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GENERALIZED BLOCKED TRIANGULAR MATRIX RINGS
ASSOCIATED WITH FINITE ABELIAN

CENTRALIZER NEAR-RINGS
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For N any member of a large class of finite abelian right centralizer near-rings, the subring of the ring
End(N) of endomorphisms of (N, +) generated by the set of right multiplication maps on N is explicitly
described as a generalized blocked triangular matrix ring, which in some cases turns out to be a structural
matrix ring.

1991 Mathematics subject classification: Primary 16S50, 16Y30.

1. Introduction

Apart from structural considerations, various types of rings of matrices provide a
rich source of examples and counterexamples. In fact, Rowen (see [12, p. 29]) states
that rings of matrices "are undoubtedly the most widely studied class of non-
communicative rings". Generalized matrix rings form one of the largest classes of
matrix rings, and in their own right these rings have been studied extensively in various
contexts. See, for example, [2, 5, 6 and 7]. This class contains the class of structural
matrix rings, which in turn contains the complete matrix rings and the triangular
matrix rings, as well as the (complete) blocked triangular matrix rings. See, for
example, [3, 4, 10, 14 and 15].

In [13] it was shown that the right ring associated with a finite simple abelian near-
ring contains a set of matrix units and is therefore isomorphic to a complete matrix
ring. Secondly, a Wedderburn-Artin type result was obtained for the factor ring 11/2,
in the sense that Tl/I is isomorphic to a direct sum of complete matrix rings, where TZ
is the right ring associated with a finite abelian centralizer near-ring and J is a certain
nilpotent ideal of TZ. However, in neither of the above cases was any specific
isomorphism exhibited.

Throughout the sequel N will be a zero-symmetric right near-ring with identity, and we
assume that N is abelian, i.e. (N, +) is abelian. We consider a specific subring of the ring
End(N) of endomorphisms of the abelian group (N, +), namely the subring H generated
by the set of right multiplication maps p[ri\: N -*• N, with p[n](m) = mn, m,n e N, called
the right ring associated with N in [13]. Note that every element of TZ can be written as a
(finite) sum £ u p[nu] of right multiplication maps, with the nu's elements of N.
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The purpose of this paper is to describe TZ explicitly as a generalized blocked
triangular matrix ring in the case where N is any member of a large class of finite
(abelian) centralizer near-rings. This will be done in a constructive way, i.e. an
isomorphism map will be established. We will show that the mentioned generalized
blocked triangular matrix ring can turn out to be a structural matrix ring.

2. The representation of the right ring associated with a finite simple abelian near-ring
as a complete matrix ring

In this section we consider the setting in [13, Section 3]. For the ease of the reader
we provide the pertinent results, definitions and notation.

A basic near-ring-theoretic result states that every finite simple zero-symmetric
near-ring N (with 1) which is not a ring is isomorphic to a centralizer near-ring

MA(G) := {/: G ->• G |/(0) = 0 and /(at>) = a/(t>), Va e A, V» e G},

where G is a finite group (written additively) and A is a group of fixed point free
automorphisms of G. Under the added assumption that N be an abelian near-ring, G is
an abelian group.

Henceforth in this section G will be a finite abelian group, A := {a,,.. . , a,} will be a group
of fixed point free automorphisms of G, and N := MA(G). Let {«,,..., v,} be a complete set
of representatives of the nonzero /1-orbits of G. For i,j = 1, . . . , t, let etj e N be defined by
ei}(vj) = v, and etj(vk) = 0 if k j± j , and let E{j :— p[c;i], the right multiplication map on N
determined by ejt. Then {Ey :l<i,j< t] is a set of matrix units in H, i.e. £,, H h Ett = 1 R

and EjjEu = 5jk where <5̂ is the Kronecker delta. So much for preliminaries.
Let a e A, let 1 < i < t, and define e? e N by

e«0>i) = <xtfi and e?B(vj) = 0 if; ^ i.

