ON ISOMORPHISMS OF ABELIAN GROUP ALGEBRAS

EUGENE SPIEGEL

For F a field and G a group, let $F G=F(G)$ be the group algebra of G over F. If \mathscr{S} is a class of finite abelian groups, F induces an equivalence relation on \mathscr{S} by $G, H \in \mathscr{S}$ are equivalent if and only if $F G \simeq F H$. We will call two fields F and K equivalent on \mathscr{S} if they induce the same equivalence relation on \mathscr{S} We will say F is equivalent to isomorphism on \mathscr{S} if $F G \simeq F H$ if and only if $G \simeq H$ for any two elements $G, H \in \mathscr{S}$.

It is well known, (e.g. [2]) that the field of rational numbers Q is equivalent to isomorphism on the class of all finite abelian groups. In this note, we investigate when two fields F and K are equivalent on \mathscr{S}, for various sets \mathscr{S}. In particular, we identify which fields are equivalent to isomorphism on the class of all finite abelian groups.

If n is a positive integer, let C_{n} denote the cyclic group of order n.
Lemma 1. Let F be a field. Suppose G and H are finite abelian groups of order $n, n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{r}{ }^{e_{r}}$, where the p_{i} are distinct primes $i=1, \ldots, r$. Let $G_{p_{i}}\left(H_{p_{i}}\right)$ denote the p_{i}-Sylow subgroup of $G(H)$ respectively. Then $F G \simeq F H \Leftrightarrow$ $F G_{p_{i}} \simeq F H_{p_{i}}, i=1, \ldots, r$.

Proof. If the characteristic of F is relatively prime to n, the lemma is a result of Perlis-Walker [2]. If the characteristic of F is $p_{1}, F G \simeq F H \Rightarrow$ $F\left(G / G_{p_{1}}\right) \simeq F\left(H / H_{p_{1}}\right)$ and $G_{p_{1}} \simeq H_{p_{1}}$ by the results in [1]. As $\left|G / G_{p_{1}}\right|$ is relatively prime to the characteristic of F, the lemma follows by PerlisWalker's theorem.

This lemma shows that to study the equivalence of two fields F and K on the class of all finite abelian groups, it is sufficient to restrict our study to the class of all finite abelian p-groups. We will always suppose that p denotes a fixed prime. If F is a field of characteristic p, and \mathscr{S} is the class of all finite abelian p-groups, then F is equivalent to isomorphism on \mathscr{S}. Hence in the following we will always assume that all fields are of characteristic other than the fixed prime p.

If F is a field, define the p-sequence $\left\{\gamma_{F, p}(n)\right\}$ of $F(n \geqq 1)$ by

$$
\gamma_{F, p}(n)=\operatorname{deg}\left(F\left(\zeta_{p^{n+1}}\right) / F\left(\zeta_{p^{n}}\right)\right)
$$

where $\zeta_{p^{n}}$ is a primitive p^{n} th root of unity over F.

Received July 27, 1973 and in revised form, October 1, 1973.

Proposition 2. Let F be a field. The p-sequence of F has one of the following forms

$$
\begin{aligned}
& 1,1,1, \ldots \\
& 1,1, \ldots, 1, p, p, \ldots \quad(p \text { odd }) \\
& p, p, p, \ldots
\end{aligned}
$$

while if $p=2$, there is arbitrary choice of 1 or p in the first component.
Proof. Suppose K is a field containing a primitive p^{n} th ($n \geqq 1$) root of unity and not containing a p^{n+1} st root of unity. Let $\zeta_{p^{n+2}}$ be a primitive p^{n+2} root of unity for K, and let $\left(\zeta_{p^{n+2}}\right)^{p}=\alpha_{1}$ and $\alpha_{1}^{p}=\alpha_{2}, \alpha_{2} \in K$. Then α_{1} is a primitive p^{n+1} root of unity and α_{2} is a primitive p^{n} root of unity. Assume $\zeta_{p^{n+2}} \in K\left[\alpha_{1}\right]$. Then $x^{p}-\alpha_{2}=f(x)$ is irreducible in $K[x]$, and $g(x)=x^{p^{2}}-\alpha_{2}$ can be factored in $K[x]$ into the product of p irreducible polynomials $g_{1}(x), \ldots, g_{p}(x)$ each of degree p.

