Y,Z)=g(Y,Z) Dy H.
Thus by (3.1) and the Codazzi equation, we find

3.2 R(X,Y; Z, H) = 3{g(Y. Z)(X2?) — g(X. Z) (Ya')},

where a? = g(H, H). Let E, ..., E, be an orthonormal basis of T,N, pe N.Then (3.2)
implies

(3.3) R(E\,E; E,H) = }(E, &%)
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for i = 2....n. Consequently, the Ricci tensor S of M satisfies

(3.4) S(EH) = ’f%l (E, 23).

On the other hand, since M is Einsteinian, S(E,, H) = 0. Thus we find that E, o> = 0.
Since E| can be chosen to be any unit vector, o is constant. Moreover, because N is a
hypersurface, N is either an cxtrinsic sphere or a totally geodesic hypersurface. If N is
an extrinsic sphere, Lemma 1 implies that both N and M are of constant curvature. If
N is a totally geodesic hypersurface, Lemma 4 implies that M is a locally symmetric
space of rank one. From Wolf’s result (Wolf (1963)), we know that this is impossible
unless M is locally isometric to a sphere, or a hyperbolic space. In both cases, M has
constant curvature. This proves Theorem 1.

4. Proof of Theorems 2 and 3

Suppose that N is a totally umbilical submanifold of a symmetric space M. We
may choose any fixed point pin M as the origin of M. For any given nonzero vector
XeT,N, there exists a flat totally geodesic submanifold B through p such that
XeT,B and dim B = rank M. If dim M —dim N < rank M — 1, we have

(4.1) dim (T, N~ T,B) > 2.

Thus there is a unit vector Yin T, N n T, B so that g(X, Y) = 0. Since N is totally
umbilical, we have

(4.2) (RIX.Y)VZ)y: =g(Y,Z)-DyH—g(X,Z)-D, H.
Consequently, we obtain
(4.3) (RIX,Y)Y) = D, H.

On the other hand, since B is a flat totally geodesic submanifold of M, Lemma 3
says that the tangent space T, B forms an abelian linear subspace of m. In particular,
we have [ X, Y] = 0. Substituting this into (2.8) we find

(4.4) RIX,Y)Y=0.

Combining (4.3) and (4.4) we find Dy H = 0. Since X can be chosen to be any vector
tangent to N at p and p can be chosen to be any point in N, the mean curvature
vector H is parallel in the normal bundle. In particular, the mean curvature is
constant and from Lemma 1, we see that N is either totally geodesic or of constant
curvature. This proves Theorem 2.

If M is an irreducible symmetric space, Lemma 4 shows that M admits no totally
geodesic submanifold of codimension < rank M. From the discussion above, we see
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that every totally umbilical submanifold of codimension <rank M —1 is an
extrinsic sphere. Therefore, by using Lemma 1, M admits a totally geodesic
submanifold of codimension < rank M —2. This contradicts to Lemma 4 again.
Theorem 3 is thus proved.

5. Proof of Theorem 4

Let N be a totally umbilical submanifold with constant mean curvature in a
symmetric space. Then, by a result of Miyazawa and Chuman (1972), N is either
totally geodesic or a locally symmetric space with vanishing Weyl conformal
curvature tensor. In the following, we assume that N is not totally geodesic.

Case (a). If N is irreducible and locally symmetric, N is Einsteinian. Since every
Einstein manifold with vanishing Weyl conformal curvature tensor is of constant
curvature, N is of constant curvature.

Case (b). If N isreducible and of dimension 2 or 3, then N islocally the product of
two locally symmetric spaces of dimension < 2. Since every locally symmetric space
of dimension 2 is of constant curvature, N is either flat or a local product of a curve
and a surface of constant curvature.

Case (c). If N is reducible and of dimension > 4, then from Proposition 2 of
Goldberg (1969), we see that N is a flat space, a local product of two spaces of
constant curvatures ¢ and — ¢, or a local product of a curve and a space of constant
curvature.

Consequently, if N is not totally geodesic, N is one of the following spaces: (1) a
space of constant curvature, (2) a local product of two spaces of constant curvatures
¢ and —c¢, respectively, or (3) a local product of a curve and a space of constant
curvature.

Now, if M is a compact symmetric space, M is always nonnegatively curved. Thus,
by the equation of Gauss, if N is not totally geodesic, N is always positively curved.
The cases (2) and (3) cannot occur. Therefore, N is either totally geodesic or of
positive constant curvature. This proves part (i} of Theorem 4.

Now, suppose that dim N > 2 and the mean curvature vector is not parallel.
From part (i), N is of positive constant curvature ¢. Since N is a totally umbilical
submanifold of constant mean curvature, (3.2) gives

(5.1 R(X, Y. Z,Hy=0
for vector fields X, Y, Z tangent to N. By using VR =10,(1.1) (1.2), (2.5) and (5.1) we
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find
(52) 2*R(X.Y; Z,U)= g(U,X)R(H,Y; Z,H)— g(U, Y)RH, X; Z,H)
+g(Y’Z)g(DX H9DUH)_g(X’Z)g(DYH’DUH)#

for U tangent to N. Let X = U, Y= Z be orthonormal vectors tangent to N. Then
{(2.4) and (5.2) gives

(5.3) *K(H A Y)=—|DxH|]*+a?c—o?,

where ¢ is the constant sectional curvature of N.

Since thisis true for all orthonormal vectors X and Y tangentto Nanddim N > 2,
| Dy H|is independent of X" In particular, since H isnot parallel, | Dy H | is nonzero
for any unit vector X tangent to N at some point p in N.

Let U = X = E, and summing on i in (5.2) we find

(54)  (n—DRH.Y; Z. H)=a?S(Y,Z)—(n—1)a* ¢(Y,Z)

by virtue of (2.4), where | DH |* = 37_, g(Dy H,D; H) and S is the Ricci tensor of N.
Substituting (5.4) into (5.2) we obtain

(5.3) n—1*R(X.Y; Z.U)
= |DH*{g(Y.U)g(X.Z)~ g(X. U)g(Y, Z)}
+g(U, X) {o* S(Y, Z)+g(Dy H,D, H)}
—g(U, Y){a*S(X,Z)+ g(Dy H, D, H)}
+(n—1){g(Y, Z) g(Dx H,D H)— g(X, Z) gDy H. Dy, H)}.
By setting Y= Z = E; and summing on i, we get

n—

; 2 (X, U)| DH|? —% 22 1g(X, U),

(5.6) (n—2)g(DyH.D, H) = «2S(X,U)+

where t = 37_, S(E,, E,) is the scalar curvature of N.
Since N is of constant curvature, (5.6) shows that

(5.7) gDy H,Dy H) =0

for orthonormal vectors X and U. Because Dy H is nonzero at p for all unit vector
XeT,N. (5.7) tells us that

H,Dg H,..D; H

are mutually orthogonal and they span an (n+ 1)-dimensional linear subspace of the
normal space T, N. This proves part (ii) of Theorem 4.
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