T h e n e',4 = $,$e A . I n fac t , («J, + • • • + «J,)(«fi + • • • + e£) = eft + ••• + « ? . a n d so

P W i + ••• + «?,]• P[«fi + • • • + «£] = p t f f + • • • + e f t (1)

H e n c e b y [13, L e m m a 1] t h e set

T : = {a.ptf1, + ••• + e?,1 ] + ••• + a ,pK' , + • • • + e',l]: a, 6 Z*. Vi}

is a subring of 71, where k is the least common multiple of the orders of the elements
in G. Let R denote the subring of End(G) generated by A. Then R consists of
endomorphisms of G of the form

a,a,H + a,a,,

where a, € Zk, Vi.
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Lemma 2.1. With the above notation, O: T -»• TZ, defined by

flip[e"i + ••• + < # ] + ••• + a,p[e*\ + ••• + e'l] i -» a , a , + • • • + a,as,

is a ring isomorphism.

Proof. The technique used here is based on the technique used in the proof of [13,
Theorem 2]. However, we provide the details. Suppose first that

fliP[«u + ••• + «!?] + ••• + a,p\e\\ + .. . + £ ] = biP[el\ + ••• + e?,1]

Then for every n e N and every v,,i= 1 , . . . , t,
+ • • • + b,nu,(v,),

and so

(a, a, H h a^ Kv , ) = (fc,a, H + b,a,)n(v,).

Since, for a suitable choice of n, n(vt) can be any element of G, we have
axax H ha,a1 = b,a,H I-&,<*,, i.e. <D is well defined. Furthermore, by (1) 0 is
multiplicative, and it is certainly additive and onto. Lastly, suppose a^ H 1- a,as = 0.
Then (a,a, H h a,a,)n(i;i) = 0 for every neN and every «„ i = 1, ...,t. Hence,
reversing the above steps, we have

i + " • • + e'l] + • • • + a,p[el\ + — + <#])(") = 0

for every neN, and so atp[e"\ -\ (- e*1] H h a,p[e^, H 1- e%] = 0. Therefore <D
is 1-1. D

Let \S\ denote the cardinality of a set S. We are now in a position to exhibit an
isomorphism map from V. to M,(K). See [13, Theorem 2].

Theorem 2.2. Let N := MA(G) be a simple abelian near-ring, where G is a finite
(abelian) group and A = { a , , . . . , a,} is a fixed point free group of automorphisms of G.
Let R be the subring of End(G) generated by the automorphisms in A . If there are t
nonzero A-orbits of G, then the right ring H associated with N is isomorphic to the
complete matrix ring M,(U) via

with
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and

af := \{u: nu(v,) = <xmVj)\ (mod k), m = 1, . . . , s,

where {vlt..., v,) is a complete set of nonzero orbit representatives ofG, and k is the least
common multiple of the orders of the elements in G.

Proof. Since [Eyi 1 < i,j < t] is a set of matrix units in It, it follows from [9,
p. 52, Proposition 6] that every element £ a p[nu] of 1Z can be written in one and only
one way in the form

_ AP (2)

where

/ 1=1
(

1=1 \ u / 1=1

Note that

I iS, if nu(Vi) = aqvj, 1 < q < s;

0, i f ,^)*^.

Hence,

0,

Therefore,

u 1=1
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where a™ = \{u: nu(v,) = amt>;}| (mod k), m = 1 s. Furthermore, if £« p[nu] —
5Zu' p[n'u']> t n e n the uniqueness of by in (2) ensures that

u 1=1

and so if

with 6™ = |{u': <,(»,) = amu,}| (mod fc), m = 1 , . . . , s, then

« f P[e\\ + • • • + ell] + • • • + afp[e\\ + .•• + £ ]

= bfpWA + • • • + e?t] + • • • + bfp[e\\ + ••• + e?t],

which by Lemma 2.1 concludes the proof. •

We illustrate the map in Theorem 2.2 in the following example.

Example 2.3. Let G = (Z,, +), and let A = {id, a), where a{v) := -v, vel*,. (See
[13, Section 3, Example (b)].) Consider the elements 4p[n,] + p[n2] and 6p[n,] 4- 7p[n2]+
2p[n3] of 11, where nun2 and n3 are the elements of N(= MA(G)) defined in the table
below, and where 1, 2, 3 and 4 are the representatives of the four nonzero 4-orbits
{1, 8}, {2, 7}, {3, 6} and {4, 5} respectively. Since we shall need n], n2nlt n3n,, n,n2) "2
and n3«2. we include them in the table too.