Suppose $g_{1}\left(\zeta_{p^{n+2}}\right)=0$ and let $\zeta_{p^{n+2}}=\lambda_{1}, \lambda_{2}, \ldots \lambda_{p}$ be the roots of $g_{1}(x)$. If $h(x)=\prod_{i=1}^{p}\left(x-\lambda_{i}{ }^{p}\right), h(x) \in K[x]$ since the coefficients of $h(x)$ are symmetric functions of $\lambda_{1}{ }^{p}, \lambda_{2}{ }^{p}, \ldots, \lambda_{p}{ }^{p}$ and can be expressed as polynomials in the coefficients of $g_{1}(x)$.

Let the constant term of $g_{1}(x)$ be $(-1)^{p} c=\lambda_{1} \lambda_{2} \ldots \lambda_{p}$. Then the constant term of $h(x)$ is $(-1)^{p} c^{p}=\lambda_{1}{ }^{p} \lambda_{2}{ }^{p} \ldots \lambda_{p}{ }^{p}$. But $h(x)$ is a monic polynomial of degree p which is satisfied by $\lambda_{1}{ }^{p}=\alpha_{2}$, and so must coincide with the minimal polynomial for α_{2}; i.e., $h(x)=x^{p}-\alpha_{2}=f(x)$. In particular, $-\alpha_{2}=(-1)^{p} c^{p}$.

If p is odd, $c^{p}=\alpha_{2}$, and c is a root of $f(x)$. This contradicts the irreducibility of $f(x)$.

If $p=2$, and $n>1$, then α_{2} is a primitive 2^{n} th root of unity if and only if $-\alpha_{2}$ is a primitive 2^{n} th root of unity. Thus $x^{p}+\alpha_{2}=\bar{f}(x)$ is also irreducible over $K[x]$. But $-\alpha_{2}=c^{p}$ and c is a root of $\bar{f}(x)$, contradicting our assumption. We thus conclude that if p is odd or if $n>1$ and $p=2$, whenever p appears in the p-sequence of K all remaining terms must also be p.

Proposition 3. Let K / F be an extension of fields. Let M be the maximal abelian extension of F in K. Then the p-sequence of K equals the p-sequence of M.

Proof. Let ζ_{n} be a primitive nth root of unity over F. $F\left(\zeta_{n}\right)$ and M are abelian extensions of F, so the composite $M\left(\zeta_{n}\right)$ is an abelian extension of F. $M \subset\left(K \cap M\left(\zeta_{n}\right)\right)$. But $K \cap M\left(\zeta_{n}\right)$ is an abelian extension of F contained in K. Hence $K \cap M\left(\zeta_{n}\right)=M . M\left(\zeta_{n}\right)$ is Galois over M, so that $K\left(\zeta_{n}\right)$ is Galois over K with Galois group isomorphic to the Galois group of $M\left(\zeta_{n}\right) / M$. In particular, if $n=p^{r}, \operatorname{deg}\left(M\left(\zeta_{p^{r}}\right) / M\right)=\operatorname{deg}\left(K\left(\zeta_{p^{r}}\right) / K\right)$, so K and M have the same p-sequences.

Let K / F be an extension of fields. Call M_{p} the maximal abelian p-extension of F in K if M_{p} is the composite of all finite abelian p-extensions of F in K.

Proposition 4. Let K / L be an extension of fields. Let M_{p} be the maximal
abelian p-extension of L in K. Then the p-sequence for M_{p} equals the p-sequence for K.

Proof. Let M be the maximal abelian extension of L in K, and M_{p} the maximal abelian p-extension of L in K. If $\alpha \in M\left(\zeta_{p}\right)$, $\left(\operatorname{deg}\left(M_{p}\left(\zeta_{p}\right)(\alpha) / M_{p}\left(\zeta_{p}\right)\right), p\right)$ $=1$. Let n be a positive integer. The $\operatorname{deg}\left(M_{p}\left(\zeta_{p^{n}}\right) / M_{p}\left(\zeta_{p}\right)\right)$ is a power of p, so that $M\left(\zeta_{p}\right) \cap M_{p}\left(\zeta_{p^{n}}\right)=M_{p}\left(\zeta_{p}\right)$. Hence $\operatorname{deg}\left(M\left(\zeta_{p^{n}}\right) / M\left(\zeta_{p}\right)\right)=\operatorname{deg}$ ($\left.M_{p}\left(\zeta_{p^{n}}\right) / M_{p}\left(\zeta_{p}\right)\right)$. This means that the p-sequence of M_{p} is equal to that of M. By Proposition 3, the result follows.