1
2
3
4

"i

(7(2)

(7(2)

(7(1)

id(2)

»2

id{2)

(7(4)

(7(3)

W(3)

"3

id{\)
(7(3)

id{\)

(7(1)

n\
id(2)

id(2)

id(2)

(7(2)

n2n\

id(4)

id(4)

(7(2)

(7(4)

n3n,

id(3)

ii(3)

(7(1)

(7(3)

«1»2

(7(2)

(7(2)

id(\)

(7(1)

(7(4)

<7(3)

id(3)

(7(3)

n3"2
(7(3)

id(l)

(7(1)

Id(l)

(The above notation means that, for example, n,(l) = o(2) = 7.)
The function X: R -*• Z,, defined by

a,i<i + a2ff •-» at — a2 (mod 9),

is a ring isomorphism. Let A: M^l?) ->• M^Z,) be the induced isomorphism
[x,j] i-f [A(x9)]. Then by Theorem 2.2 we have
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Similarly,

Also,

/

\

• o

0

4(7

. 0

0 6
0 5
5 0
0 4

)_!•„ TV

i

0

0

8

1

+ 4

4(7

0
4i

0 '

8
0

0_

' 2
0
5
7

\a

1
3
0
6

0
0

a

i

0
7
2
7

°1\
(7

0

oj/

0"
2
0 '
0

h ] + p[n2])(6p[n,] + 7p[n2] + 2p[n3]))

+ pfon,] + 8p[n3n,] + 6p[«,n2] + 7p[n2
:] + 2p[n3n2])

0 0 6 3"

2 0 1 1

5 5 7 0

5 3 3 8

which equals the product of the two matrices in M^Z,) above. This is an illustration
of the multiplicativity of *F and

3. The representation of the right ring associated with a finite abelian centralizer near-ring
as a generalized blocked triangular matrix ring

In this section N will be a centralizer near-ring MA{G), where (MA(G), +) is a finite
abelian group and A is a. group of automorphisms of the finite group G. We note that
G, as pointed out in [13, Section 4], need not be abelian.

By Betsch's Lemma (see, for example, [11, Proposition 9.199]) there is a n e N such
that n(v) = w, with v,w eG, if and only if stab(t>) c stab(w), where stab(r) denotes the
stabilizer {a e A : av = v] of v, which is a subgroup of A. Let Ox,...,Ot denote the
nonzero .4-orbits of G. Consider the relations ~, < and < defined on the set
{0, O,} as follows:
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0, ~ Oj.o 3u, € Oit Vj e Oj such that stab(v,) = stab(v,),
O, < Oj-.o 3i>, € Olt Vj € Oj such that stab(i;,) D stabty),
Oi < Oj :-*» O, ~ Oj or 0, < 0,.

(The symbol c denotes strict inclusion.)
We assume henceforth that it is possible to select the t X-orbit representatives

»i , . . . , v, such that for i,j = 1, . . . , t,

Q £,Oj-e> stabfa) 2 stab(u;) and stab(i>,) D stabfy) => i >; . (3)

Therefore 0, ~ Oj if and only if stab(t),) = stab(vy). The equivalence relation ~ on the
C,'s induces an equivalence relation on the v,'s, which we denote by ~ too, in the
obvious way:

» ,~ »,:<«> O,~CV (4)

Our examples will show that condition (3), which we call the stabilizer condition, is
far from being restrictive. (In fact, we have no examples of (3) not being satisfied.)