Corollary 5. Let K / L be a finite extension of fields of degree n. Suppose $(p, n)=1$. Then the p-sequences of K and of L coincide.

We now investigate the relationship between the equivalence of two fields on the set of abelian p-groups and their respective p-sequences.

Theorem 6. Suppose K and F are fields. If K and F have the same p-sequences, then they are equivalent on the class of all finite abelian p-groups. If, however, the p-sequences differ first at the nth place, then there exist abelian groups of order $p^{n+1}\left(p^{n+2}\right.$, if $\left.p=2\right)$ which are equivalent over one field but not the other.

Proof. If L is a field and G is an abelian group of order p^{s}, then

$$
L(G) \simeq \sum_{i=1}^{n} a_{i} L\left(\zeta_{p^{i}}\right)
$$

where $a_{i}=n_{i} / v_{i}, n_{i}$ is the number of elements of G of order p^{i} and $v_{i}=\operatorname{deg}\left(L\left(\zeta_{p^{i}}\right) / L\right)$.

Define the sequence $\alpha_{1}, \alpha_{2}, \ldots$ as follows. $\alpha_{1}=1$. If α_{n} is defined, define α_{n+1} to be the least integer r such that $v_{r}>v_{\alpha_{n}}$, if this is possible; otherwise, let $\alpha_{n+1}=\alpha_{n+2}=\ldots=\infty$.

For the group G, we can define the sequence

$$
b_{i}=\sum_{j=\alpha_{i}}^{\alpha_{i+1}-1} a_{j}
$$

where $a_{r}=0$ if $r>n$ and $b_{i}=0$ if $\alpha_{i}=\infty$. Then

$$
L(G) \simeq \sum_{i=1}^{n} b_{i} L\left(\zeta_{p^{\alpha i}}\right)
$$

If $\alpha_{i}<\alpha_{j}<\infty, L\left(\zeta_{p \alpha_{i}}\right) \not \nsim L\left(\zeta_{p \alpha_{j}}\right)$ since the fields contain different collections of p th roots of unity. Thus b_{i} is characterized as the number of maximal ideals such that the quotient is isomorphic to $L\left(\zeta_{p^{\alpha}}\right)$. If we similarly define a sequence of b 's for $L(H)$, say $\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{n}$, such that $L(H) \simeq \sum_{i=1}^{n} \bar{b}_{i} L\left(\zeta_{p \alpha_{i}}\right)$, then $L(G) \simeq L(H)$ if and only if $b_{i}=\bar{b}_{i}$, $i=1, \ldots, n$. Recalling the definition of the b 's, this says that the number of elements in G and H of order at most $p^{\alpha_{i}}, i=1,2, \ldots, n$, are equal.

Let

$$
\begin{array}{ll}
v_{F}(s)=\operatorname{deg}\left(F\left(\zeta_{p^{s}}\right) / F\right), & s=1,2, \ldots \\
v_{k}(s)=\operatorname{deg}\left(K\left(\zeta_{p^{s}}\right) / K\right), & s=1,2, \ldots
\end{array}
$$

For $s=2,3, \ldots n$,

$$
\begin{aligned}
& v_{F}(s)=v_{F}(1) \prod_{i=1}^{s-1} \gamma_{F, p}(i) \\
& v_{K}(s)=v_{K}(1) \prod_{i=1}^{s} \gamma_{K, p}(i)
\end{aligned}
$$

Let $\lambda=v_{K}(1) / v_{F}(1)$, so that $v_{K}(s)=\lambda v_{F}(s), s=1,2, \ldots, n$. Let G and H be abelian groups of order at most p^{n} and suppose $F G \simeq F H$.

$$
\begin{aligned}
& F G \simeq \sum_{i=1}^{n} a_{i} F\left(\zeta_{p^{i}}\right) \simeq F H \simeq \sum \bar{a}_{i} F\left(\zeta_{p^{i}}\right) \\
& K G \simeq \sum \lambda a_{i} K\left(\zeta_{p^{i}}\right) \\
& K H \simeq \sum \lambda \bar{a}_{i} K\left(\zeta_{p^{i}}\right) .
\end{aligned}
$$

But the b sequence for $K G$ is just λ times the b sequence for $F G$, and similarly the b sequence for $K H$ is just λ times the b sequence for $F H$, while $F G \simeq F H$ implies their b sequences are equal. Therefore $K G \simeq K H$.