Let p be the number of equivalence classes induced by the equivalence relation ~
in (4) on the set {u, v,}, and let i;,,,..., vlp be representatives of these p equivalence
classes, i.e. vit is an orbit representative in the first equivalence class, etc. Set
tm := IfaJI, i.e. the cardinality of the equivalence class [vim] containing vlm, m = 1, . . . , p.
Then t{ -\ h tp = t, and if [v^] = {u^,,..., u(mi }, then by (3) and (4) we can arrange
the ordering so that {iml,. ..,imJm} is a set of consecutive natural numbers, and
{'u • • • • «I.«I »P.I W = U '}•

In [13, Section 4] it was shown that the subring J of V. generated by the set [p[n]:
neN with stab(u) c stab(n(u)), VO ^ v e G] is a nilpotent ideal of K, and that H/1 is
isomorphic to a direct sum of complete matrix rings, with TZ the right ring associated
with N. Consider the set {£,, , . . . , £„} of orthogonal idempotents in TZ (with sum 1R)
as in Section 2, and note that if stab(u,m) g stab(t;,(), with 1 < I, m < p, then, as every
element of E^iJlZE,^ has the form

it follows from (3) that E^JR-E,^ = [0). Furthermore, in this case

for all k and k such that 1 < k < tm, 1 < k < t,, since s t a b ^ J = stab(i>,J g stab(»(|) =
stab(y(u,).

Let y:=t{-\ h tm_, and z:=tx-\ + tp_l. We conclude from the preceding
arguments and from arguments similar to those used in, for example [2, Proposition
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184 KIRBY C. SMITH AND LEON VAN WYK

2.1 and Theorem 2.3], [1] or [5], that we have proved the following lemma.

Lemma 3.1. TZ is isomorphic to the t xt generalized blocked triangular matrix ring

^•1, ,2+1

;

n

*

... nt,,

comprising all the matrices with (i,j)-th entries in H,j := EuTZEjj via

EEj,, r eH.r >->

By [13, Lemma 3 and Theorem 3] every diagonal block in the generalized blocked
triangular matrix ring above is isomorphic to a complete matrix ring. We now turn our
attention to the 72.,/s in the blocks in the non-symmetric part of the generalized blocked
triangular matrix ring in Lemma 3.1.

Let ei}: G - • G be defined as in Section 2. Then es e N if and only if
stab(fy) c stab(u,). For such e,/s we set Elt := p[ev], as in Section 2.

For the sake of simplicity of notation, let us assume that t>,,t>2 e [v,,] and
»!,p4e[»i1], with sUb(u,,) C stab(«;(2). Then eiue4l,e32, en e N, and so En, Eu, E2i,
E24en. (Note that, for example, e}i#N.) Therefore R , ^ ^ as Hu-1l4A-
bimodules, and since H,, = 7̂ 2i2

 aQd ^3.3 — ^ M a s rings, it follows from, for example,
[14, Lemma 2.3] that Ux,3 s 7^4 ^ UXA s T^j as Un-U^-bimodules. Consequently all
the flij's in a specific non-symmetric block are isomorphic as bimodules over the
appropriate rings.
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However, merely stated as in Lemma 3.1, and taking into consideration the
preceding paragraph, one has not become any wiser as far as the structure of the 72.f/s
in the non-symmetric blocks is concerned. After all, for example, the ring Z6 contains
the idempotents 3 and 4, and 3 + 4 = 1 ^ , and so Z6 is isomorphic to the 2 x 2

generalized matrix ring . I? , AJA . Therefore, only after studying the four

components does one realize that this isomorphism is merely the fact that

The purpose of this section is to find the structure of the components 72.,y in
Lemma 3.1 in order to eventually provide (Theorem 3.2) an explicit representation of
TZ as a t x t generalized blocked triangular matrix ring.

Henceforth we set

Km := stab(iO, (5)

Hm:={weG: stab(i>J c stab(w)},

m = 1, . . . , p. Also, let km denote the least common multiple of the elements of the
(abelian) subgroup Hm of G, as in [13, Section 4]. For the sake of simplicity of notation
let us assume that

im = m,m= 1,2,3,4, and K , c K 2 c K j C K 4 . (6)

We consider EUTZE22.
By [13, Lemma 2] we have £,,7££22 = ^11^^22. since we have assumed that

stab(i;,) C stab(t>2), where Z is the ideal of TZ as described in the discussion preceding
Lemma 3.1. A typical element of EuTE22 has the form