If $\gamma_{F, p}(n)>\gamma_{K, p}(n)$, then $\gamma_{F, p}(n)=p$ and $\gamma_{K, p}(n)=1$. Let

$$
G \simeq C_{p^{n+1}}, \quad H \simeq C_{p^{n}} \oplus C_{p} .
$$

$K G \simeq K H$ since G and H have the same number of elements of order at most p^{n+1}, but $F G \nsubseteq F H$ since G and H do not have the same number of elements of order at most p^{n}.

Corollary 7. Let K be a field. Then K is equivalent to isomorphism on the set of all finite abelian p-groups if and only if $\gamma_{K, p}(n)=p, n=1,2, \ldots$.

Proof. $\gamma_{Q, p}(n)=p, n=1,2, \ldots$. Now apply Theorem 6.
Corollary 8. Let F be a field and suppose p is odd. Then F is equivalent to isomorphism on the class of all finite abelian p-groups if and only if $F\left(C_{p} \times C_{p}\right) \nsim F\left(C_{p^{2}}\right)$.
Proof. If $\zeta_{p^{2}} \in F\left(\zeta_{p}\right)$ and $v_{p}=\operatorname{deg}\left(F\left(\zeta_{p}\right) / F\right)$, then

$$
F\left(C_{p} \times C_{p}\right) \simeq F \oplus \frac{p^{2}-1}{v_{p}} F\left(\zeta_{p}\right) \simeq F\left(C_{p^{2}}\right) .
$$

Thus $\gamma_{F, p}(1)=p$. By Proposition 2, $\gamma_{F, p}(n)=p, n=1,2, \ldots$ and by Corollary 7 the result follows.

Corollary 9. Let Q_{p} be the field of p-adic numbers. Let G and H be abelian groups of order p^{n}. Then $Q_{p} G \simeq Q_{p} H \Leftrightarrow G \simeq H$.

Proof. Let

$$
\phi_{p^{n}}(x)=\frac{x^{p^{n}}-1}{x^{p^{n-1}}-1}
$$

be the p^{n} th cyclotomic polynomial. It is irreducible over Q_{p}, by Eisenstein's criterion. Hence $\gamma_{Q_{p}, p}(n)=p, n=1,2, \ldots$. By Corollary 7 the result follows.

We now apply the theorem to algebraic number fields. Suppose p is odd. Then $Q\left(\zeta_{p^{2}}\right)$ is a cyclic extension of Q of degree $p(p-1)$ and contains a unique field of degree p over Q. Call this field F_{p}; i.e., $Q \subset F_{p} \subset Q\left(\zeta_{p^{2}}\right)$ and $\operatorname{deg}\left(F_{p} / Q\right)=p$.

Theorem 10. Let p be an odd prime. Let \mathscr{S} be the set of all finite abelian p-groups. Let K be an extension of Q.

Then the following are equivalent.
(i) K is equivalent to isomorphism on \mathscr{S}.
(ii) $K\left(C_{p} \times C_{p}\right) \nsimeq K\left(C_{p^{2}}\right)$
(iii) $F_{n} \not \subset K$
(iv) There does not exist a field L such that L properly contains Q and is contained in K, L is an abelian extension of Q of degree a power of p, and the discriminant of L is a power of p.

Proof. (i) \Rightarrow (ii). This is obvious.
(ii) \Rightarrow (iii). If $F_{p} \subset K$, then $K\left(\zeta_{p}\right)=K\left(\zeta_{p^{2}}\right)$. Let $\alpha=\operatorname{deg}\left(K\left(\zeta_{p}\right) / K\right)=$ $\operatorname{deg}\left(K\left(\zeta_{p^{2}}\right) / K\right)$. Then

$$
K\left(C_{p^{2}}\right) \simeq \frac{p(p-1)}{\alpha} K\left(\zeta_{p^{2}}\right) \simeq \frac{(p-1)}{\alpha} K\left(\zeta_{p}\right) \oplus K \simeq \frac{p^{2}-1}{\alpha} K\left(\zeta_{p}\right) \oplus K
$$

while

$$
K\left(C_{p} \times C_{p}\right) \simeq\left(\frac{p^{2}-1}{\alpha}\right) K\left(\zeta_{p}\right) \oplus K
$$

Thus $K\left(C_{p^{2}}\right) \simeq K\left(C_{p} \times C_{p}\right)$.
(iii) \Rightarrow (iv). Suppose such a field L exists and let $\operatorname{deg}(L / Q)=p^{r}$. As L is an abelian extension of Q of degree a power of p, by the Kronecker-Weber theorem, L is contained in a cyclotomic extension. In fact, since the discriminant of L is a power of $p, L \subset Q\left(\zeta_{p^{r+1}}\right)$. See, e.g., [3, p. 233]. But $Q\left(\zeta_{p^{r+1}}\right)$ is a cyclic extension of Q and contains a unique field L of degree p^{r} over Q. This field must also contain F_{p}, contradicting (iii).
(iv) \Rightarrow (i). Let M_{p} be the maximal abelian p-extension of Q in K. By Proposition 4, the p-sequence of M_{p} equals the p-sequence of K. Let $\zeta_{p^{n}}$ be a primitive p^{n} th root of unity in $Q \cdot Q\left(\zeta_{p^{n}}\right) \cap M_{p}$ is an extension of Q of degree a power of p, since M_{p} is, and has discriminant a power of p since it is contained in $Q\left(\zeta_{p^{n}}\right)$. By (iv), we conclude that $Q\left(\zeta_{p^{n}}\right) \cap M_{p}=Q$. From Galois theory
we have $\operatorname{deg}\left(M_{p}\left(\zeta_{p^{n}}\right) / M_{p}\right)=\operatorname{deg}\left(Q\left(\zeta_{p^{n}}\right) / Q\right)$ so that the p-sequence of M_{p} and of Q coincide. By Theorem 6 the result follows.

Theorem 11. Suppose $p=2$. Let \mathscr{S} be the set of all finite abelian 2-groups and let $\mathscr{T}=\left\{C_{8} \oplus C_{2}, C_{4} \oplus C_{4}, C_{4} \oplus C_{2} \oplus C_{2}\right\}$. Let K be an extension of Q. Then the following are equivalent.
(i) K is equivalent to isomorphism on \mathscr{S}.
(ii) K is equivalent to isomorphism on \mathscr{T}.
(iii) $\{\sqrt{ } 2, i, \sqrt{ }-2\} \cap K=\emptyset$.

Proof. (i) \Rightarrow (ii). This is obvious.
(ii) \Rightarrow (iii). If $i \in K, K\left(C_{4} \oplus C_{4}\right) \simeq K\left(C_{4} \oplus C_{2} \oplus C_{2}\right)$. If $\sqrt{ } 2$ or $\sqrt{ }-2 \in K$, $K\left(C_{8} \oplus C_{2}\right) \simeq K\left(C_{4} \oplus C_{4}\right)$.
(iii) \Rightarrow (i). Let M_{2} be the maximal abelian 2-extension of Q in K. We must check that the 2 -sequence of M_{2} coincide with the 2 -sequence of Q. Suppose $n \geqq 3$ and $\zeta_{2 n}$ is a primitive 2^{n} th root of unity over $Q . Q\left(\zeta_{2^{n}}\right)$ is an abelian extension of Q and contains exactly three quadratic extensions; namely, $Q(i), Q(/ 2), Q(\sqrt{ }-2)$. By (iv),

$$
\{i, \sqrt{ } 2, \sqrt{ }-2\} \cap K=\{i, \sqrt{ } 2, \sqrt{ }-2\} \cap M_{2}=\emptyset
$$

so that $Q\left(\zeta_{2^{n}}\right) \cap M_{2}=Q$. Then $\operatorname{deg}\left(M_{2}\left(\zeta_{2^{n}}\right) / M_{2}\right)=\operatorname{deg}\left(Q\left(\zeta_{2^{n}}\right) / Q\right)$ and the 2 -sequences of K and Q coincide.

If q is a prime and n is a positive integer, let $G F\left(q^{n}\right)$ denote the finite field of order q^{n}.

Theorem 12. Suppose p is odd and K is a field of characteristic q $(q \neq 0, q \neq p)$. Let e be the exponent of q modulo p. Then K is equivalent to isomorphism on all finite abelian p-groups if and only if $q^{e} \not \equiv 1$ (modulo p^{2}) and $G F\left(q^{p}\right) \not \subset K$.