WHI =

with each nonzero e22nueu e N such that

e22nueu(v}) = av2 (7)

where, by the definition of J, the element a of A is such that stab(v,) C (a«2).
We claim, assuming that K} c K2 (see (6)), that for a € A,

stab(t),) c stab(at>2) -«• a\Hl e End(i/2, Ht), (8)

where End(//2, Hx) denotes the group of endomorphisms from H2 to Hy. (Note that
End(if2, H,) is abelian, since the H,'s are abelian. See [13, Section 4].) To this end,
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suppose that stab(u,) c stab(at>2), and let w e H2. Then, by (5), (6) and, for example
[11, Proposition 9.201], stab(aw) = a stab(w)a"' 2 a stab(u2)a"' = stab(au2) D stab^),
and so aw e Ht. Conversely, if a\Hi € End(H2, Hx), then, as v2 e H2, we have av2 € H,.
Thus stabO;,) c stab(ai>2), and since |stab(i>,)| < |stab(t>2)| = \a stab(t>2)a~'| = |stab(at>2)|,
it follows that stab(«|) C stab(au2), which establishes (8).

Note that every a e N(K2) satisfies (8), where N(fC2) denotes the normalizer of K2

in A, since for every a € N(K2) we have stab(at>2) = a stab(u2)a"' = stab(t>2) D stab(j;,).
Moreover, arguments similar to the preceding ones show that

a e N(k2) o a|W2 6 Aut(H2).

These results tie in with the fact that Aut(if2) c End(H2, H,).
Furthermore, with e22nueu(vl) = <xv2 as in (7) and (8), (p[e22nueu]{n))(vx) = &n(v2) for

every n e MA(G). Since stab(«;2) c stab(n(t>2)), it follows that n(v2) e H2, and so the idea
in the proof of [13, Lemma 1] shows that the additive order of p[e22nueu] is fc2.

Next, let An be the set of left cosets a := <xK2 of K2 in A, with a as in (8), i.e.

An :— {£: stab(i7,) C stab(at)2)}.

Then A2 c An> with A2 = N{K2)/K2 as in [13, Section 4]. Let [A : N(K2)] denote the
index of N(K2) in A. We note that if [A : N(K2)] = 2 and stab(u,) c stab(at;2) for some
ae A\ N(K2), then stab(t;,) c stab(/Su2) for all /? e A\ N(K2), since by, for example, [8,
Corollary II.4.4 (iii)], the number of subgroups of A conjugate to K2 equals
[A : N(K2)], and so if p e A \ N(K2), then stab(0i;2) = /? stab(t>2)0~' ^ stab(u2), which
implies that stab(/?i>2) = stab(ai;2) 3 stab(y,).

In general, with K, c Km, 1 < / < m < p, we set

Am:={am.\, •••,K9J
 a n d ^ im:={« m . i «m.fc «„,,«}• (9)

We may view A^, in the light of (8), as a subset of End(Hm, H,) by setting

aw := aw, (10)

a € Awl, w e H2. Since aum = pvm if and only if a"1/? e stab(um) if and only if
aKm = fiKm, it follows from (7) that if nmJ € N is defined by

V,("i) = am,^m and nmJ(v) = 0 if v & Avh (11)

7 = 1 , . . . , q®, then the foregoing results show that E^TZE^ is the subgroup

of (End(N), +). Since km is the least common multiple of the elements of Hm, every
element of End(//m, H,) has additive order which divides km. Therefore the subgroup of
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End(Hm, H,) generated by A^ is

Sta := {«,«*, + • • • + a,«am,(o: a, e Zj_, Y/}- (12)

Then we claim that

E¥inEinia ~ Sta (13)

as groups via

We now verify (13). For the sake of simplicity of notation, and without loss of
generality, we set / = 1 and m = 2, and we use (6). Suppose first that axp[n1A\+

1- aqmp[n2qm] = bxp[n2l\ H 1-bqmp[n2q(n]. Then, as in the proof of [13, Theorem 2]
it follows from (11) that, for every n e N,

+ • • • + aqm<x2qm)n(v2) = ((

i +••• + bqmtx2qm)n(v2).

Now n(v2) is an arbitrary element w of H2, and so by (10)

2-1 + • • • + bqma2qm,

i.e. <D12 is well defined. By (12) O is onto, and it is certainly additive. Lastly, if
fli«2,i -I 1-a,<"«2,,(l) — 0. then (a,52,i H 1-a,(»a2,(»)w(u2) = 0 for every ne N, and

reversing the above steps it follows that

((^iPKil + • • • + Ojioptw^DlXn))^,) = 0.

The second part of (11) now shows that aiP[n2i]-\ + oqmp[n2qm)] = 0, which
establishes (13).

For m = 1,. . . ,p, set
Rm •= {a i^.1 + • • • + aqm*m,qm • °j e Z ^ , V;}. (14)

By (9) and (12) Rm c Sta as sets, and J?m is the subring of A\xt(Hm) generated by the
elements of Am (see [13, Section 4]). Note also that if K,, c K, c Km, with
1 < / ' < / < m < p, then, as sets, S^ c Srm. Moreover, if Km is a normal subgroup of A,
then, as sets,
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Rm = S^ = S,.m. (15)

We now turn S ,̂ into an R|-Rm-bimodule. From [13, Section 4] we know that

<D • E, - HE,

and

defined by

is a ring isomorphism. Together with the group isomorphism Ota: E^
(13) we obtain S^ naturally as a right Rm-module via

Sun • rm = Olm(O^ (slm)d>-l(rm)),

Sta in

(17)

s(m e Sh,, rm e Rm. Similarly, we obtain S(m as a left /?,-module; in fact, S ,̂ is an R,-Rm-
bimodule.

In the light of Lemma 3.1 it should now be clear, again keeping (6) in mind, that

4% • Sn ®«2 S23 -+ S13) defined by (s12> s2i) (18)

si2 e 512, s23
 e 2̂3> is a n i?ri?3-homomorphism, and that, with (pf*, <pfZ and (̂ 24 defined

similarly, the diagram

1 2 ® R 2 S 2 4

commutes, where idtadenotes the identity function on Sta.
For 1 < / < m < t, we set

. I S , , , , i f /C ,cX m ;
~ } {0}, otherwise;

Thus, armed with the foregoing results, we conclude from Theorem 2.2, Lemma 3.1
and, for example, [1] or [7], that we have proved our main result:
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Theorem 3.2. Let N be a centralizer near-ring MA(G), where (MA(G), +) is a finite
abelian group and A is a group of automorphisms of the finite group G such that the
stabilizer condition is satisfied. Then, with the above notation, the right ring TZ associated
with N is isomorphic to the t x t generalized blocked triangular matrix ring

... M,,x, (7]_) . . . M,,„, (TiS
l\ XIn \ ITU/ l\Xlm\ ipj

M J U J . . . M,mXIp(Tm)))

via

where

with

a\" := \{u: nu(v,) = <xmlVj}vert (mod fcj. • • • • a ^ | : = U": ".

if i e {i,, , i,,,,},; € {im, im_,m], 1 < / < m < p, and ,

1 = amqmV)}\ ( m ° d '

:= qm.

By [14, Section 2] the class of structural matrix rings may be viewed as a subclass
of the class of generalized blocked triangular matrix rings in the sense that only one
base ring plays a role in the description of any particular structural matrix ring and
that no substructures of that base ring play a role in the mentioned description. To be
more precise, if B := [by] is a reflexive and transitive nx n Boolean matrix, i.e. bu = 1
for every i, and bi} = 1 = bjk implies bik = \,l < i,j,k < n, and if R is any ring, then the
structural matrix ring M(B, R) is the subring of the complete matrix ring M,(R)
comprising all matrices with 0 in position (fc, 0 whenever bu = 0. Recent papers on
structural matrix rings, studied in their own right, include [3], [4], [15] and [16].

From Theorem 3.2 we conclude that if the rings Rm,m = l , . . . , p , are isomorphic
to one another, and if Rm = S^ (as sets) in the case K, c Km, 1 < I < m < p, which
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occurs if, for example, Km is a normal subgroup of A, then 11 is isomorphic to a t x t
structural matrix ring over /?,. See Example 3.4.