Proof. Suppose K is equivalent to isomorphism on all finite abelian p-groups. By Corollary $7, \gamma_{K, p}(n)=p, n=1,2, \ldots$. Let ζ_{p} be a primitive p th root of unity for K, and let $\operatorname{deg}\left[G F(q)\left(\zeta_{p}\right) / G F(q)\right]=l$. The order of the multiplicative group of $G F(q)\left(\zeta_{p}\right)$ is $q^{l}-1$, and it contains an element of order p. Thus $q^{l} \equiv 1$ (modulo p). But e is the smallest positive integer such that $q^{e} \equiv 1(\bmod p)$, so that $l=e . \gamma_{K, p}(1)=p$ implies $\zeta_{p^{2}} \notin K\left[\zeta_{p}\right]$, so that $\zeta_{p^{2}} \notin G F(q)$; i.e., $q^{e} \not \equiv 1\left(\bmod p^{2}\right)$.
$\zeta_{p^{2}} \notin K\left[\zeta_{p}\right]$, so that $\zeta_{p^{2}}$ is of degree p over $G F(q)\left(\zeta_{p}\right)=G F\left(q^{e}\right)$. Therefore, $G F(q)\left(\zeta_{p^{2}}\right)=G F\left(q^{p e}\right)$. Since $1 \leqq e \leqq p-1$ and $G F\left(q^{p e}\right)$ is just the composite of $G F\left(q^{e}\right)$ and $G F\left(q^{p}\right)$, we conclude $G F\left(q^{p}\right) \not \subset K\left[\zeta_{p}\right]$. Hence $G F\left(q^{p}\right) \not \subset K$.

Conversely, since $p^{e} \not \equiv 1\left(\bmod p^{2}\right), \zeta_{p^{2}} \notin G F(q)\left(\zeta_{p}\right)=G F\left(q^{e}\right)$. If $\zeta_{p^{2}} \in$ $K\left[\zeta_{p}\right]$, then $G F\left(q^{p}\right) \subset G F\left(q^{p e}\right) \subset K\left[\zeta_{p}\right]$. Let λ be a generator for the multiplicative group of $G F\left(q^{p}\right)$. Then λ satisfies an irreducible polynomial $f(x) \in$ $G F(q)[x]$ of degree p, which remains irreducible in $K[x]$. But $\left(\operatorname{deg}\left(K\left(\zeta_{p}\right) / K\right), p\right)$
$=1$, so $f(x)$ remains irreducible over $K\left(\zeta_{p}\right)[x]$; i.e., $\zeta_{p^{2}} \notin K\left[\zeta_{p}\right]$. Thus $\gamma_{K, p}(1)=$ p. Since p is odd, by Proposition 2 we must have $\gamma_{K, p}(n)=p, n=1,2, \ldots$ so that the result follows by Corollary 7.

Theorem 13. Let q be an odd prime. If $q \equiv 1(\bmod 4)$, then $K\left(C_{4}\right) \simeq$ $K\left(C_{2} \times C_{2}\right)$. If $q \equiv 3(\bmod 4)$, then $K\left(C_{8}\right) \simeq K\left(C_{4} \times C_{2}\right)$.

Proof. If $q \equiv 1(\bmod 4)$, then the equation $x^{2}+1=0$ splits in K, so that $\gamma_{K, p}(1)=1$. Hence $K\left(C_{4}\right) \simeq K\left(C_{2} \times C_{2}\right)$. If $q \equiv 3(\bmod 4)$, then $G F\left(q^{2}\right) \subset$ $K\left(\zeta_{2}\right)$. As $q^{2} \equiv 1(\bmod 8), \zeta_{2} \in G F\left(q^{2}\right)$. Thus $\gamma_{K, 2}(1)=2$ and $\gamma_{K, 2}(2)=1$. By Theorem 6,

$$
K\left(C_{8}\right) \simeq K\left(C_{4} \times C_{2}\right)
$$

References

1. W. May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139-149.
2. S. Perlis and G. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950), 420-426.
3. P. Ribenboim, Algebraic numbers (Wiley-Interscience, New York, 1972).
4. E. Spiegel, Abelian p-adic group rings (to appear in Comment. Math. Helv.).

University of Connecticut, Storrs, Connecticut