Example 3.3. Let G = Zg © Z8, and let A be the group (under matrix multiplication)
of real matrices generated by

acting on G via matrix multiplication, where we view the elements of Z8 © Zg as
column matrices. Then (see, for example [8, p. 33, Exercise 4]) A = Z>4, the dihedral
group of order 8, generated by a and /?, with a* = id (the identity matrix), p2 = id and
(a/?)2 = id. Since a1/? = /?a4"' for 0 < i < 3, the elements of A can be represented as id, a,
a2, a3, 0, ajS, a2^ and a3/?, with

fi o "I r o - i i [~-i ol

Lo - I J L-i o j L o iJ
Here t = 14, and we select the 4-orbit representatives u,, . . . , vu of 0, O14 as
llows:follows:

- - [I]-"- [!]•*- [!]•- [oh=[i]-1*- [o]-- [!]•

Then

OH < O,3 <O9 ~Os~O1~O6~Oi~O4<Oi~O2~Ou

and it can be verified that (3) is satisfied. Thus p = 5, and the five equivalence
classes induced by ~ on {t>, vH} are [»,,] := {i>i,02,t>3}, [u,2] := {i;4, t;5, »6, t;7, t>8, i;,},

fi3 := {f|0. Wii, vn), vu := {t;,3} and vh := {vH}. The stabilizers Km, m = 1 5, are

X, = {id}, K2 = {id, <*P), K3 = {id, o?p], K< = {i, ot2, ap, ofp), k5 = A,

with
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KtcK2cK<c K5 and K, C K3 C K5.

191

Note that K4 is the only non-trivial normal subgroup of A amongst the Km's. By
Theorem 3.2 72. is isomorphic to the 14 x 14 generalized blocked triangular matrix
ring

M3(K,) M3x6(S12) M3x3(Sl3) M3xl(/?4) M3xI(R5)

0 MU^) M,X|(R5)

M3(K3) 0 M

0 R4 R

where we use the set equality in (15), and where the zeros denote the zero matrices of
the appropriate sizes.

Direct calculations show that k, = fc2 = fc3 = 8 and k4 = ks = 2. Since a2 = —id,
a3/? = — aB, a2)? = — /? and a3 = —a, it follows readily that the ring Rx is isomorphic to
the subring

& I ' ^—

of M2(Z8) via

{a, id + a2tx + a3a
2 + a4a

3 + a5/? + a6a/? + a7a2^ 4- Oga3/?: a, e Z8, Vi}

Next, N(K2)/K2 = {ufK2, <x2K2), and since a2 = -id, it follows that K2 ^ Z8 as rings.
Similarly, R3 ^ Zg and R5 = Zj as rings. However, N(K4)//C4 = {idK4, aK4} and so
R4 = ZjfZj], the group ring of (the additive group) Z2 over (the field) Z2. Similarly,
Sn S S13 Bi (ZJIZJ] , +) , and so

M3x3(Z8[Z2]) M J

0 Mfa

0 M3xl(Z2)

Z,

Z, J
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Since we have already provided an illustration of *F (see Example 2.3) as far as the
diagonal blocks, i.e. the complete matrix rings Mtoi(Rm), are concerned, we conclude
this example by illustrating the multiplicativity of *F as regards the non-symmetric part
of the above generalized blocked triangular matrix ring by using (17) and (18).

Let nu € JV, u = 1 , . . . , 15, be defined as in the following table:

"4

» "

n, " 2

at;,

" 3

a2!;,
n4

<xfa<
" 5

a 2 ^
» 6 Tlj Kg

(XpV\3 OL /?

n, n

;14 a /to4

afiv4 a3

10 "n
a3v4

» 1 2

a2i>4

n.3

a3t>13

a2j3i ;1 3

«I4 "15

fa>4
o?fau

au14

(The table is read as follows: n<,(i>i) = a3j!t;4, W9(u4) = a/to4, and n, is 0 on the other
twelve nonzero >4-orbits.)

Since A l 2 = {idK.2,aK.2,(x
2K2,a?K2}, A n = {idKit <xK3, a

2X3, a3K3} and /44 = A l t —
A24 — {idKA, aK4}, and since a2 = —id and a3 = —a, we use the following representation
for S12, S13 and R4 = Sl4 = S24:

Si2 = {a^id + OiOL: aua2e Z8} (where the cosets are the left cosets of K2 in A),

Sn = {bjd + fc2a: ft,, ft2 e Z8} (left cosets of Kz in A),

R4 = S14 = S24 = {cxid + c2a: cuc2 e Z2} (left cosets of K4 in A).

The other representations should now be clear.
Let V, W 6 11 be the following:

8

V := ̂ 2 a,p[#i,] = 4p[n,] + 5p[n2] + p[n3] + p[n4] + 3p[n5] + p[n6] + 7p[n7] + 5p[n8];

15
w '•= H V N = 2P["»1 + P["iol + P["n] + 5p[n12] + 3p[n13] + 7p[n14] + 5p[n15].

;=9

(Here a, = 4 , . . . , a8 = 5, and ft, = 2 , . . . , 6,s = 5.) Then by Theorem 3.2 the first row
of the 14 x 14 matrix ^(V) is

[3id + 5a 0 0 idK2 + 3aK2 0 0 0 0 0 0 0 0 idK4 + aK4 1 ] .

We abbreviate this representation for ^(V) by

(3id + 5a)e,,, + (idK2 + 3aK2)e, 4 -I- (idK4 + a/C4)e,il3 + eM4,

using ej; to denote the matrix with 1 in position (i,;) and zeros elsewhere. Similarly,
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= (6idK2 + 7a/C2)£, 4 + (aK4)f, ,3 + £U4 + (3idK2)e4 4 + (a.K4)£413

"t~ £4.14 ~t~ £13.14 " I" £I4.14-

8 IS

Now VW = y y a.VK".]. and

193

8 IS

and
j=9

+ (25a + 5a + 15a3 + 77)5 + 35a0 + 7a2^ + 7a3j?>14,

jjby^n, is 0 on the other thirteen orbits. Hence, again by Theorem 3.2,

= (2idK2

which equals the product of the matrices ^(V) and
In the following example the generalized blocked triangular matrix ring in Theorem 3.2

turns out to be a structural matrix ring. (See the discussion following Theorem 3.2.)

Example 3.4. Let A = {id, a, /?, e, y, 5}, where the elements of A are the following
elements of M^Zj): id is the 4 x 4 identity matrix and

a :=

e :=

• 1 0 0 1

0 1 0 0
0 0 1 0
. 0 0 0 1

o o o r
0 1 0 0
0 0 1 0
1 0 0 0

p-=

y:=

1 0 0 0
0 1 0 0
0 0 1 0
.10 0 1

0 0 0 1"
0 1 0 0
0 0 1 0
1 0 0 1

(=<

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

Under matrix multiplication A is a group which is isomorphic to the symmetric group
<S3; in fact, the multiplication table for A is the following:

a

P
£

y
5

a

id

S

y
£

P

P
y
id

S
a
£

£

6

y
id

P
a

y

p
£

a

5
id

5
£

a

P
id

y
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So under matrix multiplication A may be viewed as a group of automorphisms of
G := Zj © Z2 © Zj © Z2. In this case there are seven nonzero /1-orbits of G. Let the
orbit representatives be as follows:

1
0
0
0

,V2 =

"1
1
0
0

1
0
1
0

, l>4 =

' 1
1
1
0

, t > 5 =

" 0 '
1
0
0

,V6 =

"0"
0
1
0

,V7 =

"0"
1
1
0

Then O7 ~ O6 ~ O5 < O4 ~ O3 ~ O2 ~ Ou and
Kt = {id, a} C K2 — A, N(/C,) = X, and fc, = 2 = fcj.
following 7 x 7 structural matrix ring over Z2:

(3) is satisfied. Furthermore,
Therefore ft is isomorphic to the

0
M4 x 3(z2r
M3(Z2)
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